Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The biology and rationale of targeting nectin-4 in urothelial carcinoma

Abstract

Bladder cancer is the tenth most common cancer type worldwide. Urothelial carcinoma is the most common type of bladder cancer and accounts for 90% of bladder cancer cases in the USA and Europe. Novel approaches are needed to improve patient outcomes. Nectin-4 is a tumour-associated antigen found on the surface of most urothelial carcinoma cells. In the antibody–drug conjugate enfortumab vedotin, human anti-nectin-4 antibody is linked to the cytotoxic microtubule-disrupting agent monomethyl auristatin E. In ongoing phase I, II and III clinical trials, enfortumab vedotin has been evaluated as a monotherapy and in combination with a checkpoint inhibitor and/or chemotherapy in locally advanced and metastatic urothelial carcinoma. Encouraging data from the phase II study resulted in the FDA granting accelerated approval for enfortumab vedotin in December 2019 for patients with locally advanced or metastatic urothelial carcinoma who were previously treated with platinum and a checkpoint inhibitor therapy. Moreover, data from a phase I study led to the FDA granting breakthrough therapy designation to enfortumab vedotin combined with pembrolizumab as a first-line treatment in February 2020 for cisplatin-ineligible patients with locally advanced or metastatic urothelial carcinoma. Results of ongoing and future combination studies of enfortumab vedotin with immunotherapy and other novel agents are eagerly awaited.

Key points

  • The majority of patients with locally advanced or metastatic urothelial carcinoma treated with an anti-PDL1 checkpoint inhibitor immunotherapy given in the post-platinum or cisplatin-ineligible setting will fail to achieve complete remission; novel treatment approaches are needed to improve clinical outcomes for these patients.

  • An emerging target for systemic treatment of locally advanced or metastatic urothelial carcinoma is the tumour-associated antigen nectin-4, which is overexpressed in various cancer types, including 97% of urothelial carcinomas.

  • In the nectin-4 targeting antibody–drug conjugate enfortumab vedotin, human anti-nectin-4 antibody is linked to the cytotoxic microtubule-disrupting agent monomethyl auristatin E, and its preclinical activity has been successfully demonstrated in several solid tumours, including bladder cancer.

  • Enfortumab vedotin is being evaluated in ongoing phase I, II and III clinical trials either as a monotherapy or in combination with the checkpoint inhibitor pembrolizumab and/or chemotherapy in patients with locally advanced or metastatic urothelial carcinoma.

  • On the basis of data from the phase II EV-201 study, the FDA granted accelerated approval to enfortumab vedotin in December 2019 for patients with locally advanced or metastatic urothelial carcinoma whose disease has progressed on platinum and checkpoint inhibitor therapy.

  • Data from the phase Ib/II EV-103 study led to the FDA granting breakthrough therapy designation to enfortumab vedotin combined with pembrolizumab in February 2020 as a first-line treatment for cisplatin-ineligible patients with locally advanced or metastatic urothelial carcinoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanism of action of enfortumab vedotin.
Fig. 2: Nectin-4 is a therapeutic target for urothelial carcinoma.

Similar content being viewed by others

References

  1. Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).

    Article  PubMed  Google Scholar 

  2. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 70, 7–30 (2020).

    Article  PubMed  Google Scholar 

  3. Cancer.Net Editorial Board. Bladder cancer: statistics. Cancer.Net https://www.cancer.net/cancer-types/bladder-cancer/statistics (2020).

  4. American Cancer Society. Survival rates for bladder cancer. American Cancer Society https://www.cancer.org/cancer/bladder-cancer/detection-diagnosis-staging/survival-rates.html (2020).

  5. Flaig, T. W. et al. Bladder cancer, version 3.2020, NCCN clinical practice guidelines in oncology. J. Natl Compr. Canc. Netw. 18, 329–354 (2020).

    Article  PubMed  Google Scholar 

  6. Fuge, O., Vasdev, N., Allchorne, P. & Green, J. S. Immunotherapy for bladder cancer. Res. Rep. Urol. 7, 65–79 (2015).

    PubMed  PubMed Central  Google Scholar 

  7. Chang, S. S. et al. Diagnosis and treatment of non-muscle invasive bladder cancer: AUA/SUO guideline. J. Urol. 196, 1021–1029 (2016).

    Article  PubMed  Google Scholar 

  8. Rayn, K. N., Hale, G. R., Grave, G. P. & Agarwal, P. K. New therapies in nonmuscle invasive bladder cancer treatment. Indian J. Urol. 34, 11–19 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. FDA. FDA approves pembrolizumab for BCG-unresponsive, high-risk non-muscle invasive bladder cancer. FDA https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-pembrolizumab-bcg-unresponsive-high-risk-non-muscle-invasive-bladder-cancer (2020).

  10. Aragon-Ching, J. B., Werntz, R. P., Zietman, A. L. & Steinberg, G. D. Multidisciplinary management of muscle-invasive bladder cancer: current challenges and future directions. Am. Soc. Clin. Oncol. Educ. Book 38, 307–318 (2018).

    Article  PubMed  Google Scholar 

  11. Oing, C. et al. Second line chemotherapy for advanced and metastatic urothelial carcinoma: vinflunine and beyond — a comprehensive review of the current literature. J. Urol. 195, 254–263 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Rosenberg, J. E. et al. Pivotal trial of enfortumab vedotin in urothelial carcinoma after platinum and anti-programmed death 1/programmed death ligand 1 therapy. J. Clin. Oncol. 37, 2592–2600 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dietrich, B., Siefker-Radtke, A. O., Srinivas, S. & Yu, E. Y. Systemic therapy for advanced urothelial carcinoma: current standards and treatment considerations. Am. Soc. Clin. Oncol. Educ. Book 38, 342–353 (2018).

    Article  PubMed  Google Scholar 

  14. Challita-Eid, P. M. et al. Enfortumab vedotin antibody-drug conjugate targeting nectin-4 is a highly potent therapeutic agent in multiple preclinical cancer models. Cancer Res. 76, 3003–3013 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Beck, A., Goetsch, L., Dumontet, C. & Corvaia, N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat. Rev. Drug Discov. 16, 315–337 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Garcia-Alonso, S., Ocana, A. & Pandiella, A. Resistance to antibody-drug conjugates. Cancer Res. 78, 2159–2165 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Birrer, M. J., Moore, K. N., Betella, I. & Bates, R. C. Antibody-drug conjugate-based therapeutics: state of the science. J. Natl Cancer Inst. 111, 538–549 (2019).

    Article  PubMed  CAS  Google Scholar 

  18. Shim, H. Bispecific antibodies and antibody-drug conjugates for cancer therapy: technological considerations. Biomolecules 10, 360 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  19. Reichert, J. FDA approves sacituzumab govitecan (Trodelvy®) for triple-negative breast cancer. Antibody Society https://www.antibodysociety.org/adc/ (2020).

  20. Reichert, J. FDA grants first approval to belantamab mafodotin-blmf. Antibody Society https://www.antibodysociety.org/food-and-drug-administration/fda-grants-first-approval-to-belantamab-mafodotin-blmf/ (2020).

  21. FDA. FDA grants accelerated approval to enfortumab vedotin-ejfv for metastatic urothelial cancer. FDA https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-enfortumab-vedotin-ejfv-metastatic-urothelial-cancer (2019).

  22. Astellas. Astellas and Seattle Genetics receive FDA breakthrough therapy designation for PADCEV™ (enfortumab vedotin-ejfv) in combination with pembrolizumab in first-line advanced bladder cancer. Astellas https://newsroom.astellas.us/2020-02-19-Astellas-and-Seattle-Genetics-Receive-FDA-Breakthrough-Therapy-Designation-for-PADCEV-TM-enfortumab-vedotin-ejfv-in-Combination-with-Pembrolizumab-in-First-Line-Advanced-Bladder-Cancer (2020).

  23. Reymond, N. et al. Nectin4/PRR4, a new afadin-associated member of the nectin family that trans-interacts with nectin1/PRR1 through V domain interaction. J. Biol. Chem. 276, 43205–43215 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Fabre, S. et al. Prominent role of the Ig-like V domain in trans-interactions of nectins. Nectin3 and nectin 4 bind to the predicted C-C’-C”-D beta-strands of the nectin1 V domain. J. Biol. Chem. 277, 27006–27013 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Brancati, F. et al. Mutations in PVRL4, encoding cell adhesion molecule nectin-4, cause ectodermal dysplasia-syndactyly syndrome. Am. J. Hum. Genet. 87, 265–273 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fabre-Lafay, S. et al. Nectin-4, a new serological breast cancer marker, is a substrate for tumor necrosis factor-alpha-converting enzyme (TACE)/ADAM-17. J. Biol. Chem. 280, 19543–19550 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Buchanan, P. C. et al. Ectodomain shedding of the cell adhesion molecule Nectin-4 in ovarian cancer is mediated by ADAM10 and ADAM17. J. Biol. Chem. 292, 6339–6351 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Maruoka, M., Kedashiro, S., Ueda, Y., Mizutani, K. & Takai, Y. Nectin-4 co-stimulates the prolactin receptor by interacting with SOCS1 and inhibiting its activity on the JAK2-STAT5a signaling pathway. J. Biol. Chem. 292, 6895–6909 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Muhlebach, M. D. et al. Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature 480, 530–533 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Noyce, R. S. & Richardson, C. D. Nectin 4 is the epithelial cell receptor for measles virus. Trends Microbiol. 20, 429–439 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Jelani, M., Chishti, M. S. & Ahmad, W. Mutation in PVRL4 gene encoding nectin-4 underlies ectodermal-dysplasia-syndactyly syndrome (EDSS1). J. Hum. Genet. 56, 352–357 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Fortugno, P. et al. Nectin-4 mutations causing ectodermal dysplasia with syndactyly perturb the Rac1 pathway and the kinetics of adherens junction formation. J. Invest. Dermatol. 134, 2146–2153 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Raza, S. I., Nasser Dar, R., Shah, A. A. & Ahmad, W. A novel homozygous nonsense mutation in the PVRL4 gene and expansion of clinical spectrum of EDSS1. Ann. Hum. Genet. 79, 92–98 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Dardour, L., Cosyns, K. & Devriendt, K. A novel missense variant in the PVRL4 gene underlying ectodermal dysplasia-syndactyly syndrome in a Turkish child. Mol. Syndromol. 9, 22–24 (2018).

    Article  CAS  Google Scholar 

  35. Takano, A. et al. Identification of nectin-4 oncoprotein as a diagnostic and therapeutic target for lung cancer. Cancer Res. 69, 6694–6703 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, Y. et al. A novel PI3K/AKT signaling axis mediates Nectin-4-induced gallbladder cancer cell proliferation, metastasis and tumor growth. Cancer Lett. 375, 179–189 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Pavlova, N. N. et al. A role for PVRL4-driven cell-cell interactions in tumorigenesis. eLife. 2, e00358 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Siddharth, S. et al. Nectin-4 is a breast cancer stem cell marker that induces WNT/beta-catenin signaling via Pi3k/Akt axis. Int. J. Biochem. Cell Biol. 89, 85–94 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, Y. et al. Nectin-4 promotes gastric cancer progression via the PI3K/AKT signaling pathway. Hum. Pathol. 72, 107–116 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Sithanandam, G. & Anderson, L. M. The ERBB3 receptor in cancer and cancer gene therapy. Cancer Gene Ther. 15, 413–448 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kedashiro, S., Sugiura, A., Mizutani, K. & Takai, Y. Nectin-4 cis-interacts with ErbB2 and its trastuzumab-resistant splice variants, enhancing their activation and DNA synthesis. Sci. Rep. 9, 18997 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. M Rabet, M. et al. Nectin-4: a new prognostic biomarker for efficient therapeutic targeting of primary and metastatic triple-negative breast cancer. Ann. Oncol. 28, 769–776 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Nishiwada, S. et al. Nectin-4 expression contributes to tumor proliferation, angiogenesis and patient prognosis in human pancreatic cancer. J. Exp. Clin. Cancer Res. 34, 30 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Ma, J. et al. Expression and clinical significance of Nectin-4 in hepatocellular carcinoma. Onco Targets Ther. 9, 183–190 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Deng, H., Shi, H., Chen, L., Zhou, Y. & Jiang, J. Over-expression of Nectin-4 promotes progression of esophageal cancer and correlates with poor prognosis of the patients. Cancer Cell Int. 19, 106 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Teutsch, S. M. et al. The evaluation of genomic applications in practice and prevention (EGAPP) initiative: methods of the EGAPP Working Group. Genet. Med. 11, 3–14 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Febbo, P. G. et al. NCCN task force report: evaluating the clinical utility of tumor markers in oncology. J. Natl Compr. Canc. Netw. https://doi.org/10.6004/jnccn.2011.0137 (2011).

    Article  PubMed  Google Scholar 

  48. Riester, M. et al. Integrative analysis of 1q23.3 copy-number gain in metastatic urothelial carcinoma. Clin. Cancer Res. 20, 1873–1883 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bambury, R. M. et al. DNA copy number analysis of metastatic urothelial carcinoma with comparison to primary tumors. BMC Cancer 15, 242 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Riester, M. et al. Combination of a novel gene expression signature with a clinical nomogram improves the prediction of survival in high-risk bladder cancer. Clin. Cancer Res. 18, 1323–1333 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kalim, M. et al. Intracellular trafficking of new anticancer therapeutics: antibody-drug conjugates. Drug Des. Devel. Ther. 11, 2265–2276 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lambert, J. M. & Berkenblit, A. Antibody-drug conjugates for cancer treatment. Annu. Rev. Med. 69, 191–207 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Masters, J. C., Nickens, D. J., Xuan, D., Shazer, R. L. & Amantea, M. Clinical toxicity of antibody drug conjugates: a meta-analysis of payloads. Invest. N. Drugs 36, 121–135 (2018).

    Article  CAS  Google Scholar 

  54. Li, F. et al. Intracellular released payload influences potency and bystander-killing effects of antibody-drug conjugates in preclinical models. Cancer Res. 76, 2710–2719 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Green, L. L. Antibody engineering via genetic engineering of the mouse: XenoMouse strains are a vehicle for the facile generation of therapeutic human monoclonal antibodies. J. Immunol. Methods 231, 11–23 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Doronina, S. O. et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat. Biotechnol. 21, 778–784 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Sussman, D. et al. SGN-LIV1A: a novel antibody-drug conjugate targeting LIV-1 for the treatment of metastatic breast cancer. Mol. Cancer Ther. 13, 2991–3000 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01409135 (2015).

  59. Galsky, M. D. et al. Treatment of patients with metastatic urothelial cancer “unfit” for cisplatin-based chemotherapy. J. Clin. Oncol. 29, 2432–2438 (2011).

    Article  PubMed  Google Scholar 

  60. Saxman, S. B. et al. Long-term follow-up of a phase III intergroup study of cisplatin alone or in combination with methotrexate, vinblastine, and doxorubicin in patients with metastatic urothelial carcinoma: a cooperative group study. J. Clin. Oncol. 15, 2564–2569 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Milowsky, M. I. et al. Guideline on muscle-invasive and metastatic bladder cancer (European Association of Urology Guideline): American Society of Clinical Oncology clinical practice guideline endorsement. J. Clin. Oncol. 34, 1945–1952 (2016).

    Article  PubMed  Google Scholar 

  62. Bukhari, N., Al-Shamsi, H. O. & Azam, F. Update on the treatment of metastatic urothelial carcinoma. ScientificWorldJournal. 2018, 5682078 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Siefker-Radtke, A. & Curti, B. Immunotherapy in metastatic urothelial carcinoma: focus on immune checkpoint inhibition. Nat. Rev. Urol. 15, 112–124 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02091999 (2020).

  65. Rosenberg, J. et al. EV-101: a phase I study of single-agent enfortumab vedotin in patients with nectin-4-positive solid tumors, including metastatic urothelial carcinoma. J. Clin. Oncol. 38, 1041–1049 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Komlodi-Pasztor, E., Sackett, D., Wilkerson, J. & Fojo, T. Mitosis is not a key target of microtubule agents in patient tumors. Nat. Rev. Clin. Oncol. 8, 244–250 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. US Food & Drug Administration. Breakthrough therapy. FDA https://www.fda.gov/patients/fast-track-breakthrough-therapy-accelerated-approval-priority-review/breakthrough-therapy (2018).

  68. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03070990 (2020).

  69. Takahashi, S. et al. A phase I study of enfortumab vedotin in Japanese patients with locally advanced or metastatic urothelial carcinoma. Invest. New Drugs 38, 1056–1066 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03219333 (2020).

  71. Rudmann, D. G. On-target and off-target-based toxicologic effects. Toxicol. Pathol. 41, 310–314 (2013).

    Article  PubMed  CAS  Google Scholar 

  72. Goldberg, H. ESMO virtual congress 2020: long-term results of enfortumab vedotin monotherapy for locally advanced or metastatic urothelial cancer in the EV-201 study in patients previously treated with platinum and PD-1/PD-L1 inhibitors. UroToday https://www.urotoday.com/conference-highlights/esmo-2020/bladder-cancer/124501-esmo-virtual-congress-2020-long-term-results-of-enfortumab-vedotin-monotherapy-for-locally-advanced-or-metastatic-urothelial-cancer-in-the-ev-201-study-in-patients-previously-treated-with-platinum-and-pd-1-pd-l1-inhibitors.html (2020).

  73. Astellas Pharma Inc. Astellas and Seagen announce positive topline results from second cohort of patients in phase 2 pivotal trial of PADCEV® (enfortumab vedotin-ejfv) in advanced urothelial cancer. PR Newswire https://www.prnewswire.com/news-releases/astellas-and-seagen-announce-positive-topline-results-from-second-cohort-of-patients-in-phase-2-pivotal-trial-of-padcev-enfortumab-vedotin-ejfv-in-advanced-urothelial-cancer-301149817.html (2020).

  74. National Cancer Institute. Enfortumab vedotin approved for recurrent bladder cancer. NCI https://www.cancer.gov/news-events/cancer-currents-blog/2020/enfortumab-vedotin-bladder-cancer-fda-approval (2020).

  75. Cao, A., Heiser, R., Law, C.-L. & Gardai, S. J. Auristatin-based antibody drug conjugates activate multiple ER stress response pathways resulting in immunogenic cell death and amplified T-cell responses [abstract 4914]. Cancer Res. 76, 4914 (2016).

    Google Scholar 

  76. Muller, P., Rios-Doria, J., Harper, J. & Cao, A. in Innovations for Next-Generation Antibody-Drug Conjugates (ed. Damelin, M.) 11–44 (Humana Press, 2018).

  77. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03288545 (2020).

  78. Hoimes, C. J. et al. EV-103: Initial results of enfortumab vedotin plus pembrolizumab for locally advanced or metastatic urothelial carcinoma [abstract 901O]. Ann. Oncol. 30, v356–v402 (2019).

    Article  Google Scholar 

  79. Seagen. Seattle Genetics and Astellas announce updated results from phase 1b/2 Trial of PADCEV™ (enfortumab vedotin-ejfv) in combination with immune therapy pembrolizumab as investigational first-line treatment for advanced bladder cancer. Seagen https://investor.seattlegenetics.com/press-releases/news-details/2020/Seattle-Genetics-and-Astellas-Announce-Updated-Results-from-Phase-1b2-Trial-of-PADCEV-enfortumab-vedotin-ejfv-in-Combination-with-Immune-Therapy-Pembrolizumab-as-Investigational-First-Line-Treatment-for-Advanced-Bladder-Cancer/default.aspx (2020).

  80. Rosenberg, J. E. et al. Study EV-103: preliminary durability results of enfortumab vedotin plus pembrolizumab for locally advanced or metastatic urothelial carcinoma [abstract 441]. J. Clin. Oncol. 38, 441 (2020).

    Article  Google Scholar 

  81. Goldberg, H. ASCO 2020: study EV-103: new randomized cohort testing enfortumab vedotin as monotherapy or in combination with pembrolizumab in locally advanced or metastatic urothelial cancer (Trial in Progress). UroToday https://www.urotoday.com/conference-highlights/asco-2020/asco-2020-bladder-cancer/121869-asco-2020-study-ev-103-new-randomized-cohort-testing-edfortumab-vedotin-as-monotherapy-or-in-combination-with-pembrolizumab-in-locally-advanced-or-metastatic-urothelial-cancer-trial-in-progress.html (2020).

  82. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03474107 (2020).

  83. Petrylak, D. P. et al. EV-301: phase III study to evaluate enfortumab vedotin (EV) versus chemotherapy in patients with previously treated locally advanced or metastatic urothelial cancer (la/mUC) [abstract TPS497]. J. Clin. Oncol. https://doi.org/10.1200/JCO.2019.37.7_suppl.TPS497 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Seagen. Seattle Genetics and Astellas announce PADCEV® (enfortumab vedotin-ejfv) significantly improved overall survival in phase 3 trial in previously treated locally advanced or metastatic urothelial cancer. Seagen https://investor.seattlegenetics.com/press-releases/news-details/2020/Seattle-Genetics-and-Astellas-Announce-PADCEV-enfortumab-vedotin-ejfv-Significantly-Improved-Overall-Survival-in-Phase-3-Trial-in-Previously-Treated-Locally-Advanced-or-Metastatic-Urothelial-Cancer/default.aspx (2020).

  85. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/study/NCT04223856 (2020).

  86. Tewari, A. ESMO virtual congress 2020: EV-302: enfortumab vedotin plus pembrolizumab and/or chemotherapy, vs chemotherapy alone, in untreated locally advanced or metastatic urothelial cancer. UroToday https://www.urotoday.com/conference-highlights/esmo-2020/bladder-cancer/124718-esmo-virtual-congress-2020-ev-302-enfortumab-vedotin-plus-pembrolizumab-and-or-chemotherapy-vs-chemotherapy-alone-in-untreated-locally-advanced-or-metastatic-urothelial-cancer.html (2020).

  87. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04136808 (2020).

  88. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03869190 (2020).

  89. Drakaki, A. et al. Phase Ib/II umbrella trial to evaluate the safety and efficacy of multiple 2L cancer immunotherapy (CIT) combinations in advanced/metastatic urothelial carcinoma (mUC): MORPHEUS-mUC [abstract TPS591]. J. Clin. Oncol. https://doi.org/10.1200/JCO.2020.38.6_suppl.TPS591 (2020).

    Article  Google Scholar 

  90. Collins, D. M., Bossenmaier, B., Kollmorgen, G. & Niederfellner, G. Acquired resistance to antibody-drug conjugates. Cancers 11, 394 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  91. Chen, R. et al. CD30 downregulation, MMAE resistance, and MDR1 upregulation are all associated with resistance to brentuximab vedotin. Mol. Cancer Ther. 14, 1376–1384 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. De Santis, M. et al. Randomized phase II/III trial assessing gemcitabine/carboplatin and methotrexate/carboplatin/vinblastine in patients with advanced urothelial cancer who are unfit for cisplatin-based chemotherapy: EORTC study 30986. J. Clin. Oncol. 30, 191–199 (2012).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

E.I.H. researched data for the article, made a substantial contribution to discussion of content, wrote and reviewed/edited the manuscript before submission. J.E.R. wrote and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Elisabeth I. Heath.

Ethics declarations

Competing interests

E.I.H. and J.E.R. have received honoraria from Astellas Pharma Global Development and Seagen.

Additional information

Peer review information

Nature Reviews Urology thanks Bradley McGregor and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heath, E.I., Rosenberg, J.E. The biology and rationale of targeting nectin-4 in urothelial carcinoma. Nat Rev Urol 18, 93–103 (2021). https://doi.org/10.1038/s41585-020-00394-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-020-00394-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing