Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Current insights into the mechanisms and management of infection stones

Abstract

Infection stones are complex aggregates of crystals amalgamated in an organic matrix that are strictly associated with urinary tract infections. The management of patients who form infection stones is challenging owing to the complexity of the calculi and high recurrence rates. The formation of infection stones is a multifactorial process that can be driven by urine chemistry, the urine microenvironment, the presence of modulator substances in urine, associations with bacteria, and the development of biofilms. Despite decades of investigation, the mechanisms of infection stone formation are still poorly understood. A mechanistic understanding of the formation and growth of infection stones — including the role of organics in the stone matrix, microorganisms, and biofilms in stone formation and their effect on stone characteristics — and the medical implications of these insights might be crucial for the development of improved treatments. Tools and approaches used in various disciplines (for example, engineering, chemistry, mineralogy, and microbiology) can be applied to further understand the microorganism–mineral interactions that lead to infection stone formation. Thus, the use of integrated multidisciplinary approaches is imperative to improve the diagnosis, prevention, and treatment of infection stones.

Key points

  • Urine chemistry has a key role in infection stone formation and is determined by the saturation conditions, pH, and the presence of modulators of crystallization and aggregation in the urine.

  • Organic substances associated with infection stones influence their physical characteristics (for example, hardness) and could also be involved in stone formation.

  • Struvite stones are associated with urinary tract infections and are formed as a result of biomineralization by urea-hydrolysing microorganisms.

  • Positive stone cultures suggest the association of bacteria with calcium-based stones; however, the role of bacteria (active or passive) in the lithogenesis of calcium-based stones requires further examination.

  • The development of microbial biofilms complicates renal conditions and treatments; biofilm mechanical stability and resistance to treatment is increased by the biomineralization process.

  • Infection stone management strategies should rely on the proper identification and characterization of stones and an understanding of stone formation, stone microbiology, and the influence of biofilms on stone characteristics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Physicochemical process of stone formation.
Fig. 2: Role of microorganisms and biofilms in stone formation.

Similar content being viewed by others

References

  1. Pearle, M. S., Calhoun, E. A. & Curhan, G. C. Urological diseases in America project: urolithiasis. J. Urol. 173, 848–857 (2005).

    PubMed  Google Scholar 

  2. Saigal, C. S., Joyce, G. & Timilsina, A. R. Direct and indirect costs of nephrolithiasis in an employed population: opportunity for disease management? Kidney Int. 68, 1808–1814 (2005).

    PubMed  Google Scholar 

  3. Foster, G., Stocks, C. & Borofsky, M. S. Emergency department visits and hospital admissions for kidney stone disease, 2009: statistical brief #139. NCBI https://www.ncbi.nlm.nih.gov/books/NBK100827/ (2012).

  4. Romero, C. V., Akpinar, H. & Assimos, D. G. Kidney stones: a global picture of prevalence, incidence and associated risk factors. Rev. Urol. 12, e86–e96 (2010).

    PubMed  PubMed Central  Google Scholar 

  5. Brikowski, T. H., Lotan, Y. & Pearle, M. S. Climate-related increase in the prevalence of urolithiasis in the United States. Proc. Natl Acad. Sci. USA 105, 9841–9846 (2008).

    CAS  PubMed  Google Scholar 

  6. Scales, Jr, C. D., Smith, A. C., Hanley, J. M. & Saigal, C. S. Prevalence of kidney stones in the United States. Eur. Urol. 62, 160–165 (2012).

    PubMed  PubMed Central  Google Scholar 

  7. Becker, G. The CARI guidelines. Kidney stones: uric acid stones. Nephrology 12 (Suppl. 1), 21–25 (2007).

    Google Scholar 

  8. Becker, G. The CARI guidelines. Kidney stones: cystine stones. Nephrology 12 (Suppl. 1), 4–10 (2007).

    Google Scholar 

  9. Evan, A. P. Physiopathology and etiology of stone formation in the kidney and the urinary tract. Pediatr. Nephrol. 25, 831–841 (2010).

    PubMed  Google Scholar 

  10. Parmar, M. S. Kidney stones. BMJ 328, 1420–1424 (2004).

    PubMed  PubMed Central  Google Scholar 

  11. Bichler, K. H. et al. Urinary infection stones. Int. J. Antimicrob. Agents 19, 488–498 (2002).

    CAS  PubMed  Google Scholar 

  12. Doyle, J. D. & Parsons, S. A. Struvite formation, control and recovery. Wat. Res. 36, 3925–3940 (2002).

    CAS  Google Scholar 

  13. Griffith, D. P. Struvite stones. Kidney Int. 13, 372–382 (1978).

    CAS  PubMed  Google Scholar 

  14. Prywer, J. & Olszynski, M. Bacterially induced formation of infectious urinary stones: recent developments and future challenges. Curr. Med. Chem. 24, 292–311 (2017).

    CAS  PubMed  Google Scholar 

  15. Resnick, M. Evaluation and management of infection stones. Urol. Clin. North Am. 8, 265–276 (1981).

    CAS  PubMed  Google Scholar 

  16. Schultz, L. N., Connolly, J., Lauchnor, E., Hobbs, T. A. & Gerlach, R. in The Role of Bacteria in Urology (eds Lange, D. & Chew, B.) 41–49 (Springer International Publishing, 2016).

  17. Trinchieri, A., Curhan, G., Karlsen, S. & Wu, K. J. in Proceedings of 1st International Consultation on Stone Disease (eds Segura, J., Conort, P. & Khoury, S.) 13 (Editions 21, Paris, 2003).

    Google Scholar 

  18. Worcester, E. M. & Coe, F. L. Nephrolithiasis. Prim. Care 35, 369–391 (2008).

    PubMed  PubMed Central  Google Scholar 

  19. Hodgkinson, A. & Pyrah, L. N. The urinary excretion of calcium and inorganic phosphate in 344 patients with calcium stone of renal origin. Br. J. Surg. 46, 10–18 (1958).

    CAS  PubMed  Google Scholar 

  20. Chow, K., Dixon, J., Gilpin, S., Kavanagh, J. P. & Rao, P. N. Citrate inhibits growth of residual fragments in an in vitro model of calcium oxalate renal stones. Kidney Int. 65, 1724–1730 (2004).

    CAS  PubMed  Google Scholar 

  21. Asplin, J. R. Hyperoxaluric calcium nephrolithiasis. Endocrinol. Metab. Clin. North Am. 31, 987–949 (2002).

    Google Scholar 

  22. Robertson, W. G., Peacock, M., Heyburn, P. J., Marshall, D. H. & Clark, P. B. Risk factors in calcium stone disease of the urinary tract. Br. J. Urol. 50, 449–454 (1978).

    CAS  PubMed  Google Scholar 

  23. Parks, J. H., Coe, F. L., Evan, A. P. & Worcester, E. M. Urine pH in renal calcium stone formers who do and do not increase stone phosphate content with time. Nephrol. Dial. Transplant. 24, 130–136 (2009).

    CAS  PubMed  Google Scholar 

  24. Parks, J. H., Worcester, E. M., Coe, F. L., Evan, A. P. & Lingeman, J. E. Clinical implications of abundant calcium phosphate in routinely analyzed kidney stones. Kidney Int. 66, 777–785 (2004).

    CAS  PubMed  Google Scholar 

  25. Daudon, M., Bouzidi, H. & Bazin, D. Composition and morphology of phosphate stones and their relation with etiology. Urol. Res. 38, 459–467 (2010).

    CAS  PubMed  Google Scholar 

  26. Wagner, C. A. & Mohebbi, N. Urinary pH and stone formation. J. Nephrol. 23, S165–S169 (2010).

    PubMed  Google Scholar 

  27. Daudon, M. et al. Sex- and age-related composition of 10617 calculi analyzed by infrared spectroscopy. Urol. Res. 23, 319–326 (1995).

    CAS  PubMed  Google Scholar 

  28. Sakhaee, K., Adams-Huet, B., Moe, O. W. & Pak, C. Y. C. Pathophysiologic basis for normouricosuric uric acid nephrolithiasis. Kidney Int. 62, 971–979 (2002).

    CAS  PubMed  Google Scholar 

  29. Halabe, A. & Sperling, O. Uric acid nephrolithiasis. Miner. Electrolyte Metab. 20, 424–431 (1994).

    CAS  PubMed  Google Scholar 

  30. Ahmed, K., Dasgupta, P. & Khan, M. S. Cystine calculi: challenging group of stones. Postgrad. Med. J. 82, 799–801 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Daudon, M. & Jungers, P. in Urinary Tract Stone Disease (eds Rao, N. P., Preminger, G. M. & Kavanagh, J. P.) 225–237 (Springer London, 2011).

    Google Scholar 

  32. Yarlagadda, S. G. & Perazella, M. A. Drug-induced crystal nephropathy: an update. Expert Opin. Drug Saf. 7, 147–158 (2008).

    CAS  PubMed  Google Scholar 

  33. Cohen, T. D. & Preminger, G. M. Struvite calculi. Semin. Nephrol. 16, 425–434 (1996).

    CAS  PubMed  Google Scholar 

  34. Lerner, S. P., Gleeson, M. J. & Griffith, D. P. Infection stones. J. Urol. 141, 753–758 (1989).

    CAS  PubMed  Google Scholar 

  35. Singh, M., Chapman, R., Tresidder, G. C. & Blandy, J. The fate of the unoperated staghon calculus. BJU Int. 45, 581–585 (1973).

    CAS  Google Scholar 

  36. Deutsch, P. G. & Subramonian, K. Conservative management of staghorn calculi: a single-centre experience. BJU Int. 118, 444–450 (2016).

    PubMed  Google Scholar 

  37. Knoll, T. et al. Urolithiasis through the ages: data on more than 200,000 urinary stone analyses. J. Urol. 185, 1304–1311 (2011).

    PubMed  Google Scholar 

  38. Stasinou, T., Bourdoumis, A. & Masood, J. Forming a stone in pelviureteric junction obstruction: cause or effect? Int. Braz. J. Urol. 43, 13–19 (2017).

    PubMed  PubMed Central  Google Scholar 

  39. Becknell, B. et al. Struvite urolithiasis and chronic urinary tract infection in a murine model of urinary diversion. Urology 81, 943–948 (2013).

    PubMed  PubMed Central  Google Scholar 

  40. Becknell, B., Mohamed, A. Z., Li, B., Wilhide, M. E. & Ingraham, S. E. Urine stasis predisposes to urinary tract infection by an opportunistic uropathogen in the megabladder (Mgb) mouse. PLOS ONE 10, e0139077 (2015).

    PubMed  PubMed Central  Google Scholar 

  41. Dorsher, P. T. & McIntosh, P. M. Neurogenic bladder. Adv. Urol. 2012, 16 (2012).

    Google Scholar 

  42. Stickler, D. J. Clinical complications of urinary catheters caused by crystalline biofilms: something needs to be done. J. Int. Med. 276, 120–129 (2014).

    CAS  Google Scholar 

  43. Lieske, J. C. et al. Diabetes mellitus and the risk of urinary tract stones: a population-based case-control study. Am. J. Kidney Dis. 48, 897–904 (2006).

    PubMed  Google Scholar 

  44. Preminger, G. M. et al. AUA guideline on management of staghorn calculi: diagnosis and treatment recommendations. J. Urol. 173, 1991–2000 (2005).

    PubMed  Google Scholar 

  45. Iqbal, M. W. et al. Contemporary management of struvite stones using combined endourologic and medical treatment: predictors of unfavorable clinical outcome. J. Endourol. 30, 771–777 (2016).

    PubMed  Google Scholar 

  46. Lingeman, J. E., Siegel, Y. I. & Steele, B. Metabolic evaluation of infected renal lithiasis: clinical relevance. J. Endourol. 9, 51–54 (1995).

    CAS  PubMed  Google Scholar 

  47. Flannigan, R. K. et al. Evaluating factors that dictate struvite stone composition: a multi-institutional clinical experience from the EDGE Research Consortium. Can. Urol. Assoc. J. 12, 131–136 (2018).

    PubMed  Google Scholar 

  48. Iqbal, M. W. et al. Should metabolic evaluation be performed in patients with struvite stones? Urolithiasis 45, 185–192 (2017).

    CAS  PubMed  Google Scholar 

  49. Boyce, W. H. Organic matrix of human urinary concretions. Am. J. Med. 45, 673–683 (1968).

    CAS  PubMed  Google Scholar 

  50. Boonla, C., Youngjermchan, P., Pumpaisanchai, S., Tungsanga, K. & Tosukhowong, P. Lithogenic activity and clinical relevance of lipids extracted from urines and stones of nephrolithiasis patients. Urol. Res. 39, 9–19 (2011).

    CAS  PubMed  Google Scholar 

  51. Roberts, S. & Resnick, M. Glycosaminoglycans content of stone matrix. J. Urol. 135, 1078–1083 (1986).

    CAS  PubMed  Google Scholar 

  52. Khan, S. R., Glenton, P. A., Backvov, R. & Talham, D. R. Presence of lipids in urine, crystals and stones: implications for the formation of kidney stones. Kidney Int. 62, 2062–2072 (2002).

    CAS  PubMed  Google Scholar 

  53. Iida, S. et al. Analysis of matrix glycosaminoglycans (GAGs) in urinary stones by high-performance liquid chromatography. Scann. Microsc. 13, 173–181 (1999).

    Google Scholar 

  54. Nishio, S. et al. Matrix glycosaminoglycan in urinary stones. J. Urol. 134, 503–505 (1985).

    CAS  PubMed  Google Scholar 

  55. Gilbert, P. U. P. A. The organic-mineral interface in biominerals. Rev. Miner. Geochem. 59, 157–185 (2005).

    CAS  Google Scholar 

  56. Chen, L. et al. Seed-mediated synthesis of unusual struvite hierarchical superstructures using bacterium. Cryst. Growth Des. 10, 2073–2082 (2010).

    CAS  Google Scholar 

  57. Prywer, J. & Torzewska, A. Bacterially induced struvite growth from synthetic urine: experimental and theoretical characterization of crystal morphology. Cryst. Growth Des. 9, 3538–3543 (2009).

    CAS  Google Scholar 

  58. Prywer, J. & Torzewska, A. Biomineralization of struvite crystals by Proteus mirabilis from artificial urine and their mesoscopic structure. Cryst. Res. Technol. 45, 1283–1289 (2010).

    CAS  Google Scholar 

  59. Prywer, J., Torzewska, A. & Plocinski, T. Unique surface and internal structure of struvite crystals formed by Proteus mirabilis. Urol. Res. 40, 699–707 (2012).

    PubMed  PubMed Central  Google Scholar 

  60. Sadowski, R. R., Prywer, J. & Torzewska, A. Morphology of struvite crystals as an evidence of bacteria mediated growth. Cryst. Res. Technol. 49, 478–489 (2014).

    CAS  Google Scholar 

  61. Sun, J. et al. Synthesis of struvite crystals by using bacteria Proteus mirabilis. Synt. React. Inorg. M. 42, 445–448 (2012).

    CAS  Google Scholar 

  62. Li, X. et al. In situ biomineralization and particle deposition distinctively mediate biofilm susceptibility to chlorine. Appl. Environ. Microbiol. 82, 2886–2892 (2016).

    PubMed  PubMed Central  Google Scholar 

  63. Sutherland, I. W. Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147, 3–9 (2001).

    CAS  PubMed  Google Scholar 

  64. Tourney, J. & Ngwenya, B. T. The role of bacterial extracellular polymeric substances in geomicrobiology. Chem. Geol. 386, 115–132 (2014).

    CAS  Google Scholar 

  65. Ringdén, I. & Tiselius, H.-G. Composition and clinically determined hardness of urinary tract stones. Scand. J. Urol. Nephrol. 41, 316–323 (2007).

    PubMed  Google Scholar 

  66. Zhong, P., Chuong, C. J. & Preminger, G. M. Characterization of fracture toughness of renal calculi using a microindentation technique. J. Mat. Sci. Lett. 12, 1460–1462 (1993).

    Google Scholar 

  67. Kohri, K. et al. Biomolecular mechanism of urinary stone formation involving osteopontin. Urol. Res. 40, 623–637 (2012).

    CAS  PubMed  Google Scholar 

  68. Piechota, J., Prywer, J. & Torzewska, A. Ab initio predictions of structural and elastic properties of struvite: contribution to urinary stone research. Comput. Methods Biomech. Biomed. Engin. 15, 1329–1336 (2012).

    PubMed  Google Scholar 

  69. Strakosha, R., Monga, M. & Wong, M. Y. C. The relevance of Randall’s plaques. Indian J. Urol. 30, 49–54 (2014).

    PubMed  PubMed Central  Google Scholar 

  70. Jaeger, C. D. et al. Endoscopic and pathologic characterization of papillary architecture in struvite stone formers. Urology 90, 39–44 (2016).

    PubMed  PubMed Central  Google Scholar 

  71. Evan, A. P. et al. Mechanism of formation of human calcium oxalate renal stones on Randall’s Plaque. Anat. Rec. 290, 1315–1323 (2007).

    CAS  Google Scholar 

  72. Coe, F. L., Evan, A. P., Worcester, E. M. & Lingeman, J. E. Three pathways for human kidney stone formation. Urol. Res. 38, 147–160 (2010).

    PubMed  PubMed Central  Google Scholar 

  73. Bouropoulos, N. C. & Koutsoukos, P. G. Spontaneous precipitation of struvite from aqueous solutions. J. Cryst. Growth 213, 381–388 (2000).

    CAS  Google Scholar 

  74. Khan, S. R. Renal tubular damage/dysfunction: key to the formation of kidney stones. Urol. Res. 34, 86–91 (2006).

    PubMed  Google Scholar 

  75. Liu, X. Y. Heterogeneous nucleation or homogeneous nucleation? J. Chem. Phys. 112, 9949–9955 (2000).

    CAS  Google Scholar 

  76. Finlayson, B. & Reid, F. The expectation of free and fixed particles in urinary stone disease. Invest. Urol. 15, 442–448 (1978).

    CAS  PubMed  Google Scholar 

  77. Prywer, J., Mielniczek-Brzóska, E. & Olszynski, M. Struvite crystal growth inhibition by trisodium citrate and the formation of chemical complexes in growth solution. J. Cryst. Growth 418, 92–101 (2015).

    CAS  Google Scholar 

  78. Wierzbicki, A., Sallis, J. D., Stevens, E. D., Smith, M. & Sikes, C. S. Crystal growth and molecular modeling studies of inhibition of struvite by phosphocitrate. Calcif. Tissue Int. 61, 216–222 (1997).

    CAS  PubMed  Google Scholar 

  79. McLean, R. J. C. & Nickel, J. C. Glycosaminoglycans and struvite calculi. World J. Urol. 12, 49–51 (1994).

    CAS  PubMed  Google Scholar 

  80. Torzewska, A. & Rozalski, A. In vitro studies on the role of glycosaminoglycans in crystallization intensity during infectious urinary stones formation. APMIS 122, 505–511 (2014).

    CAS  PubMed  Google Scholar 

  81. De Yoreo, J. J. & Vekilov, P. G. Principles of crystal nucleation and growth. Rev. Min. Geochem. 54, 57–93 (2003).

    Google Scholar 

  82. Aggarwal, K. P., Narula, S., Kakkar, M. & Tandon, C. Nephrolithiasis: molecular mechanism of renal stone formation and the critical role played by modulators. Biomed. Res. Int. 2013, 292953 (2013).

    PubMed  PubMed Central  Google Scholar 

  83. Fleisch, H. Inhibitors and promoters of stone formation. Kidney Int. 13, 361–371 (1978).

    CAS  PubMed  Google Scholar 

  84. Vermeulen, C. & Lyon, E. Mechanisms of genesis and growth of calculi. Am. J. Med. 45, 684–691 (1956).

    Google Scholar 

  85. He, J. Y., Deng, S. P. & Ouyang, J. M. Morphology, particle size distribution, aggregation, and crystal phase of nanocrystallites in the urine of healthy persons and lithogenic patients. IEEE Trans. Nanobioscience 9, 156–163 (2010).

    PubMed  Google Scholar 

  86. Prywer, J., Sadowski, R. R. & Torzewska, A. Aggregation of struvite, carbonate apatite, and Proteus mirabilis as a key factor of infectious urinary stone formation. Cryst. Growth Des. 15, 1446–1451 (2015).

    CAS  Google Scholar 

  87. Witzmann, F. A. et al. Label-free proteomic methodology for the analysis of human kidney stone matrix composition. Proteome Sci. 14, 4 (2016).

    PubMed  PubMed Central  Google Scholar 

  88. Khan, S. R., Shevock, P. N. & Hackett, R. L. Presence of lipids in urinary stones: results of preliminary studies. Calcif. Tissue Int. 42, 91–96 (1988).

    CAS  PubMed  Google Scholar 

  89. Boyce, W. H. in Urolithiasis — Physical Aspects: Proceedings of a Conference (eds Finlayson, B., Hench, L. L. & Smith, L. H.) 97 (National Academy of Sciences, Washington, 1972).

    Google Scholar 

  90. Boskey, A. L., Bullough, P. G., Vigorita, V. & di Carlo, E. Calcium-acidic phospholipid-phosphate complexes in human hydroxyapatite-containing pathologic deposits. Am. J. Pathol. 133, 22–29 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Boskey, A. L. The rote of calcium-phospholipid-phosphate complexes in tissue mineralization. Metab. Bone Dis. Relat. Res. 1, 137–142 (1978).

    CAS  Google Scholar 

  92. Khan, S. R., Shevock, P. N. & Hackett, R. L. In vitro precipitation of calcium oxalate in the presence of whole matrix or lipid components of the urinary stones. J. Urol. 139, 418–422 (1988).

    CAS  PubMed  Google Scholar 

  93. Boonla, C. et al. Inflammatory and fibrotic proteins proteomically identified as key protein constituents in urine and stone matrix of patients with kidney calculi. Clin. Chim. Acta 429, 81–89 (2014).

    CAS  PubMed  Google Scholar 

  94. Merchant, M. L. et al. Proteomic analysis of renal calculi indicates an important role for inflammatory processes in calcium stone formation. Am. J. Physiol. Renal Physiol. 295, F1254–F1258 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Canales, B. K. et al. Proteome of human calcium kidney stones. Urology 76, 1017.e13–1017.e20 (2010).

    Google Scholar 

  96. Jou, Y.-C. et al. Proteomic study of renal uric acid stone. Urology 80, 260–266 (2012).

    PubMed  Google Scholar 

  97. Kaneko, K. et al. Comparison of matrix proteins in different types of urinary stone by proteomic analysis using liquid chromatography–tandem mass spectrometry. Int. J. Urol. 19, 765–772 (2012).

    CAS  PubMed  Google Scholar 

  98. Kaneko, K. et al. Proteomic analysis after sequential extraction of matrix proteins in urinary stones composed of calcium oxalate monohydrate and calcium oxalate dihydrate. Anal. Sci. 31, 935–942 (2015).

    CAS  PubMed  Google Scholar 

  99. Goldberg, J. M. & Cotlier, E. Specific isolation and analysis of mucopolysaccharides (glycosaminoglycans) from human urine. Clin. Chim. Acta 41, 19–27 (1972).

    CAS  PubMed  Google Scholar 

  100. McLean, R., Lawrence, J. R., Korber, D. R. & Caldwell, D. E. Proteus mirabilis biofilm protection against struvite crystal dissolution and its implications in struvite urolithiasis. J. Urol. 146, 1138–1142 (1991).

    CAS  PubMed  Google Scholar 

  101. Poon, N. W. & Gohel, M. D. Urinary glycosaminoglycans and glycoproteins in a calcium oxalate crystallization system. Carbohydr. Res. 347, 64–68 (2012).

    CAS  PubMed  Google Scholar 

  102. Sun, X. et al. Analysis of total human urinary glycosaminoglycan disaccharides by liquid chromatography–tandem mass spectrometry. Anal. Chem. 87, 6220–6227 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Yamaguchi, S. et al. Heparan sulfate in the stone matrix and its inhibitory effect on calcium oxalate crystallization. Urol. Res. 21, 187–192 (1993).

    CAS  PubMed  Google Scholar 

  104. Michelacci, Y. M., Glashan, R. Q. & Schor, N. Urinary excretion of glycosaminoglycans in normal and stone forming subjects. Kidney Int. 36, 1022–1028 (1989).

    CAS  PubMed  Google Scholar 

  105. Frankel, R. B. & Bazylinski, D. A. Biologically induced mineralization by bacteria. Rev. Miner. Geochem. 54, 95–114 (2003).

    CAS  Google Scholar 

  106. Bazylinski, D. A. & Frankel, R. B. Biologically controlled mineralization in prokaryotes. Rev. Miner. Geochem. 54, 217–247 (2003).

    CAS  Google Scholar 

  107. Barr-Beare, E. et al. The Interaction between Enterobacteriaceae and calcium oxalate deposits. PLOS ONE 10, e0139575 (2015).

    PubMed  PubMed Central  Google Scholar 

  108. Dukic, I. et al. Pd8-04 transmogrifying infection stones: are calcium stones now the commoner infection stones in Pcnl? [abstract PD8-04]. J. Urol. 193, e191 (2015).

    Google Scholar 

  109. Romanova, Y. M. et al. Microbial communities on kidney stones. Mol. Genet. Microbiol. Virol. 30, 78–84 (2015).

    Google Scholar 

  110. Maier, A. et al. Bacteriological evaluation of the non-struvite nephrolithiasis and its association with urinary tract infections. Rev. Rom. Med. Lab. 23, 457–467 (2015).

    Google Scholar 

  111. Sohshang, H., Singh, M., Singh, N. & Singh, S. Biochemical and bacteriological study of urinary calculi. J. Commun. Dis. 32, 216–221 (2000).

    CAS  PubMed  Google Scholar 

  112. Lewi, H. J. E., White, A., Hutchinson, A. G. & Scott, R. The bacteriology of the urine and renal calculi. Urol. Res. 12, 107–109 (1984).

    CAS  PubMed  Google Scholar 

  113. Thompson, R. & Stamey, T. Bactriology of infected stones. Urology 2, 627–633 (1973).

    CAS  PubMed  Google Scholar 

  114. Golechha, S. & Solanki, A. Bacteriology and chemical composition of renal calculi accompanying urinary tract infection. Indian J. Urol. 17, 111–117 (2001).

    Google Scholar 

  115. O’Kane, D., Kiosoglous, A. & Jones, K. Candida dubliniensis encrustation of an obstructing upper renal tract calculus. BMJ Case Rep. 2013, bcr2013009087 (2013).

    PubMed  PubMed Central  Google Scholar 

  116. Wachsmuth, I. K., Davis, B. R. & Allen, S. D. Ureolytic Escherichia coli of human origin: serological, epidemiological, and genetic analysis. J. Clin. Microbiol. 10, 897–902 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Parsons, C. L. The role of the glycosaminoglycan layer in bladder defense mechanisms and interstitial cystitis. Int. Urogynecol. J. 4, 373–379 (1993).

    Google Scholar 

  118. Khan, S. R. Histological aspects of the “fixed-particle” model of stone formation: animal studies. Urolithiasis 45, 75–87 (2016).

    PubMed  PubMed Central  Google Scholar 

  119. Chen, X. e., Ling, P., Duan, R. & Zhang, T. Effects of heparosan and heparin on the adhesion and biofilm formation of several bacteria in vitro. Carbohydr. Polym. 88, 1288–1292 (2012).

    CAS  Google Scholar 

  120. Schaffer, J. N. & Pearson, M. M. Proteus mirabilis and urinary tract infections. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.UTI-0017-2013 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Jacobsen, S. M., Stickler, D. J., Mobley, H. L. T. & Shirtliff, M. E. Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin. Microbiol. Rev. 21, 26–59 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Hung, E. W., Darouiche, R. O. & Trautner, B. W. Proteus bacteriuria is associated with significant morbidity in spinal cord injury. Spinal Cord 45, 616–620 (2007).

    CAS  PubMed  Google Scholar 

  123. Armbruster, C. E. & Mobley, H. L. T. Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nat. Rev. Microbiol. 10, 743–754 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Coker, C., Poore, C. A., Li, X. & Mobley, H. L. T. Pathogenesis of Proteus mirabilis urinary tract infection. Microb. Infect. 2, 1497–1505 (2000).

    CAS  Google Scholar 

  125. Jones, B. D. & Mobley, H. L. Genetic and biochemical diversity of ureases of Proteus, Providencia, and Morganella species isolated from urinary tract infection. Infect. Immun. 55, 2198–2203 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Jones, B. V., Young, R., Mahenthiralingam, E. & Stickler, D. J. Ultrastructure of Proteus mirabilis swarmer cell rafts and role of swarming in catheter-associated urinary tract infection. Infect. Immun. 72, 3941–3950 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Mah, T.-F. C. & O’Toole, G. A. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 9, 34–39 (2001).

    CAS  PubMed  Google Scholar 

  128. Thomen, P. et al. Bacterial biofilm under flow: first a physical struggle to stay, then a matter of breathing. PLOS ONE 12, e0175197 (2017).

    PubMed  PubMed Central  Google Scholar 

  129. Edin-Liljegren, A., Hedelin, H. H., Grenabo, L. & Pettersson, S. Impact of Escherichia coli on urine citrate and urease-induced crystallization. Scanning Microsc. 9, 901–905 (1995).

    CAS  PubMed  Google Scholar 

  130. Bazin, D. et al. Absence of bacterial imprints on struvite-containing kidney stones: a structural investigation at the mesoscopic and atomic scale. Urology 79, 786–790 (2012).

    PubMed  Google Scholar 

  131. Carpentier, X. et al. Relationships between carbonation rate of carbapatite and morphologic characteristics of calcium phosphate stones and etiology. Urology 73, 968–975 (2009).

    PubMed  Google Scholar 

  132. Hesse, A. & Heimbach, D. Causes of phosphate stone formation and the importance of metaphylaxis by urinary acidification: a review. World J. Urol. 17, 308–315 (1999).

    CAS  PubMed  Google Scholar 

  133. Cohen, M. S., Warren, M. M., Baur, P., Vogel, J. J. & Davis, C. P. Intracellular crystal formation in bacteria from human urines: a contributing factor in urinary calculi. Urol. Res. 9, 55–61 (1981).

    CAS  PubMed  Google Scholar 

  134. Stewart, P. S. & Franklin, M. J. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 6, 199 (2008).

    CAS  PubMed  Google Scholar 

  135. Marcus, R. J. et al. Biofilms in nephrology. Expert Opin. Biol. Ther. 8, 1159–1166 (2008).

    CAS  PubMed  Google Scholar 

  136. Tenke, P. et al. Update on biofilm infections in the urinary tract. World J. Urol. 30, 51–57 (2012).

    PubMed  Google Scholar 

  137. Jacobsen, S. M. & Shirtliff, M. E. Proteus mirabilis biofilms and catheter-associated urinary tract infections. Virulence 2, 460–465 (2011).

    PubMed  Google Scholar 

  138. Flannigan, R., Choy, W. H., Chew, B. & Lange, D. Renal struvite stones — pathogenesis, microbiology, and management strategies. Nat. Rev. Urol. 11, 333–341 (2014).

    CAS  PubMed  Google Scholar 

  139. Flemming, H.-C. & Wingender, J. The biofilm matrix. Nat. Rev. Micro. 8, 623–633 (2010).

    CAS  Google Scholar 

  140. An, Y. H. & Friedman, R. J. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J. Biomed. Mat. Res. 43, 338–348 (1998).

    CAS  Google Scholar 

  141. Zunino, P. et al. Proteus mirabilis fimbriae (PMF) are important for both bladder and kidney colonization in mice. Microbiology 149, 3231–3237 (2003).

    CAS  PubMed  Google Scholar 

  142. O’Toole, G., Kaplan, H. B. & Kolter, R. Biofilm formation as microbial development. Annu. Rev. Microbiol. 54, 49–79 (2000).

    PubMed  Google Scholar 

  143. More, T. T., Yadav, J. S. S., Yan, S., Tyagi, R. D. & Surampalli, R. Y. Extracellular polymeric substances of bacteria and their potential environmental applications. J. Environ. Manage. 144, 1–25 (2014).

    CAS  PubMed  Google Scholar 

  144. O’May, C., Amzallag, O., Bechir, K. & Tufenkji, N. Cranberry derivatives enhance biofilm formation and transiently impair swarming motility of the uropathogen Proteus mirabilis HI4320. Can. J. Microbiol. 62, 464–474 (2016).

    PubMed  Google Scholar 

  145. Li, X. et al. Spatial patterns of carbonate biomineralization in biofilms. Appl. Environ. Microbiol. 81, 7403–7410 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Li, X., Lu, N., Brady, H. R. & Packman, A. I. Ureolytic biomineralization reduces Proteus mirabilis biofilm susceptibility to ciprofloxacin. Antimicrob. Agents Chemother. 60, 2993–3000 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Brisbane, W., Bailey, M. R. & Sorensen, M. D. An overview of kidney stone imaging techniques. Nat. Rev. Urol. 13, 654–662 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Westphalen, A. C., Hsia, R. Y., Maselli, J. H., Wang, R. & Gonzales, R. Radiological imaging of patients with suspected urinary tract stones: national trends, diagnoses, and predictors. Acad. Emerg. Med. 18, 699–707 (2011).

    PubMed  PubMed Central  Google Scholar 

  149. Weisenthal, K. et al. Evaluation of kidney stones with reduced–radiation dose CT: progress from 2011–2012 to 2015–2016 — not there yet. Radiology 286, 581–589 (2018).

    PubMed  Google Scholar 

  150. Niemann, T., Kollmann, T. & Bongartz, G. Diagnostic performance of low-dose CT for the detection of urolithiasis: a meta-analysis. Am. J. Roentgenol. 191, 396–401 (2008).

    Google Scholar 

  151. Smith-Bindman, R. et al. Ultrasonography versus computed tomography for suspected nephrolithiasis. N. Engl. J. Med. 371, 1100–1110 (2014).

    CAS  PubMed  Google Scholar 

  152. Ibrahim, E.-S. H. et al. Detection of different kidney stone types: an ex vivo comparison of ultrashort echo time MRI to reference standard CT. Clin. Imaging 40, 90–95 (2016).

    Google Scholar 

  153. Tonannavar, J. et al. Identification of mineral compositions in some renal calculi by FT Raman and IR spectral analysis. Spectrochim. Acta A 154, 20–26 (2016).

    CAS  Google Scholar 

  154. Kasidas, G. P., Samuell, C. T. & Weir, T. B. Renal stone analysis: why and how? Ann. Clin. Biochem. 41, 91–97 (2004).

    CAS  PubMed  Google Scholar 

  155. Ghosh, S., Basu, S., Chakraborty, S. & Mukherjee, A. K. Structural and microstructural characterization of human kidney stones from eastern India using IR spectroscopy, scanning electron microscopy, thermal study and X-ray Rietveld analysis. J. Appl. Cryst. 42, 629–635 (2009).

    CAS  Google Scholar 

  156. Charafi, S. et al. A comparative study of two renal stone analysis methods. Int. J. Nephrol. Urol. 2, 469–475 (2010).

    Google Scholar 

  157. Bazin, D., Daudon, M., Combes, C. & Rey, C. Characterization and some physicochemical aspects of pathological microcalcifications. Chem. Rev. 112, 5092–5120 (2012).

    CAS  PubMed  Google Scholar 

  158. Goeres, D. M. et al. Statistical assessment of a laboratory method for growing biofilms. Microbiology 151, 757–762 (2005).

    CAS  PubMed  Google Scholar 

  159. Primak, A. N. et al. Noninvasive differentiation of uric acid versus non–uric acid kidney stones using dual-energy CT. Acad. Radiol. 14, 1441–1447 (2007).

    PubMed  PubMed Central  Google Scholar 

  160. Haley, W. E. et al. The clinical impact of accurate cystine calculi characterization using dual-energy computed tomography. Case Rep. Radiol. 2015, 5 (2015).

    Google Scholar 

  161. Zarse, C. A. et al. Nondestructive analysis of urinary calculi using micro computed tomography. BMC Urol. 4, 15 (2004).

    PubMed  PubMed Central  Google Scholar 

  162. Williams, J. C., McAteer, J. A., Evan, A. P. & Lingeman, J. E. Micro-computed tomography for analysis of urinary calculi. Urol. Res. 38, 477–484 (2010).

    PubMed  Google Scholar 

  163. Gonzalez, R. D., Whiting, B. M. & Canales, B. K. The history of kidney stone dissolution therapy: 50 years of optimism and frustration with renacidin. J. Endourol. 26, 110–118 (2012).

    PubMed  PubMed Central  Google Scholar 

  164. Wall, I. & Tiselius, H. G. Long-term acidification of urine in patients treated for infected renal stones. Urol. Int. 45, 336–341 (1990).

    CAS  PubMed  Google Scholar 

  165. Stock, I. Natural antibiotic susceptibility of Proteus spp., with special reference to P. mirabilis and P. penneri strains. J. Chemother. 15, 12–26 (2003).

    CAS  PubMed  Google Scholar 

  166. Assimos, D. et al. Surgical management of stones: American Urological Association/Endourological Society Guideline, part I. J. Urol. 196, 1153–1160 (2016).

    PubMed  Google Scholar 

  167. Clatworthy, A. E., Pierson, E. & Hung, D. T. Targeting virulence: a new paradigm for antimicrobial therapy. Nat. Chem. Biol. 3, 541–548 (2007).

    CAS  PubMed  Google Scholar 

  168. Armbruster, C. E., Hodges, S. A. & Mobley, H. L. T. Initiation of swarming motility by Proteus mirabilis occurs in response to specific cues present in urine and requires excess l-glutamine. J. Bacteriol. 195, 1305–1319 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Torzewska, A. & Rozalski, A. Inhibition of crystallization caused by Proteus mirabilis during the development of infectious urolithiasis by various phenolic substances. Microbiol. Res. 169, 579–584 (2014).

    CAS  PubMed  Google Scholar 

  170. Hassan, S. T. S. & Žemlicka, M. Plant-derived urease inhibitors as alternative chemotherapeutic agents. Arch. Pharm. 349, 507–522 (2016).

    CAS  Google Scholar 

  171. Pearle, M. S. et al. Medical management of kidney stones: AUA guideline. J. Urol. 192, 316–324 (2014).

    PubMed  Google Scholar 

  172. Pareek, G., Armenakas, N. A., Panagopoulos, G., Bruno, J. J. & Fracchia, J. A. Extracorporeal shock wave lithotripsy success based on body mass index and Hounsfield units. Urology 65, 33–36 (2005).

    PubMed  Google Scholar 

  173. El-Nahas, A. R., El-Assmy, A. M., Mansour, O. & Sheir, K. Z. A prospective multivariate analysis of factors predicting stone disintegration by extracorporeal shock wave lithotripsy: the value of high-resolution noncontrast computed tomography. Eur. Urol. 51, 1688–1694 (2007).

    PubMed  Google Scholar 

  174. Messaoudi, N. et al. Prediction of successful treatment by extracorporeal shock wave lithotripsy based on crystalluria-composition correlations of urinary calculi. Asian Pac. J. Trop. Dis. 5, 987–992 (2015).

    Google Scholar 

  175. Harmon, W. J., Sershon, P. D., Blute, M. L., Patterson, D. E. & Segura, J. W. Ureteroscopy: current practice and long-term complications. J. Urol. 157, 28–32 (1997).

    CAS  PubMed  Google Scholar 

  176. Wollin, T. A. & Denstedt, J. D. The Holmium laser in urology. J. Clin. Laser Med. Surg. 16, 13–20 (1998).

    CAS  PubMed  Google Scholar 

  177. Bader, M. J., Eisner, B., Porpiglia, F., Preminger, G. M. & Tiselius, H.-G. Contemporary management of ureteral stones. Eur. Urol. 61, 764–772 (2012).

    PubMed  Google Scholar 

  178. Ganpule, A. P., Vijayakumar, M., Malpani, A. & Desai, M. R. Percutaneous nephrolithotomy (PCNL) a critical review. Int. J. Surg. 36 (Suppl. D), 660–664 (2016).

    PubMed  Google Scholar 

  179. Rassweiler, J., Rassweiler, M. C. & Klein, J. New technology in ureteroscopy and percutaneous nephrolithotomy. Curr. Opin. Urol. 26, 95–106 (2016).

    PubMed  Google Scholar 

  180. Zhu, W. et al. Minimally invasive versus standard percutaneous nephrolithotomy: a meta-analysis. Urolithiasis 43, 563–570 (2015).

    PubMed  Google Scholar 

  181. Desai, J. et al. A novel technique of ultra-mini-percutaneous nephrolithotomy: introduction and an initial experience for treatment of upper urinary calculi less than 2 cm. Biomed Res. Int. 2013, 490793 (2013).

    PubMed  PubMed Central  Google Scholar 

  182. Kang, S. K. et al. Systematic review and meta-analysis to compare success rates of retrograde intrarenal surgery versus percutaneous nephrolithotomy for renal stones >2 cm: an update. Medicine 96, e9119 (2017).

    PubMed  PubMed Central  Google Scholar 

  183. Mitropoulos, D. et al. Reporting and grading of complications after urologic surgical procedures: an ad hoc EAU Guidelines panel assessment and recommendations. Eur. Urol. 61, 341–349 (2012).

    PubMed  Google Scholar 

  184. de la Rosette, J. et al. The clinical research office of the endourological society percutaneous nephrolithotomy global study: indications, complications, and outcomes in 5803 patients. J. Endourol. 25, 11–17 (2011).

    PubMed  Google Scholar 

  185. Assimos, D. G. Anatrophic nephrolithotomy. Urology 57, 161–165 (2001).

    CAS  PubMed  Google Scholar 

  186. Keshavamurthy, R. et al. Anatrophic nephrolithotomy in the management of large staghorn calculi – a single centre experience. J. Clin. Diagn. Res. 11, PC01–PC04 (2017).

    PubMed  PubMed Central  Google Scholar 

  187. Zhao, J., Ren, L., Zhang, B., Cao, Z. & Yang, K. In vitro study on infectious ureteral encrustation resistance of Cu-bearing stainless steel. J. Mat. Sci. Technol. 33, 1604–1609 (2017).

    Google Scholar 

  188. Tunney, M. M., Keane, P. F., Jones, D. S. & Gorman, S. P. Comparative assessment of ureteral stent biomaterial encrustation. Biomaterials 17, 1541–1546 (1996).

    CAS  PubMed  Google Scholar 

  189. Gilmore, B. F., Hamill, T. M., Jones, D. S. & Gorman, S. P. Validation of the CDC biofilm reactor as a dynamic model for assessment of encrustation formation on urological device materials. J. Biomed. Mater. Res. B 93, 128–140 (2010).

    Google Scholar 

  190. Gultekinoglu, M. et al. Polyethyleneimine brushes effectively inhibit encrustation on polyurethane ureteral stents both in dynamic bioreactor and in vivo. Mater. Sci. Eng. C 71, 1166–1174 (2017).

    CAS  Google Scholar 

  191. Gorman, S. P., Garvin, C. P., Quigley, F. & Jones, D. S. Design and validation of a dynamic flow model simulating encrustation of biomaterials in the urinary tract. J. Pharm. Pharmacol. 55, 461–468 (2003).

    CAS  PubMed  Google Scholar 

  192. Hobbs, T., Schultz, L. N., Lauchnor, E. G., Gerlach, R. & Lange, D. Evaluation of biofilm induced urinary infection stone formation in a novel laboratory model system. J. Urol. 199, 178–185 (2018).

    PubMed  Google Scholar 

  193. Steefel, C. I., DePaolo, D. J. & Lichtner, P. C. Reactive transport modeling: an essential tool and a new research approach for the Earth sciences. Earth Planet. Sci. Lett. 240, 539–558 (2005).

    CAS  Google Scholar 

  194. Connolly, J. M., Jackson, B., Rothman, A. P., Klapper, I. & Gerlach, R. Estimation of a biofilm-specific reaction rate: kinetics of bacterial urea hydrolysis in a biofilm. NPJ Biofilms Microbiomes 1, 15014 (2015).

    PubMed  PubMed Central  Google Scholar 

  195. Morris, N. S., Stickler, D. J. & McLean, R. J. The development of bacterial biofilms on indwelling urethral catheters. World J. Urol. 17, 345–350 (2000).

    Google Scholar 

  196. Parkhurst, D. L. & Appelo, C. A. J. User’s guide to PHREEQC (version 2): report 99-4259 (US Geological Survey, 1999).

  197. Gustafsson, J. P. Visual MINTEQ3.1. KTH https://vminteq.lwr.kth.se (2000).

  198. Brown, C. M., Purich, D. L. & Ackermann, D. K. EQUIL 93: a tool for experimental and clinical urolithiasis. Urol. Res. 22, 119–126 (1994).

    CAS  PubMed  Google Scholar 

  199. Nardi, A., Idiart, A., Trinchero, P., de Vries, L. M. & Molinero, J. Interface COMSOL-PHREEQC (iCP), an efficient numerical framework for the solution of coupled multiphysics and geochemistry. Comput. Geosci. 69, 10–21 (2014).

    CAS  Google Scholar 

  200. Finlayson, B. Physicochemical aspects of urolithiasis. Kidney Int. 13, 344–360 (1978).

    CAS  PubMed  Google Scholar 

  201. Cohen, N. P. & Whitfield, H. N. Mechanical testing of urinary calculi. World J. Urol. 11, 13–18 (1993).

    CAS  PubMed  Google Scholar 

  202. Olszynski, M., Prywer, J. & Mielniczek- Brzóska, E. Inhibition of struvite crystallization by tetrasodium pyrophosphate in artificial urine: chemical and physical aspects of nucleation and growth. Cryst. Growth Des. 16, 3519–3529 (2016).

    CAS  Google Scholar 

  203. Chauhan, C. K., Joshi, M. J. & Vaidya, A. D. B. Growth inhibition of struvite crystals in the presence of herbal extract Commiphora wightii. J. Mater. Sci. Mater. Med. 20, 85 (2008).

    Google Scholar 

  204. Chauhan, C. K. & Joshi, M. J. In vitro crystallization, characterization and growth-inhibition study of urinary type struvite crystals. J. Cryst. Growth 362, 330–337 (2013).

    CAS  Google Scholar 

  205. Muryanto, S., Sutanti, S. & Kasmiyatun, M. Inhibition of struvite crystal growth in the presence of herbal extract Orthosiphon aristatus BL.MIQ. MATEC Web Conf. 58, 01013 (2016).

    Google Scholar 

  206. Basavaraj, D. R., Biyani, C. S., Browning, A. J. & Cartledge, J. J. The role of urinary kidney stone inhibitors and promoters in the pathogenesis of calcium containing renal stones. EAU-EBU Upd. Series 5, 126–136 (2007).

    Google Scholar 

  207. Rajasekharan, S. K., Ramesh, S., Bakkiyaraj, D., Elangomathavan, R. & Kamalanathan, C. Burdock root extracts limit quorum-sensing-controlled phenotypes and biofilm architecture in major urinary tract pathogens. Urolithiasis 43, 29–40 (2015).

    PubMed  Google Scholar 

  208. Salini, R., Sindhulakshmi, M., Poongothai, T. & Pandian, S. K. Inhibition of quorum sensing mediated biofilm development and virulence in uropathogens by Hyptis suaveolens. Antonie Van Leeuwenhoek 107, 1095–1106 (2015).

    CAS  PubMed  Google Scholar 

  209. Younis, K. M., Usup, G. & Ahmad, A. Secondary metabolites produced by marine streptomyces as antibiofilm and quorum-sensing inhibitor of uropathogen Proteus mirabilis. Environ. Sci. Pollut. Res. 23, 4756–4767 (2016).

    CAS  Google Scholar 

  210. Salini, R. & Pandian, S. K. Interference of quorum sensing in urinary pathogen Serratia marcescens by Anethum graveolens. Pathog. Dis. 73, ftv038 (2015).

    PubMed  Google Scholar 

  211. Kazemian, H. et al. Antibacterial, anti-swarming and anti-biofilm formation activities of Chamaemelum nobile against Pseudomonas aeruginosa. Rev. Soc. Bras. Med. Trop. 48, 432–436 (2015).

    PubMed  Google Scholar 

  212. Ranjbar-Omid, M. et al. Allicin from garlic inhibits the biofilm formation and urease activity of Proteus mirabilis in vitro. FEMS Microbiol. Lett. 362, fnv049 (2015).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support by the Montana University System Research Initiative (grant 51040-MUSRI2015-03) and the Burroughs Wellcome Fund (grant #1017519). The authors also thankfully acknowledge the helpful comments of three anonymous reviewers.

Review criteria

A review of the literature was performed by conducting searches in the Web of Science database (until March 2018). Search terms included “kidney/urinary stones”, “kidney/urinary stone characterization”, “kidney/urinary stone matrix”, “kidney/urinary stone biomineralization”, “mechanisms of kidney/urinary stone formation”, “management of kidney/urinary stones”, “mechanisms of resistance biofilm”, and “Proteus mirabilis”. No restriction on date of publication was used. The references of recent review articles were also searched to identify key studies related to urinary stones in the areas of chemistry, engineering, mineralogy, microbiology, and medicine. Additional papers were included based on recommendations by the peer reviewers.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussion of the article contents, wrote the manuscript, and reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Dirk Lange or Robin Gerlach.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

MINTEQ: https://vminteq.lwr.kth.se PHREEQC: https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc COMSOL: https://www.comsol.com

Glossary

Supersaturation

The presence of a solute at a higher concentration in a solution than that of its own solubility.

Biofilms

Microorganisms attached to a surface and embedded in an extracellular polymeric substance matrix.

Randall’s plaque

Plaques of calcifications deposited in the interstitial tissue of the renal papilla.

Zeta potential

Measure of the magnitude of the electrostatic or charge repulsion or attraction between particles in colloidal systems.

Swarming motility

Rapid multicellular bacterial movement across solid surfaces powered by rotating flagella.

Planktonic bacteria

Bacteria that are freely floating in a suspension.

EPS matrix

Matrix of biopolymers comprised of extracellular polymeric substances (EPS) of microbial origin, in which biofilm microorganisms are embedded.

Quorum sensing

Mechanism of cell–cell communication by which bacteria might share information about cell density and regulate gene expression.

Reactive transport modelling

Computer models that integrate the use of chemical reactions with the transport of fluids.

Geochemical modelling software

Computer models that use thermodynamics and/or kinetics to analyse chemical reactions that affect geological systems.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espinosa-Ortiz, E.J., Eisner, B.H., Lange, D. et al. Current insights into the mechanisms and management of infection stones. Nat Rev Urol 16, 35–53 (2019). https://doi.org/10.1038/s41585-018-0120-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-018-0120-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing