Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of the intestinal and urinary microbiome in kidney stone disease

Abstract

Kidney stone disease affects ~10% of the global population and the incidence continues to rise owing to the associated global increase in the incidence of medical conditions associated with kidney stone disease including, for example, those comprising the metabolic syndrome. Considering that the intestinal microbiome has a substantial influence on host metabolism, that evidence has suggested that the intestinal microbiome might have a role in maintaining oxalate homeostasis and kidney stone disease is unsurprising. In addition, the discovery that urine is not sterile but, like other sites of the human body, harbours commensal bacterial species that collectively form a urinary microbiome, is an additional factor that might influence the induction of crystal formation and stone growth directly in the kidney. Collectively, the microbiomes of the host could influence kidney stone disease at multiple levels, including intestinal oxalate absorption and direct crystal formation in the kidneys.

Key points

  • Composition of the intestinal microbiome influences host metabolism and overall health.

  • Patients with recurrent kidney stone disease have a disrupted intestinal microbiome composition, including reduced overall abundance of butyrate-producing species.

  • Butyrate is a key short-chain fatty acid responsible for overall intestinal epithelial integrity and health, a major determinant affecting the absorption of oxalate and other ions relevant to kidney stone disease.

  • Long-term history of antibiotic use is associated with an antibiotics-driven shift in intestinal microbiome composition and increased risk of kidney stone disease.

  • Members of the microbiome have a role in different processes of stone formation, including intestinal oxalate absorption and crystal formation.

  • Urine also has a native urinary microbiome, the composition of which is better able to differentiate between stone and non-stone formers than that of the intestine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The effect of short-chain fatty acids on mechanisms that might affect oxalate absorption and mechanisms of stone formation.
Fig. 2: The role of butyrate in regulating intestinal epithelial cell tight junctions.
Fig. 3: Oxalate transport across intestinal epithelium.

Similar content being viewed by others

References

  1. Cho, I. & Blaser, M. J. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13, 260–270 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Malla, M. A. et al. Exploring the human microbiome: the potential future role of next-generation sequencing in disease diagnosis and treatment. Front. Immunol. 9, 2868 (2018).

    CAS  PubMed  Google Scholar 

  3. NIH Human Microbiome Portfolio Analysis Team. A review of 10 years of human microbiome research activities at the US National Institutes of Health, fiscal years 2007–2016. Microbiome 7, 31 (2019).

    Google Scholar 

  4. Clarke, G. et al. Minireview: gut microbiota: the neglected endocrine organ. Mol. Endocrinol. 28, 1221–1238 (2014).

    PubMed  PubMed Central  Google Scholar 

  5. Oliphant, K. & Allen-Vercoe, E. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome 7, 91 (2019).

    PubMed  PubMed Central  Google Scholar 

  6. Fulde, M. & Hornef, M. W. Maturation of the enteric mucosal innate immune system during the postnatal period. Immunol. Rev. 260, 21–34 (2014).

    CAS  PubMed  Google Scholar 

  7. Kamada, N., Chen, G. Y., Inohara, N. & Nunez, G. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 14, 685–690 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ijssennagger, N. et al. Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon. Proc. Natl Acad. Sci. USA 112, 10038–10043 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Reinhardt, C. et al. Tissue factor and PAR1 promote microbiota-induced intestinal vascular remodelling. Nature 483, 627–631 (2012).

    CAS  PubMed  Google Scholar 

  10. Neuman, H., Debelius, J. W., Knight, R. & Koren, O. Microbial endocrinology: the interplay between the microbiota and the endocrine system. FEMS Microbiol. Rev. 39, 509–521 (2015).

    PubMed  Google Scholar 

  11. Yano, J. M. et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161, 264–276 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Canfora, E. E., Jocken, J. W. & Blaak, E. E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 11, 577–591 (2015).

    CAS  PubMed  Google Scholar 

  13. Tuddenham, S. & Sears, C. L. The intestinal microbiome and health. Curr. Opin. Infect. Dis. 28, 464–470 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lynch, S. V. & Pedersen, O. The human intestinal microbiome in health and disease. N. Engl. J. Med. 375, 2369–2379 (2016).

    CAS  PubMed  Google Scholar 

  15. Durack, J. & Lynch, S. V. The gut microbiome: relationships with disease and opportunities for therapy. J. Exp. Med. 216, 20–40 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Schirmer, M. et al. Dynamics of metatranscription in the inflammatory bowel disease gut microbiome. Nat. Microbiol. 3, 337–346 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gevers, D. et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15, 382–392 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Fujimura, K. E. & Lynch, S. V. Microbiota in allergy and asthma and the emerging relationship with the gut microbiome. Cell Host Microbe 17, 592–602 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

    CAS  PubMed  Google Scholar 

  21. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    PubMed  Google Scholar 

  22. Larsen, N. et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 5, e9085 (2010).

    Google Scholar 

  23. Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

    CAS  PubMed  Google Scholar 

  24. Marin, I. A. et al. Microbiota alteration is associated with the development of stress-induced despair behavior. Sci. Rep. 7, 43859 (2017).

    PubMed  PubMed Central  Google Scholar 

  25. Kang, D. W. et al. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome 5, 10 (2017).

    PubMed  PubMed Central  Google Scholar 

  26. Clapp, M. et al. Gut microbiota’s effect on mental health: the gut-brain axis. Clin. Pract. 7, 987 (2017).

    PubMed  PubMed Central  Google Scholar 

  27. Wilkins, L. J., Monga, M. & Miller, A. W. Defining dysbiosis for a cluster of chronic diseases. Sci. Rep. 9, 1–10 (2019).

    Google Scholar 

  28. Moe, O. W. Kidney stones: pathophysiology and medical management. Lancet 367, 333–344 (2006).

    CAS  PubMed  Google Scholar 

  29. Robertson, W. G., Peacock, M., Marshall, R. W., Marshall, D. H. & Nordin, B. C. Saturation-inhibition index as a measure of the risk of calcium oxalate stone formation in the urinary tract. N. Engl. J. Med. 294, 249–252 (1976).

    CAS  PubMed  Google Scholar 

  30. Kaufman, D. W. et al. Oxalobacter formigenes may reduce the risk of calcium oxalate kidney stones. J. Am. Soc. Nephrol. 19, 1197–1203 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sidhu, H. et al. Absence of Oxalobacter formigenes in cystic fibrosis patients: a risk factor for hyperoxaluria. Lancet 352, 1026–1029 (1998).

    CAS  PubMed  Google Scholar 

  32. Kumar, R. et al. Role of Oxalobacter formigenes in calcium oxalate stone disease: a study from North India. Eur. Urol. 41, 318–322 (2002).

    CAS  PubMed  Google Scholar 

  33. Duncan, S. H. et al. Oxalobacter formigenes and its potential role in human health. Appl. Environ. Microbiol. 68, 3841–3847 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Allison, M. J., Dawson, K. A., Mayberry, W. R. & Foss, J. G. Oxalobacter formigenes gen. nov., sp. nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract. Arch. Microbiol. 141, 1–7 (1985).

    CAS  PubMed  Google Scholar 

  35. Miller, A. W. & Dearing, D. The metabolic and ecological interactions of oxalate-degrading bacteria in the mammalian gut. Pathogens 2, 636–652 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Campieri, C. et al. Reduction of oxaluria after an oral course of lactic acid bacteria at high concentration. Kidney Int. 60, 1097–1105 (2001).

    CAS  PubMed  Google Scholar 

  37. Turroni, S. et al. Oxalate consumption by lactobacilli: evaluation of oxalyl-CoA decarboxylase and formyl-CoA transferase activity in Lactobacillus acidophilus. J. Appl. Microbiol. 103, 1600–1609 (2007).

    CAS  PubMed  Google Scholar 

  38. Turroni, S. et al. Oxalate-degrading activity in Bifidobacterium animalis subsp. lactis: impact of acidic conditions on the transcriptional levels of the oxalyl coenzyme A (CoA) decarboxylase and formyl-CoA transferase genes. Appl. Environ. Microbiol. 76, 5609–5620 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Batagello, C. A., Monga, M. & Miller, A. W. Calcium oxalate urolithiasis: a case of missing microbes? J. Endourol. 32, 995–1005 (2018).

    PubMed  Google Scholar 

  40. Hoppe, B. et al. A randomised phase I/II trial to evaluate the efficacy and safety of orally administered Oxalobacter formigenes to treat primary hyperoxaluria. Pediatr. Nephrol. 32, 781–790 (2017).

    PubMed  Google Scholar 

  41. Hoppe, B. et al. Efficacy and safety of Oxalobacter formigenes to reduce urinary oxalate in primary hyperoxaluria. Nephrol. Dial. Transplant. 26, 3609–3615 (2011).

    PubMed  Google Scholar 

  42. Hoppe, B. et al. Oxalobacter formigenes: a potential tool for the treatment of primary hyperoxaluria type 1. Kidney Int. 70, 1305–1311 (2006).

    CAS  PubMed  Google Scholar 

  43. Milliner, D., Hoppe, B. & Groothoff, J. A randomised phase II/III study to evaluate the efficacy and safety of orally administered Oxalobacter formigenes to treat primary hyperoxaluria. Urolithiasis 46, 313–323 (2018).

    CAS  PubMed  Google Scholar 

  44. Jairath, A. et al. Oxalobacter formigenes: opening the door to probiotic therapy for the treatment of hyperoxaluria. Scand. J. Urol. 49, 334–337 (2015).

    CAS  PubMed  Google Scholar 

  45. Lieske, J. C., Goldfarb, D. S., De Simone, C. & Regnier, C. Use of a probiotic to decrease enteric hyperoxaluria. Kidney Int. 68, 1244–1249 (2005).

    CAS  PubMed  Google Scholar 

  46. Lieske, J. C. et al. Diet, but not oral probiotics, effectively reduces urinary oxalate excretion and calcium oxalate supersaturation. Kidney Int. 78, 1178–1185 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ferraz, R. R. N. et al. Effects of Lactobacillus casei and Bifidobacterium breve on urinary oxalate excretion in nephrolithiasis patients. Urol. Res. 37, 95–100 (2009).

    CAS  PubMed  Google Scholar 

  48. Okombo, J. & Liebman, M. Probiotic-induced reduction of gastrointestinal oxalate absorption in healthy subjects. Urol. Res. 38, 169–178 (2010).

    PubMed  Google Scholar 

  49. Al-Wahsh, I., Wu, Y. & Liebman, M. Acute probiotic ingestion reduces gastrointestinal oxalate absorption in healthy subjects. Urol. Res. 40, 191–196 (2012).

    PubMed  Google Scholar 

  50. Siener, R. et al. The role of Oxalobacter formigenes colonization in calcium oxalate stone disease. Kidney Int. 83, 1144–1149 (2013).

    CAS  PubMed  Google Scholar 

  51. Goldfarb, D. S., Modersitzki, F. & Asplin, J. R. A randomized, controlled trial of lactic acid bacteria for idiopathic hyperoxaluria. Clin. J. Am. Soc. Nephrol. 2, 745–749 (2007).

    PubMed  Google Scholar 

  52. Hoppe, B. & Martin-Higueras, C. Improving treatment options for primary hyperoxaluria. Drugs https://doi.org/10.1007/s40265-022-01735-x (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Stern, J. M. et al. Evidence for a distinct gut microbiome in kidney stone formers compared to non-stone formers. Urolithiasis 44, 399–407 (2016).

    PubMed  PubMed Central  Google Scholar 

  54. Tang, R. et al. 16S rRNA gene sequencing reveals altered composition of gut microbiota in individuals with kidney stones. Urolithiasis https://doi.org/10.1007/s00240-018-1037-y (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Suryavanshi, M. V. et al. Hyperoxaluria leads to dysbiosis and drives selective enrichment of oxalate metabolizing bacterial species in recurrent kidney stone endures. Sci. Rep. 6, 34712 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Suryavanshi, M. V., Bhute, S. S., Gune, R. P. & Shouche, Y. S. Functional eubacteria species along with trans-domain gut inhabitants favour dysgenic diversity in oxalate stone disease. Sci. Rep. 8, 1–11 (2018).

    CAS  Google Scholar 

  57. Ticinesi, A. et al. Understanding the gut–kidney axis in nephrolithiasis: an analysis of the gut microbiota composition and functionality of stone formers. Gut 67, 2097–2106 (2018).

    CAS  PubMed  Google Scholar 

  58. Miller, A. W., Choy, D., Penniston, K. L. & Lange, D. Inhibition of urinary stone disease by a multi-species bacterial network ensures healthy oxalate homeostasis. Kidney Int. 96, 180–188 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zampini, A., Nguyen, A. H., Rose, E., Monga, M. & Miller, A. W. Defining dysbiosis in patients with urolithiasis. Sci. Rep. 9, 5425 (2019).

    PubMed  PubMed Central  Google Scholar 

  60. Miller, A. W., Orr, T., Dearing, D. & Monga, M. Loss of function dysbiosis associated with antibiotics and high fat, high sugar diet. ISME J. 13, 1379–1390 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Miller, A. W., Oakeson, K. F., Dale, C. & Dearing, M. D. Microbial community transplant results in increased and long-term oxalate degradation. Microb. Ecol. 72, 470–478 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Miller, A. W., Dale, C. & Dearing, M. D. The induction of oxalate metabolism in vivo is more effective with functional microbial communities than with functional microbial species. mSystems 2, e00088-17 (2017).

    PubMed  PubMed Central  Google Scholar 

  63. Stern, J. M. et al. Fecal transplant modifies urine chemistry risk factors for urinary stone disease. Physiol. Rep. 7, e14012 (2019).

    PubMed  PubMed Central  Google Scholar 

  64. Wolfe, A. J. et al. Evidence of uncultivated bacteria in the adult female bladder. J. Clin. Microbiol. 50, 1376–1383 (2012).

    PubMed  PubMed Central  Google Scholar 

  65. Xie, J. et al. Profiling the urinary microbiome in men with calcium-based kidney stones. BMC Microbiol. 20, 41 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Schwaderer, A. L. & Wolfe, A. J. The association between bacteria and urinary stones. Ann. Transl. Med. 5, 32 (2017).

    PubMed  PubMed Central  Google Scholar 

  67. Dornbier, R. A. et al. The microbiome of calcium-based urinary stones. Urolithiasis 48, 191–199 (2019).

    PubMed  Google Scholar 

  68. Barr-Beare, E. et al. The interaction between Enterobacteriaceae and calcium oxalate deposits. PLoS ONE 10, e0139575 (2015).

    PubMed  PubMed Central  Google Scholar 

  69. Tavichakorntrakool, R. et al. Extensive characterizations of bacteria isolated from catheterized urine and stone matrices in patients with nephrolithiasis. Nephrol. Dial. Transplant. 27, 4125–4130 (2012).

    PubMed  Google Scholar 

  70. Hobbs, T., Schultz, L. N., Lauchnor, E. G., Gerlach, R. & Lange, D. Evaluation of biofilm induced urinary infection stone formation in a novel laboratory model system. J. Urol. 199, 178–185 (2018).

    PubMed  Google Scholar 

  71. Chutipongtanate, S., Sutthimethakorn, S., Chiangjong, W. & Thongboonkerd, V. Bacteria can promote calcium oxalate crystal growth and aggregation. J. Biol. Inorg. Chem. 18, 299–308 (2013).

    CAS  PubMed  Google Scholar 

  72. Kanlaya, R., Naruepantawart, O. & Thongboonkerd, V. Flagellum is responsible for promoting effects of viable Escherichia coli on calcium oxalate crystallization, crystal growth, and crystal aggregation. Front. Microbiol. 10, 2507 (2019).

    PubMed  PubMed Central  Google Scholar 

  73. Sivaguru, M. et al. Geobiology reveals how human kidney stones dissolve in vivo. Sci. Rep. 8, 1–9 (2018).

    CAS  Google Scholar 

  74. Sivaguru, M. et al. Human kidney stones: a natural record of universal biomineralization. Nat. Rev. Urol. 18, 404–432 (2021).

    CAS  PubMed  Google Scholar 

  75. Saw, J. et al. In vivo entombment of bacteria and fungi during calcium oxalate, brushite, and struvite urolithiasis. Kidney360 2, 298–311 (2021).

    PubMed  Google Scholar 

  76. Flannigan, R., Choy, W. H., Chew, B. & Lange, D. Renal struvite stones-pathogenesis, microbiology, and management strategies. Nat. Rev. Urol. 11, 333–341 (2014).

    CAS  PubMed  Google Scholar 

  77. Jansma, J. & El Aidy, S. Understanding the host-microbe interactions using metabolic modeling. Microbiome 9, 16 (2021).

    PubMed  PubMed Central  Google Scholar 

  78. Donia, M. S. & Fischbach, M. A. Human microbiota. Small molecules from the human microbiota. Science 349, 1254766 (2015).

    PubMed  PubMed Central  Google Scholar 

  79. Silva, Y. P., Bernardi, A. & Frozza, R. L. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front. Endocrinol. 11, 25 (2020).

    Google Scholar 

  80. van der Hee, B. & Wells, J. M. Microbial regulation of host physiology by short-chain fatty acids. Trends Microbiol. 29, 700–712 (2021).

    PubMed  Google Scholar 

  81. Al-Harbi, N. O. et al. Short chain fatty acid, acetate ameliorates sepsis-induced acute kidney injury by inhibition of NADPH oxidase signaling in T cells. Int. Immunopharmacol. 58, 24–31 (2018).

    CAS  PubMed  Google Scholar 

  82. Dawson, P. A. et al. Urolithiasis and hepatotoxicity are linked to the anion transporter Sat1 in mice. J. Clin. Invest. 120, 706–712 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Heilberg, I. P. & Goldfarb, D. S. Optimum nutrition for kidney stone disease. Adv. Chronic Kidney Dis. 20, 165–174 (2013).

    PubMed  Google Scholar 

  84. Mitchell, T. et al. Dietary oxalate and kidney stone formation. Am. J. Physiol. Renal Physiol. 316, F409–F413 (2019).

    PubMed  Google Scholar 

  85. Rowland, I. et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur. J. Nutr. 57, 1–24 (2018).

    CAS  PubMed  Google Scholar 

  86. Duan, X. et al. 1 H NMR-based metabolomic study of metabolic profiling for the urine of kidney stone patients. Urolithiasis 48, 27–35 (2020).

    CAS  PubMed  Google Scholar 

  87. Pallister, T. et al. Hippurate as a metabolomic marker of gut microbiome diversity: modulation by diet and relationship to metabolic syndrome. Sci. Rep. 7, 1–9 (2017).

    CAS  Google Scholar 

  88. Wang, X. et al. Identification of urine biomarkers for calcium-oxalate urolithiasis in adults based on UPLC-Q-TOF/MS. J. Chromatogr. B 1124, 290–297 (2019).

    CAS  Google Scholar 

  89. Iwanaga, T. & Kishimoto, A. Cellular distributions of monocarboxylate transporters: a review. Biomed. Res. 36, 279–301 (2015).

    CAS  PubMed  Google Scholar 

  90. Schonfeld, P. & Wojtczak, L. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective. J. Lipid Res. 57, 943–954 (2016).

    PubMed  PubMed Central  Google Scholar 

  91. Suzuki, T., Yoshida, S. & Hara, H. Physiological concentrations of short-chain fatty acids immediately suppress colonic epithelial permeability. Br. J. Nutr. 100, 297–305 (2008).

    CAS  PubMed  Google Scholar 

  92. Macfarlane, G. T. & Macfarlane, S. Bacteria, colonic fermentation, and gastrointestinal health. J. AOAC Int. 95, 50–60 (2012).

    CAS  PubMed  Google Scholar 

  93. Matey-Hernandez, M. L. et al. Genetic and microbiome influence on lipid metabolism and dyslipidemia. Physiol. Genomics 50, 117–126 (2018).

    CAS  PubMed  Google Scholar 

  94. den Besten, G. et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54, 2325–2340 (2013).

    Google Scholar 

  95. Druart, C. et al. Role of the lower and upper intestine in the production and absorption of gut microbiota-derived PUFA metabolites. PLoS ONE 9, e87560 (2014).

    PubMed  PubMed Central  Google Scholar 

  96. Lehnen, T. E., da Silva, M. R., Camacho, A., Marcadenti, A. & Lehnen, A. M. A review on effects of conjugated linoleic fatty acid (CLA) upon body composition and energetic metabolism. J. Int. Soc. Sports Nutr. 12, 36 (2015).

    PubMed  PubMed Central  Google Scholar 

  97. Andrade-Oliveira, V. et al. Gut bacteria products prevent AKI induced by ischemia-reperfusion. J. Am. Soc. Nephrol. 26, 1877–1888 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Machado, R. A. et al. Sodium butyrate decreases the activation of NF-κB reducing inflammation and oxidative damage in the kidney of rats subjected to contrast-induced nephropathy. Nephrol. Dial. Transpl. 27, 3136–3140 (2012).

    CAS  Google Scholar 

  99. Marzocco, S. et al. Supplementation of short-chain fatty acid, sodium propionate, in patients on maintenance hemodialysis: beneficial effects on inflammatory parameters and gut-derived uremic toxins, a pilot study (PLAN Study). J. Clin. Med. https://doi.org/10.3390/jcm7100315 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Yang, J. et al. Effects of prebiotic fiber xylooligosaccharide in adenine-induced nephropathy in mice. Mol. Nutr. Food Res. https://doi.org/10.1002/mnfr.201800014 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Vaziri, N. D. et al. High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease. PLoS ONE 9, e114881 (2014).

    PubMed  PubMed Central  Google Scholar 

  102. Wong, J. et al. Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am. J. Nephrol. 39, 230–237 (2014).

    CAS  PubMed  Google Scholar 

  103. Huang, W., Zhou, L., Guo, H., Xu, Y. & Xu, Y. The role of short-chain fatty acids in kidney injury induced by gut-derived inflammatory response. Metabolism 68, 20–30 (2017).

    CAS  PubMed  Google Scholar 

  104. Li, L. Z., Tao, S. B., Ma, L. & Fu, P. Roles of short-chain fatty acids in kidney diseases. Chin. Med. J. 132, 1228–1232 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Khan, S. R. Reactive oxygen species as the molecular modulators of calcium oxalate kidney stone formation: evidence from clinical and experimental investigations. J. Urol. 189, 803–811 (2013).

    CAS  PubMed  Google Scholar 

  106. Khan, S. R., Canales, B. K. & Dominguez-Gutierrez, P. R. Randall’s plaque and calcium oxalate stone formation: role for immunity and inflammation. Nat. Rev. Nephrol. 17, 417–433 (2021).

    CAS  PubMed  Google Scholar 

  107. Feng, W. et al. Sodium butyrate attenuates diarrhea in weaned piglets and promotes tight junction protein expression in colon in a GPR109A-dependent manner. Cell Physiol. Biochem. 47, 1617–1629 (2018).

    CAS  PubMed  Google Scholar 

  108. Wang, H. B., Wang, P. Y., Wang, X., Wan, Y. L. & Liu, Y. C. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription. Dig. Dis. Sci. 57, 3126–3135 (2012).

    CAS  PubMed  Google Scholar 

  109. Alrefai, W. A. et al. Molecular cloning and promoter analysis of downregulated in adenoma (DRA). Am. J. Physiol. Gastrointest. Liver Physiol. 293, G923–G934 (2007).

    CAS  PubMed  Google Scholar 

  110. Raheja, G. et al. Lactobacillus acidophilus stimulates the expression of SLC26A3 via a transcriptional mechanism. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G395–G401 (2010).

    CAS  PubMed  Google Scholar 

  111. Peng, L., Li, Z. R., Green, R. S., Holzman, I. R. & Lin, J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J. Nutr. 139, 1619–1625 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Krishnan, S., Rajendran, V. M. & Binder, H. J. Apical NHE isoforms differentially regulate butyrate-stimulated Na absorption in rat distal colon. Am. J. Physiol. Cell Physiol. 285, C1246–C1254 (2003).

    CAS  PubMed  Google Scholar 

  113. Musch, M. W., Bookstein, C., Xie, Y., Sellin, J. H. & Chang, E. B. SCFA increase intestinal Na absorption by induction of NHE3 in rat colon and human intestinal C2/bbe cells. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G687–G693 (2001).

    CAS  PubMed  Google Scholar 

  114. Kiela, P. R., Hines, E. R., Collins, J. F. & Ghishan, F. K. Regulation of the rat NHE3 gene promoter by sodium butyrate. Am. J. Physiol. Gastrointest. Liver Physiol. 281, G947–G956 (2001).

    CAS  PubMed  Google Scholar 

  115. Farre, R., Fiorani, M., Abdu Rahiman, S. & Matteoli, G. Intestinal permeability, inflammation and the role of nutrients. Nutrients https://doi.org/10.3390/nu12041185 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Freel, R. W., Whittamore, J. M. & Hatch, M. Transcellular oxalate and Cl- absorption in mouse intestine is mediated by the DRA anion exchanger Slc26a3, and DRA deletion decreases urinary oxalate. Am. J. Physiol. Gastrointest. Liver Physiol. 305, G520–G527 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Hesse, A., Schneeberger, W., Engfeld, S., Von Unruh, G. E. & Sauerbruch, T. Intestinal hyperabsorption of oxalate in calcium oxalate stone formers: application of a new test with [13C2]oxalate. J. Am. Soc. Nephrol. 10, S329–S333 (1999).

    CAS  PubMed  Google Scholar 

  118. Whittamore, J. M. & Hatch, M. The role of intestinal oxalate transport in hyperoxaluria and the formation of kidney stones in animals and man. Urolithiasis 45, 89–108 (2017).

    CAS  PubMed  Google Scholar 

  119. Liu, Y. et al. The relationship between gut microbiota and short chain fatty acids in the renal calcium oxalate stones disease. FASEB J. 34, 11200–11214 (2020).

    CAS  PubMed  Google Scholar 

  120. Denburg, M. R. et al. Perturbations of the gut microbiome and metabolome in children with calcium oxalate kidney stone disease. J. Am. Soc. Nephrol. 31, 1358–1369 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Chen, Y., Michalak, M. & Agellon, L. B. Importance of nutrients and nutrient metabolism on human health. Yale J. Biol. Med. 91, 95–103 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Remer, T. Influence of nutrition on acid-base balance-metabolic aspects. Eur. J. Nutr. 40, 214–220 (2001).

    CAS  PubMed  Google Scholar 

  123. Orzechowski, A., Ostaszewski, P., Jank, M. & Berwid, S. J. Bioactive substances of plant origin in food-impact on genomics. Reprod. Nutr. Dev. 42, 461–477 (2002).

    CAS  PubMed  Google Scholar 

  124. McRorie, J. W. Jr & McKeown, N. M. Understanding the physics of functional fibers in the gastrointestinal tract: an evidence-based approach to resolving enduring misconceptions about insoluble and soluble fiber. J. Acad. Nutr. Diet. 117, 251–264 (2017).

    PubMed  Google Scholar 

  125. Schmidt, T. S. B., Raes, J. & Bork, P. The human gut microbiome: from association to modulation. Cell 172, 1198–1215 (2018).

    CAS  PubMed  Google Scholar 

  126. Schroeder, B. O. & Backhed, F. Signals from the gut microbiota to distant organs in physiology and disease. Nat. Med. 22, 1079–1089 (2016).

    CAS  PubMed  Google Scholar 

  127. Suryavanshi, M. V., Bhute, S. S., Gune, R. P. & Shouche, Y. S. Functional eubacteria species along with trans-domain gut inhabitants favour dysgenic diversity in oxalate stone disease. Sci. Rep. 8, 16598 (2018).

    PubMed  PubMed Central  Google Scholar 

  128. Miller, A. W., Dale, C. & Dearing, M. D. Microbiota diversification and crash induced by dietary oxalate in the mammalian herbivore Neotoma albigula. mSphere https://doi.org/10.1128/mSphere.00428-17 (2017).

  129. Seck, E. H. et al. Salt in stools is associated with obesity, gut halophilic microbiota and Akkermansia muciniphila depletion in humans. Int. J. Obes. 43, 862–871 (2019).

    CAS  Google Scholar 

  130. Bernardino, M. & Parmar, M. S. Oxalate nephropathy from cashew nut intake. CMAJ 189, E405–E408 (2017).

    PubMed  PubMed Central  Google Scholar 

  131. Murphy, E. A., Velazquez, K. T. & Herbert, K. M. Influence of high-fat diet on gut microbiota: a driving force for chronic disease risk. Curr. Opin. Clin. Nutr. Metab. Care 18, 515–520 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Abate, N., Chandalia, M., Cabo-Chan, A. V. Jr., Moe, O. W. & Sakhaee, K. The metabolic syndrome and uric acid nephrolithiasis: novel features of renal manifestation of insulin resistance. Kidney Int. 65, 386–392 (2004).

    CAS  PubMed  Google Scholar 

  133. Ticinesi, A. et al. Understanding the gut-kidney axis in nephrolithiasis: an analysis of the gut microbiota composition and functionality of stone formers. Gut 67, 2097–2106 (2018).

    CAS  PubMed  Google Scholar 

  134. Centers for Disease Control and Prevention. Outpatient antibiotic prescriptions — United States, 2018. CDC https://www.cdc.gov/antibiotic-use/community/programs-measurement/state-local-activities/outpatient-antibiotic-prescriptions-US-2018.html (2018).

  135. Shallcross, L., Beckley, N., Rait, G., Hayward, A. & Petersen, I. Antibiotic prescribing frequency amongst patients in primary care: a cohort study using electronic health records. J. Antimicrob. Chemother. 72, 1818–1824 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Modi, S. R., Collins, J. J. & Relman, D. A. Antibiotics and the gut microbiota. J. Clin. Invest. 124, 4212–4218 (2014).

    PubMed  PubMed Central  Google Scholar 

  137. Ferrer, M., Méndez-García, C., Rojo, D., Barbas, C. & Moya, A. Antibiotic use and microbiome function. Biochem. Pharmacol. 134, 114–126 (2017).

    CAS  PubMed  Google Scholar 

  138. Neuman, H., Forsythe, P., Uzan, A., Avni, O. & Koren, O. Antibiotics in early life: dysbiosis and the damage done. FEMS Microbiol. Rev. 42, 489–499 (2018).

    CAS  PubMed  Google Scholar 

  139. Ianiro, G., Tilg, H. & Gasbarrini, A. Antibiotics as deep modulators of gut microbiota: between good and evil. Gut 65, 1906–1915 (2016).

    CAS  PubMed  Google Scholar 

  140. Risnes, K. R., Belanger, K., Murk, W. & Bracken, M. B. Antibiotic exposure by 6 months and asthma and allergy at 6 years: findings in a cohort of 1,401 US children. Am. J. Epidemiol. 173, 310–318 (2011).

    PubMed  Google Scholar 

  141. Kronman, M. P., Zaoutis, T. E., Haynes, K., Feng, R. & Coffin, S. E. Antibiotic exposure and IBD development among children: a population-based cohort study. Pediatrics 130, e794–e803 (2012).

    PubMed  PubMed Central  Google Scholar 

  142. Ferraro, P. M., Curhan, G. C., Gambaro, G. & Taylor, E. N. Antibiotic use and risk of incident kidney stones in female nurses. Am. J. Kidney Dis. 74, 736–741 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Tasian, G. E. et al. Oral antibiotic exposure and kidney stone disease. J. Am. Soc. Nephrol. 29, 1731–1740 (2018).

    PubMed  PubMed Central  Google Scholar 

  144. Kelly, J. P., Curhan, G. C., Cave, D. R., Anderson, T. E. & Kaufman, D. W. Factors related to colonization with Oxalobacter formigenes in US adults. J. Endourol. 25, 673–679 (2011).

    PubMed  PubMed Central  Google Scholar 

  145. Lange, J. N. et al. Sensitivity of human strains of Oxalobacter formigenes to commonly prescribed antibiotics. Urology 79, 1286–1289 (2012).

    PubMed  Google Scholar 

  146. Pietzke, M., Meiser, J. & Vazquez, A. Formate metabolism in health and disease. Mol. Metab. 33, 23–37 (2020).

    CAS  PubMed  Google Scholar 

  147. Gamage, K. N. et al. The role of fluid intake in the prevention of kidney stone disease: a systematic review over the last two decades. Turk. J. Urol. 46, S92–S103 (2020).

    PubMed  PubMed Central  Google Scholar 

  148. Bowyer, R. C. E. et al. Associations between UK tap water and gut microbiota composition suggest the gut microbiome as a potential mediator of health differences linked to water quality. Sci. Total. Environ. 739, 139697 (2020).

    CAS  PubMed  Google Scholar 

  149. Vandeputte, D. et al. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut 65, 57–62 (2016).

    CAS  PubMed  Google Scholar 

  150. Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016).

    CAS  PubMed  Google Scholar 

  151. Zhao, Y. & Yu, Y. B. Intestinal microbiota and chronic constipation. Springerplus 5, 1130 (2016).

    PubMed  PubMed Central  Google Scholar 

  152. Gerritsen, J., Smidt, H., Rijkers, G. T. & de Vos, W. M. Intestinal microbiota in human health and disease: the impact of probiotics. Genes Nutr. 6, 209–240 (2011).

    PubMed  PubMed Central  Google Scholar 

  153. Kirgizov, I. V., Sukhorukov, A. M., Dudarev, V. A. & Istomin, A. A. Hemostasis in children with dysbacteriosis in chronic constipation. Clin. Appl. Thromb. Hemost. 7, 335–338 (2001).

    CAS  PubMed  Google Scholar 

  154. Khalif, I. L., Quigley, E. M., Konovitch, E. A. & Maximova, I. D. Alterations in the colonic flora and intestinal permeability and evidence of immune activation in chronic constipation. Dig. Liver Dis. 37, 838–849 (2005).

    CAS  PubMed  Google Scholar 

  155. Alford, A., Furrow, E., Borofsky, M. & Lulich, J. Animal models of naturally occurring stone disease. Nat. Rev. Urol. 17, 691–705 (2020).

    PubMed  PubMed Central  Google Scholar 

  156. Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).

    CAS  PubMed  Google Scholar 

  157. Sekirov, I. & Finlay, B. B. The role of the intestinal microbiota in enteric infection. J. Physiol. 587, 4159–4167 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Sekirov, I., Russell, S. L., Antunes, L. C. & Finlay, B. B. Gut microbiota in health and disease. Physiol. Rev. 90, 859–904 (2010).

    CAS  PubMed  Google Scholar 

  159. Mukherjee, S., Joardar, N., Sengupta, S. & Sinha Babu, S. P. Gut microbes as future therapeutics in treating inflammatory and infectious diseases: lessons from recent findings. J. Nutr. Biochem. 61, 111–128 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Hatch, M. Gut microbiota and oxalate homeostasis. Ann. Transl. Med. 5, 36 (2017).

    PubMed  PubMed Central  Google Scholar 

  161. Sanchez-Tapia, M. et al. Consumption of cooked black beans stimulates a cluster of some clostridia class bacteria decreasing inflammatory response and improving insulin sensitivity. Nutrients https://doi.org/10.3390/nu12041182 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Scholz-Ahrens, K. E. & Schrezenmeir, J. Inulin and oligofructose and mineral metabolism: the evidence from animal trials. J. Nutr. 137, 2513S–2523S (2007).

    CAS  PubMed  Google Scholar 

  163. Xu, X. et al. Intestinal microbiota: a potential target for the treatment of postmenopausal osteoporosis. Bone Res. 5, 17046 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Kiousi, D. E. et al. Probiotics in extraintestinal diseases: current trends and new directions. Nutrients https://doi.org/10.3390/nu11040788 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Weaver, C. M. & Legette, L. L. Equol, via dietary sources or intestinal production, may ameliorate estrogen deficiency-induced bone loss. J. Nutr. 140, 1377S–1379S (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Blaut, M. & Clavel, T. Metabolic diversity of the intestinal microbiota: implications for health and disease. J. Nutr. 137, 751S–755S (2007).

    CAS  PubMed  Google Scholar 

  167. Guo, S. et al. Lipopolysaccharide regulation of intestinal tight junction permeability is mediated by TLR4 signal transduction pathway activation of FAK and MyD88. J. Immunol. 195, 4999–5010 (2015).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. A.W.M., K.L.P., G.T. and D.L. contributed substantially to discussion of the content. All authors wrote the article. A.W.M., K.L.P., G.T. and D.L. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Dirk Lange.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks John Lieske and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, A.W., Penniston, K.L., Fitzpatrick, K. et al. Mechanisms of the intestinal and urinary microbiome in kidney stone disease. Nat Rev Urol 19, 695–707 (2022). https://doi.org/10.1038/s41585-022-00647-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-022-00647-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing