Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The current role of MRI for guiding active surveillance in prostate cancer

Abstract

Active surveillance (AS) is the recommended treatment option for low-risk and favourable intermediate-risk prostate cancer management, preserving oncological and functional outcomes. However, active monitoring using relevant parameters in addition to the usual clinical, biological and pathological considerations is necessary to compensate for initial undergrading of the tumour or to detect early progression without missing the opportunity to provide curative therapy. Indeed, several studies have raised concerns about inadequate biopsy sampling at diagnosis. However, the implementation of baseline MRI and targeted biopsy have led to improved initial stratification of low-risk disease; baseline MRI correlates well with disease characteristics and AS outcomes. The use of follow-up MRI during the surveillance phase also raises the question of the requirement for serial biopsies in the absence of radiological progression and the possibility of using completely MRI-based surveillance, with triggers for biopsies based solely on MRI findings. This concept of a tailored-risk, imaging-based monitoring strategy is aimed at reducing invasive procedures. However, the abandonment of serial biopsies in the absence of MRI progression can probably not yet be recommended in routine practice, as the data from real-life cohorts are heterogeneous and inconclusive. Thus, the evolution towards a routine, fully MRI-guided AS pathway has to be preceded by ensuring quality programme assessment for MRI reading and by demonstrating its safety in prospective trials.

Key points

  • MRI and MRI-guided biopsy should be considered as mandatory investigations before patients are included in active surveillance programmes.

  • During the monitoring phase, MRI helps to identify clinical progression and can be a trigger of re-biopsies, including targeted biopsies, in patients demonstrating radiological progression.

  • The definition of optimal MRI intervals and triggers during active surveillance remains unclear.

  • Data suggest that serial control biopsies could be avoided if MRI and all other parameters are stable.

  • However, cessation of control biopsies cannot be recommended routinely based on the current evidence, as the safety of MRI-based triggers for a control biopsy need to be demonstrated in randomized controlled trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: T2-weighted images of a prostate tumour from a 62-year-old man on active surveillance.

Similar content being viewed by others

References

  1. Mottet, N. et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on prostate cancer-2020 update. Part 1: screening, diagnosis, and local treatment with curative intent. Eur. Urol. 79, 243–262 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Liu, J. L. et al. Advances in the selection of patients with prostate cancer for active surveillance. Nat. Rev. Urol. 18, 197–208 (2021).

    Article  PubMed  Google Scholar 

  3. Kasivisvanathan, V., PRECISION Study Group Collaborators. et al. MRI-targeted or standard biopsy for prostate-cancer diagnosis. N. Engl. J. Med 378, 1767–1777 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rouvière, O. et al. MRI-FIRST Investigators. Use of prostate systematic and targeted biopsy on the basis of multiparametric MRI in biopsy-naive patients (MRI-FIRST): a prospective, multicentre, paired diagnostic study. Lancet Oncol. 20, 100–109 (2019).

    Article  PubMed  Google Scholar 

  5. Turkbey, B. et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2. Eur. Urol. 76, 340–351 (2019).

    Article  PubMed  Google Scholar 

  6. Moore, C. M. et al. Reporting magnetic resonance imaging in men on active surveillance for prostate cancer: the PRECISE recommendations — a report of a European School of Oncology task force. Eur. Urol. 71, 648–655 (2017).

    Article  PubMed  Google Scholar 

  7. Siddiqui, M. M. et al. Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA 313, 390–397 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Porpiglia, F. et al. In-parallel comparative evaluation between multiparametric magnetic resonance imaging, prostate cancer antigen 3 and the prostate health index in predicting pathologically confirmed significant prostate cancer in men eligible for active surveillance. BJU Int 118, 527–534 (2016).

    Article  PubMed  Google Scholar 

  9. Ouzzane, A. et al. Combined multiparametric MRI and targeted biopsies improve anterior prostate cancer detection, staging, and grading. Urology 78, 1356–1362 (2011).

    Article  PubMed  Google Scholar 

  10. Le, J. D. et al. Multifocality and prostate cancer detection by multiparametric magnetic resonance imaging: correlation with whole-mount histopathology. Eur. Urol. 67, 569–576 (2015).

    Article  PubMed  Google Scholar 

  11. Bratan, F. et al. Influence of imaging and histological factors on prostate cancer detection and localisation on multiparametric MRI: a prospective study. Eur. Radiol. 23, 2019–2029 (2013).

    Article  PubMed  Google Scholar 

  12. Radtke, J. P. et al. Further reduction of disqualification rates by additional MRI-targeted biopsy with transperineal saturation biopsy compared with standard 12-core systematic biopsies for the selection of prostate cancer patients for active surveillance. Prostate Cancer Prostatic Dis. 19, 283–291 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Baco, E. et al. Magnetic resonance imaging–transectal ultrasound image-fusion biopsies accurately characterize the index tumor: correlation with step-sectioned radical prostatectomy specimens in 135 patients. Eur. Urol. 67, 787–794 (2015).

    Article  PubMed  Google Scholar 

  14. Drost, F.-J. H. et al. Prostate MRI, with or without MRI-targeted biopsy, and systematic biopsy for detecting prostate cancer. Cochrane Database Syst. Rev. 4, CD012663 (2019).

    PubMed  Google Scholar 

  15. Klotz, L. et al. Randomized study of systematic biopsy versus magnetic resonance imaging and targeted and systematic biopsy in men on active surveillance (ASIST): 2-year postbiopsy follow-up. Eur. Urol. 77, 311–317 (2020).

    Article  PubMed  Google Scholar 

  16. Ouzzane, A. et al. Magnetic resonance imaging targeted biopsy improves selection of patients considered for active surveillance for clinically low risk prostate cancer based on systematic biopsies. J. Urol. 194, 350–356 (2015).

    Article  PubMed  Google Scholar 

  17. Hu, J. C. et al. Targeted prostate biopsy in select men for active surveillance: do the Epstein criteria still apply? J. Urol. 192, 385–390 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Park, B. H. et al. Role of multiparametric 3.0-Tesla magnetic resonance imaging in patients with prostate cancer eligible for active surveillance. BJU Int 113, 864–870 (2014).

    Article  PubMed  Google Scholar 

  19. Bokhorst, L. P. A decade of active surveillance in the PRIAS study: an update and evaluation of the criteria used to recommend a switch to active treatment. Eur. Urol. 70, 954–960 (2016).

    Article  PubMed  Google Scholar 

  20. Gallagher, K. M. et al. Four-year outcomes from a multiparametric magnetic resonance imaging (MRI)-based active surveillance programme: PSA dynamics and serial MRI scans allow omission of protocol biopsies. BJU Int 123, 429–438 (2019).

    Article  PubMed  Google Scholar 

  21. Alberts, A. R. et al. Risk-stratification based on magnetic resonance imaging and prostate-specific antigen density may reduce unnecessary follow-up biopsy procedures in men on active surveillance for low-risk prostate cancer. BJU Int 120, 511–519 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Filson, C. P. et al. Prostate cancer detection with magnetic resonance-ultrasound fusion biopsy: the role of systematic and targeted biopsies. Cancer 122, 884–892 (2016).

    Article  PubMed  Google Scholar 

  23. Recabal, P. et al. The efficacy of multiparametric magnetic resonance imaging and magnetic resonance imaging targeted biopsy in risk classification for patients with prostate cancer on active surveillance. J. Urol. 196, 374–381 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Stavrinides, V. et al. Five-year outcomes of magnetic resonance imaging-based active surveillance for prostate cancer: a large cohort study. Eur. Urol. 78, 443–451 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yerram, N. K. et al. Low suspicion lesions on multiparametric magnetic resonance imaging predict for the absence of high-risk prostate cancer. BJU Int 110, E783–E788 (2012).

    Article  PubMed  Google Scholar 

  26. Westphalen, A. C. et al. Variability of the positive predictive value of PI-RADS for prostate MRI across 26 centers: experience of the society of abdominal radiology prostate cancer disease-focused panel. Radiology 296, 76–84 (2020).

    Article  PubMed  Google Scholar 

  27. Barkovich, E. J., Shankar, P. R. & Westphalen, A. C. A systematic review of the existing prostate imaging reporting and data system version 2 (PI-RADSv2) literature and subset meta-analysis of PI-RADSv2 categories stratified by Gleason scores. AJR Am. J. Roentgenol. 212, 847–854 (2019).

    Article  PubMed  Google Scholar 

  28. Nougaret, S. et al. The performance of PI-RADSv2 and quantitative apparent diffusion coefficient for predicting confirmatory prostate biopsy findings in patients considered for active surveillance of prostate cancer. Abdom. Radiol. 42, 1968–1974 (2017).

    Article  Google Scholar 

  29. Kornberg, Z. et al. Genomic prostate score, PI-RADSTM version 2 and progression in men with prostate cancer on active surveillance. J. Urol. 201, 300–307 (2019).

    Article  PubMed  Google Scholar 

  30. Wang, A. Z. et al. PI-RADS® category as a predictor of progression to unfavorable risk prostate cancer in men on active surveillance. J. Urol. 204, 1229–1235 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhai, L. et al. The role of prostate imaging reporting and data system score in Gleason 3 + 3 active surveillance candidates enrollment: a diagnostic meta-analysis. Prostate Cancer Prostatic Dis. 22, 235–243 (2019).

    Article  PubMed  Google Scholar 

  32. Hambrock, T. et al. Relationship between apparent diffusion coefficients at 3.0-T MR imaging and Gleason grade in peripheral zone prostate cancer. Radiology 259, 453–461 (2011).

    Article  PubMed  Google Scholar 

  33. Boesen, L. et al. Apparent diffusion coefficient ratio correlates significantly with prostate cancer Gleason score at final pathology. J. Magn. Reson. Imaging 42, 446–453 (2015).

    Article  PubMed  Google Scholar 

  34. Chamie, K. et al. The role of magnetic resonance imaging in delineating clinically significant prostate cancer. Urology 83, 369–375 (2014).

    Article  PubMed  Google Scholar 

  35. Henderson, D. R. et al. Nine-year follow-up for a study of diffusion-weighted magnetic resonance imaging in a prospective prostate cancer active surveillance cohort. Eur. Urol. 69, 1028–1033 (2016).

    Article  PubMed  Google Scholar 

  36. Stamatakis, L. et al. Accuracy of multiparametric magnetic resonance imaging in confirming eligibility for active surveillance for men with prostate cancer. Cancer 119, 3359–3366 (2013).

    Article  PubMed  Google Scholar 

  37. Tosoian, J. J. et al. Active surveillance program for prostate cancer: an update of the Johns Hopkins experience. J. Clin. Oncol. 29, 2185–2190 (2011).

    Article  PubMed  Google Scholar 

  38. Rais-Bahrami, S. et al. Natural history of small index lesions suspicious for prostate cancer on multiparametric MRI: recommendations for interval imaging follow-up. Diagn. Interv. Radiol. Ank. Turk. 20, 293–298 (2014).

    Article  Google Scholar 

  39. Puech, P. et al. Prostate cancer diagnosis: multiparametric MR-targeted biopsy with cognitive and transrectal US-MR fusion guidance versus systematic biopsy — prospective multicenter study. Radiology 268, 461–469 (2013).

    Article  PubMed  Google Scholar 

  40. Mozer, P. et al. First round of targeted biopsies using magnetic resonance imaging/ultrasonography fusion compared with conventional transrectal ultrasonography-guided biopsies for the diagnosis of localised prostate cancer. BJU Int 115, 50–57 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Moldovan, P. et al. Accuracy of elastic fusion of prostate magnetic resonance and transrectal ultrasound images under routine conditions: a prospective multi-operator study. PLoS ONE 11, e0169120 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Meng, X. et al. The institutional learning curve of magnetic resonance imaging-ultrasound fusion targeted prostate biopsy: temporal improvements in cancer detection in 4 years. J. Urol. 200, 1022–1029 (2018).

    Article  PubMed  Google Scholar 

  43. Westhoff, N. et al. Precision of MRI/ultrasound-fusion biopsy in prostate cancer diagnosis: an ex vivo comparison of alternative biopsy techniques on prostate phantoms. World J. Urol. 35, 1015–1022 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Lu, A. J. et al. Role of core number and location in targeted magnetic resonance imaging-ultrasound fusion prostate biopsy. Eur. Urol. 76, 14–17 (2019).

    Article  PubMed  Google Scholar 

  45. Covin, B. et al. Refining the risk-stratification of transrectal biopsy-detected prostate cancer by elastic fusion registration transperineal biopsies. World J. Urol. 37, 269–275 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Ploussard, G. et al. Added value of concomitant systematic and fusion targeted biopsies for grade group prediction based on radical prostatectomy final pathology on positive magnetic resonance imaging. J. Urol. 202, 1182–1187 (2019).

    Article  PubMed  Google Scholar 

  47. Ahdoot, M. et al. MRI-targeted, systematic, and combined biopsy for prostate cancer diagnosis. N. Engl. J. Med 382, 917–928 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kasivisvanathan, V. et al. Magnetic resonance imaging-targeted biopsy versus systematic biopsy in the detection of prostate cancer: a systematic review and meta-analysis. Eur. Urol. 76, 284–303 (2019).

    Article  PubMed  Google Scholar 

  49. Bratt, O. et al. The value of an extensive transrectal repeat biopsy with anterior sampling in men on active surveillance for low-risk prostate cancer: a comparison from the randomised study of active monitoring in Sweden (SAMS). Eur. Urol. 76, 461–466 (2019).

    Article  PubMed  Google Scholar 

  50. Giganti, F. et al. Natural history of prostate cancer on active surveillance: stratification by MRI using the PRECISE recommendations in a UK cohort. Eur. Radiol. 31, 1644 (2021).

    Article  PubMed  Google Scholar 

  51. Sushentsev, N. et al. Serial changes in tumour measurements and apparent diffusion coefficients in prostate cancer patients on active surveillance with and without histopathological progression. Br. J. Radiol. 19, 20210842 (2020).

    Google Scholar 

  52. Caglic, I. et al. MRI-derived PRECISE scores for predicting pathologically-confirmed radiological progression in prostate cancer patients on active surveillance. Eur. Radiol. 31, 2696–2705 (2021).

    Article  PubMed  Google Scholar 

  53. Frye, T. P. et al. Magnetic resonance imaging-transrectal ultrasound guided fusion biopsy to detect progression in patients with existing lesions on active surveillance for low and intermediate risk prostate cancer. J. Urol. 197, 640–646 (2017).

    Article  PubMed  Google Scholar 

  54. Osses, D. F. et al. Prostate cancer upgrading with serial prostate magnetic resonance imaging and repeat biopsy in men on active surveillance: are confirmatory biopsies still necessary? BJU Int 126, 124–132 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chesnut, G. T. et al. Role of changes in magnetic resonance imaging or clinical stage in evaluation of disease progression for men with prostate cancer on active surveillance. Eur. Urol. 77, 501–507 (2020).

    Article  PubMed  Google Scholar 

  56. Ullrich, T. et al. Multiparametric magnetic resonance imaging can exclude prostate cancer progression in patients on active surveillance: a retrospective cohort study. Eur. Radiol. 30, 6042–6051 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hsiang, W. et al. Outcomes of serial multiparametric magnetic resonance imaging and subsequent biopsy in men with low-risk prostate cancer managed with active surveillance. Eur. Urol. Focus 7, 47–54 (2021).

    Article  PubMed  Google Scholar 

  58. Amin, A. et al. The magnetic resonance imaging in active surveillance (MRIAS) trial: use of baseline multiparametric magnetic resonance imaging and saturation biopsy to reduce the frequency of surveillance prostate biopsies. J. Urol. 203, 910–917 (2020).

    Article  PubMed  Google Scholar 

  59. Thurtle, D. et al. Progression and treatment rates using an active surveillance protocol incorporating image-guided baseline biopsies and multiparametric magnetic resonance imaging monitoring for men with favourable-risk prostate cancer. BJU Int. 122, 59–65 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Felker, E. R. et al. Serial magnetic resonance imaging in active surveillance of prostate cancer: incremental value. J. Urol. 195, 1421–1427 (2016).

    Article  PubMed  Google Scholar 

  61. Chu, C. E. et al. Diagnostic accuracy and prognostic value of serial prostate multiparametric magnetic resonance imaging in men on active surveillance for prostate cancer. Eur. Urol. Oncol. https://doi.org/10.1016/j.euo.2020.11.007. (2021).

  62. Rajwa, P. et al. Reliability of serial prostate magnetic resonance imaging to detect prostate cancer progression during active surveillance: a systematic review and meta-analysis. Eur. Urol. 80, 549–563 (2021).

    Article  PubMed  Google Scholar 

  63. Hettiarachchi, D. et al. Can the use of serial multiparametric magnetic resonance imaging during active surveillance of prostate cancer avoid the need for prostate biopsies? — A systematic diagnostic test accuracy review. Eur. Urol. Oncol. 4, 426–436 (2021).

    Article  PubMed  Google Scholar 

  64. Lam, T. B. L. et al. EAU-EANM-ESTRO-ESUR-SIOG Prostate cancer guideline panel consensus statements for deferred treatment with curative intent for localised prostate cancer from an international collaborative study (DETECTIVE study). Eur. Urol. 76, 790–813 (2019).

    Article  PubMed  Google Scholar 

  65. Ploussard, G. et al. Impact of MRI and targeted biopsies on eligibility and disease reclassification in MRI-positive candidates for active surveillance on systematic biopsies. Urology 137, 126–132 (2020).

    Article  PubMed  Google Scholar 

  66. Rozet, F. et al. Recommandations françaises du Comité de cancérologie de l’AFU — actualisation 2020–2022: cancer de la prostate [French ccAFU guidelines — update 2020–2022: prostate cancer]. Prog. Urol. 30, S136–S251 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Giganti, F., PRECISION study group. et al. Prostate imaging quality (PI-QUAL): a new quality control scoring system for multiparametric magnetic resonance imaging of the prostate from the PRECISION trial. Eur. Urol. Oncol. 3, 615–619 (2020).

    Article  PubMed  Google Scholar 

  68. Gaziev, G. et al. Defining the learning curve for multiparametric magnetic resonance imaging (MRI) of the prostate using MRI-transrectal ultrasonography (TRUS) fusion-guided transperineal prostate biopsies as a validation tool. BJU Int 117, 80–86 (2016).

    Article  PubMed  Google Scholar 

  69. Cornud, F. et al. Precision matters in MR imaging-targeted prostate biopsies: evidence from a prospective study of cognitive and elastic fusion registration transrectal biopsies. Radiology 287, 534–542 (2018).

    Article  PubMed  Google Scholar 

  70. Wegelin, O. et al. Complications and adverse events of three magnetic resonance imaging-based target biopsy techniques in the diagnosis of prostate cancer among men with prior negative biopsies: results from the FUTURE trial, a multicentre randomised controlled trial. Eur. Urol. Oncol. 2, 617–624 (2019).

    Article  PubMed  Google Scholar 

  71. Wysock, J. S. et al. A prospective, blinded comparison of magnetic resonance (MR) imaging-ultrasound fusion and visual estimation in the performance of MR-targeted prostate biopsy: the PROFUS trial. Eur. Urol. 66, 343–351 (2014).

    Article  PubMed  Google Scholar 

  72. Sonn, G. A. et al. Prostate magnetic resonance imaging interpretation varies substantially across radiologists. Eur. Urol. Focus 5, 592–599 (2019).

    Article  PubMed  Google Scholar 

  73. Rosenkrantz, A. B. et al. Interobserver reproducibility of the PI- RADS version 2 lexicon: a multicenter study of six experienced prostate radiologists. Radiology 280, 793–804 (2016).

    Article  PubMed  Google Scholar 

  74. Park, K. J., Choi, S. H., Lee, J. S., Kim, J. K. & Kim, M. H. Inter-reader agreement in prostate imaging reporting and data system version 2 for prostate cancer: a systematic review and meta-analysis. J. Urol. https://doi.org/10.1097/JU0000000000001200 (2020).

    Article  PubMed  Google Scholar 

  75. Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H. & Aerts, H. J. W. L. Artificial intelligence in radiology. Nat. Rev. Cancer 18, 500–510 (2020).

    Article  CAS  Google Scholar 

  76. Litjens, G. J., Barentsz, J. O., Karssemeijer, N. & Huisman, H. J. Clinical evaluation of a computer-aided diagnosis system for determining cancer aggressiveness in prostate MRI. Eur. Radiol. 25, 3187–3199 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Lay, N. et al. Detection of prostate cancer in multiparametric MRI using random forest with instance weighting. J. Med. Imaging 4, 024506 (2017).

    Article  Google Scholar 

  78. Song, Y. et al. Computer-aided diagnosis of prostate cancer using a deep convolutional neural network from multiparametric MRI. J. Magn. Reson. Imaging 48, 1570–1577 (2018).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

G.P., O.R., R.v.d.B. and R.R.-P. researched data for the article, wrote the manuscript, and reviewed and edited the manuscript before submission. G.P. and M.R. made substantial contributions to discussion of content.

Corresponding author

Correspondence to Guillaume Ploussard.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

UK NICE Guidelines: www.nice.org.uk/guidance/ng131

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ploussard, G., Rouvière, O., Rouprêt, M. et al. The current role of MRI for guiding active surveillance in prostate cancer. Nat Rev Urol 19, 357–365 (2022). https://doi.org/10.1038/s41585-022-00587-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-022-00587-0

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer