Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Recent advances and evolving concepts in Still’s disease

Abstract

Still’s disease is a rare inflammatory syndrome that encompasses systemic juvenile idiopathic arthritis and adult-onset Still’s disease, both of which can exhibit life-threatening complications, including macrophage activation syndrome (MAS), a secondary form of haemophagocytic lymphohistiocytosis. Genetic insights into Still’s disease involve both HLA and non-HLA susceptibility genes, suggesting the involvement of adaptive immune cell-mediated immunity. At the same time, phenotypic evidence indicates the involvement of autoinflammatory processes. Evidence also implicates the type I interferon signature, mechanistic target of rapamycin complex 1 signalling and ferritin in the pathogenesis of Still’s disease and MAS. Pathological entities associated with Still’s disease include lung disease that could be associated with biologic DMARDs and with the occurrence of MAS. Historically, monophasic, recurrent and persistent Still’s disease courses were recognized. Newer proposals of alternative Still’s disease clusters could enable better dissection of clinical heterogeneity on the basis of immune cell profiles that could represent diverse endotypes or phases of disease activity. Therapeutically, data on IL-1 and IL-6 antagonism and Janus kinase inhibition suggest the importance of early administration in Still’s disease. Furthermore, there is evidence that patients who develop MAS can be treated with IFNγ antagonism. Despite these developments, unmet needs remain that can form the basis for the design of future studies leading to improvement of disease management.

Key points

  • Still’s disease, a rare inflammatory syndrome that encompasses systemic juvenile idiopathic arthritis and adult-onset Still’s disease, can exhibit life-threatening macrophage activation syndrome (MAS), a secondary form of haemophagocytic lymphohistiocytosis.

  • Genetic insights into Still’s disease involve both HLA and non-HLA susceptibility genes, suggesting autoimmune involvement, whereas phenotypic evidence suggests the involvement of an autoinflammatory process.

  • Evidence indicates that pathogenic mechanisms involving the type I interferon signature, mechanistic target of rapamycin complex 1 and pro-inflammatory properties of ferritin contribute to the development of Still’s disease and MAS.

  • Pathological conditions now associated with Still’s disease include Still’s disease-related lung involvement, which is potentially associated with the use of biologic DMARDs and the occurrence of MAS.

  • Clusters of patients with Still’s disease have been identified by the characterization of immune cell populations, which might represent diverse endotypes or different phases of disease activity.

  • Therapeutically, evidence is available in relation to IL-1 antagonism and Janus kinase inhibition, including early administration, suggesting that MAS in Still’s disease might be tractable with IFNγ antagonism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Still’s disease in the context of autoinflammatory and autoimmune disorders.
Fig. 2: Main pathogenic mechanisms that underlie the development of Still’s disease and its life-threatening evolution.
Fig. 3: Inflammatory mediators and targeted therapies in Still’s disease.
Fig. 4: Therapeutic management of Still’s disease and MAS.
Fig. 5: The ‘window of opportunity’ in Still’s disease.

Similar content being viewed by others

References

  1. Lee, J. J. Y. & Schneider, R. Systemic juvenile idiopathic arthritis. Pediatr. Clin. North. Am. 65, 691–709 (2018).

    Article  PubMed  Google Scholar 

  2. Giacomelli, R., Ruscitti, P. & Shoenfeld, Y. A comprehensive review on adult onset Still’s disease. J. Autoimmun. 93, 24–36 (2018).

    Article  PubMed  Google Scholar 

  3. Nigrovic, P. A. Autoinflammation and autoimmunity in systemic juvenile idiopathic arthritis. Proc. Natl Acad. Sci. USA 112, 15785–15786 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gerfaud-Valentin, M., Jamilloux, Y., Iwaz, J. & Sève, P. Adult-onset Still’s disease. Autoimmun. Rev. 13, 708–722 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Ombrello, M. J. et al. HLA-DRB1*11 and variants of the MHC class II locus are strong risk factors for systemic juvenile idiopathic arthritis. Proc. Natl Acad. Sci. USA 112, 15970–15975 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McGonagle, D., Ramanan, A. V. & Bridgewood, C. Immune cartography of macrophage activation syndrome in the COVID-19 era. Nat. Rev. Rheumatol. 17, 145–157 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nirmala, N. et al. Gene-expression analysis of adult-onset Still’s disease and systemic juvenile idiopathic arthritis is consistent with a continuum of a single disease entity. Pediatr. Rheumatol. Online J. 13, 50 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nigrovic, P. A., Raychaudhuri, S. & Thompson, S. D. Review: Genetics and the classification of arthritis in adults and children. Arthritis Rheumatol. 70, 7–17 (2018).

    Article  PubMed  Google Scholar 

  9. Ruscitti, P. et al. Disparities in the prevalence of clinical features between systemic juvenile idiopathic arthritis and adult-onset Still’s disease. Rheumatology 61, 4124–4129 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pay, S. et al. A multicenter study of patients with adult-onset Still’s disease compared with systemic juvenile idiopathic arthritis. Clin. Rheumatol. 25, 639–644 (2006).

    Article  PubMed  Google Scholar 

  11. Fautrel, B. et al. Proposal for a new set of classification criteria for adult-onset Still disease. Medicine 81, 194–200 (2002).

    Article  PubMed  Google Scholar 

  12. Petty, R. E. et al. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J. Rheumatol. 31, 390–392 (2004).

    PubMed  Google Scholar 

  13. Martini, A. et al. Toward new classification criteria for juvenile idiopathic arthritis: first steps, Pediatric Rheumatology International Trials Organization International Consensus. J. Rheumatol. 46, 190–197 (2019).

    Article  PubMed  Google Scholar 

  14. Yamaguchi, M. et al. Preliminary criteria for classification of adult Still’s disease. J. Rheumatol. 19, 424–430 (1992).

    CAS  PubMed  Google Scholar 

  15. Ruscitti, P. et al. Advances in immunopathogenesis of macrophage activation syndrome during rheumatic inflammatory diseases: toward new therapeutic targets? Expert Rev. Clin. Immunol. 13, 1041–1047 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Mitrovic, S. & Fautrel, B. Complications of adult-onset Still’s disease and their management. Expert Rev. Clin. Immunol. 14, 351–365 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Onel, K. B. et al. 2021 American College of Rheumatology guideline for the treatment of juvenile idiopathic arthritis: therapeutic approaches for oligoarthritis, temporomandibular joint arthritis, and systemic juvenile idiopathic arthritis. Arthritis Rheumatol. 74, 553–569 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Efthimiou, P. et al. Adult-onset Still’s disease in focus: clinical manifestations, diagnosis, treatment, and unmet needs in the era of targeted therapies. Semin. Arthritis Rheum. 51, 858–874 (2021).

    Article  PubMed  Google Scholar 

  19. Di Cola, I., Cipriani, P. & Ruscutti, P. Perspectives on the use of non-biological pharmacotherapy for adult-onset Still’s disease. Expert Opin. Pharmacother. 23, 1577–1587 (2022).

    Article  PubMed  Google Scholar 

  20. Castañeda, S., Blanco, R. & González-Gay, M. A. Adult-onset Still’s disease: advances in the treatment. Best Pract. Res. Clin. Rheumatol. 30, 222–238 (2016).

    Article  PubMed  Google Scholar 

  21. Nigrovic, P. A. Review: Is there a window of opportunity for treatment of systemic juvenile idiopathic arthritis? Arthritis Rheumatol. 66, 1405–1413 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Feist, E., Mitrovic, S. & Fautrel, B. Mechanisms, biomarkers and targets for adult-onset Still’s disease. Nat. Rev. Rheumatol. 14, 603–618 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jamilloux, Y. et al. Pathogenesis of adult-onset Still’s disease: new insights from the juvenile counterpart. Immunol. Res. 61, 53–62 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Pascual, V., Allantaz, F., Arce, E., Punaro, M. & Banchereau, J. Role of interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and clinical response to IL-1 blockade. J. Exp. Med. 201, 1479–1486 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Peckham, D., Scambler, T., Savic, S. & McDermott, M. F. The burgeoning field of innate immune-mediated disease and autoinflammation. J. Pathol. 241, 123–139 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Vastert, S. J., Kuis, W. & Grom, A. A. Systemic JIA: new developments in the understanding of the pathophysiology and therapy. Best Pract. Res. Clin. Rheumatol. 23, 655–664 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tang, S. et al. Genetic and pharmacological targeting of GSDMD ameliorates systemic inflammation in macrophage activation syndrome. J. Autoimmun. 133, 102929 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Evavold, C. L. et al. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity 48, 35–44.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, C. et al. NLRP3 inflammasome activation triggers gasdermin D-independent inflammation. Sci. Immunol. 6, eabj3859 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen, D. Y. et al. The potential role of advanced glycation end products (AGEs) and soluble receptors for AGEs (sRAGE) in the pathogenesis of adult-onset Still’s disease. BMC Musculoskelet. Disord. 16, 111 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kim, H. A. et al. Endogenous ligand S100A8/A9 levels in adult-onset Still’s disease and their association with disease activity and clinical manifestations. Int. J. Mol. Sci. 17, 1342 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jung, J. Y., Suh, C.-H. & Kim, H.-A. The role of damage-associated molecular pattern for pathogenesis and biomarkers in adult-onset Still’s disease. Expert Rev. Mol. Diagn. 19, 459–468 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Cader, M. Z. et al. FAMIN is a multifunctional purine enzyme enabling the purine nucleotide cycle. Cell 180, 278–295.e23 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Saveljeva, S. et al. A purine metabolic checkpoint that prevents autoimmunity and autoinflammation. Cell Metab. 34, 106–124.e10 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wakil, S. M. et al. Association of a mutation in LACC1 with a monogenic form of systemic juvenile idiopathic arthritis. Arthritis Rheumatol. 67, 288–295 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Kadowaki, T. et al. Haploinsufficiency of A20 causes autoinflammatory and autoimmune disorders. J. Allergy Clin. Immunol. 141, 1485–1488.e11 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Barnett, K. C., Li, S., Liang, K. & Ting, J. P.-Y. A 360° view of the inflammasome: mechanisms of activation, cell death, and diseases. Cell 186, 2288–2312 (2023).

    Article  CAS  PubMed  Google Scholar 

  38. Brown, R. A. et al. Neutrophils from children with systemic juvenile idiopathic arthritis exhibit persistent proinflammatory activation despite long-standing clinically inactive disease. Front. Immunol. 9, 2995 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nam, S. W., Kang, S., Lee, J. H. & Yoo, D. H. Different features of interleukin-37 and interleukin-18 as disease activity markers of adult-onset Still’s disease. J. Clin. Med. 10, 910 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Aizaki, Y., Yazawa, H., Sato, K. & Mimura, T. Dual effects of interleukin-10 on natural killer cells and monocytes and the implications for adult-onset Still’s disease. Clin. Exp. Rheumatol. 39, 22–29 (2021).

    Article  PubMed  Google Scholar 

  41. Imbrechts, M. et al. Insufficient IL-10 production as a mechanism underlying the pathogenesis of systemic juvenile idiopathic arthritis. J. Immunol. 201, 2654–2663 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Serhan, C. N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 510, 92–101 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Navarini, L. et al. The specialized pro-resolving lipid mediator protectin D1 affects macrophages differentiation and activity in adult-onset Still’s disease and COVID-19, two hyperinflammatory diseases sharing similar transcriptomic profiles. Front. Immunol. 14, 1148268 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Terkeltaub, R. et al. HLA-Bw35 and prognosis in adult Still’s disease. Arthritis Rheum. 24, 1469–1472 (1981).

    Article  CAS  PubMed  Google Scholar 

  45. Wouters, J. M., Reekers, P. & van de Putte, L. B. Adult-onset Still’s disease. Disease course and HLA associations. Arthritis Rheum. 29, 415–418 (1986).

    Article  CAS  PubMed  Google Scholar 

  46. Asano, T. et al. Effects of HLA-DRB1 alleles on susceptibility and clinical manifestations in Japanese patients with adult onset Still’s disease. Arthritis Res. Ther. 19, 199 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Li, Z. et al. Both HLA class I and II regions identified as genome-wide significant susceptibility loci for adult-onset Still’s disease in Chinese individuals. Ann. Rheum. Dis. 79, 161–163 (2020).

    Article  PubMed  Google Scholar 

  48. Teng, J. L. et al. The amino acid variants in HLA II molecules explain the major association with adult-onset Still’s disease in the Han Chinese population. J. Autoimmun. 116, 102562 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Chen, X. et al. Serum VEGF-C as an evaluation marker of disease activity in adult-onset Still’s disease. Rheumatol. Int. 42, 149–157 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Sugiura, T. et al. A promoter haplotype of the interleukin-18 gene is associated with juvenile idiopathic arthritis in the Japanese population. Arthritis Res. Ther. 8, R60 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wang, F. F. et al. A genetic role for macrophage migration inhibitory factor (MIF) in adult-onset Still’s disease. Arthritis Res. Ther. 15, R65 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sighart, R. et al. Evidence for genetic overlap between adult onset Still’s disease and hereditary periodic fever syndromes. Rheumatol. Int. 38, 111–120 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Wang, M. et al. Association of the leukocyte immunoglobulin-like receptor A3 gene with neutrophil activation and disease susceptibility in adult-onset Still’s disease. Arthritis Rheumatol. 73, 1033–1043 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hung, W. T. et al. The association of ATG16L1 variations with clinical phenotypes of adult-onset Still’s disease. Genes 12, 904 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jørgensen, S. E. et al. Systemic juvenile idiopathic arthritis and recurrent macrophage activation syndrome due to a CASP1 variant causing inflammasome hyperactivation. Rheumatology 59, 3099–3105 (2020).

    Article  PubMed  Google Scholar 

  56. Vastert, S. J. et al. Mutations in the perforin gene can be linked to macrophage activation syndrome in patients with systemic onset juvenile idiopathic arthritis. Rheumatology 49, 441–449 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Rao, S., Tsang, L. S.-L., Zhao, M., Shi, W. & Lu, Q. Adult-onset Still’s disease: a disease at the crossroad of innate immunity and autoimmunity. Front. Med. 9, 881431 (2022).

    Article  Google Scholar 

  58. Manna, R. & Rigante, D. The everchanging framework of autoinflammation. Intern. Emerg. Med. 16, 1759–1770 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kim, J. W., Ahn, M.-H., Jung, J.-Y., Suh, C.-H. & Kim, H.-A. An update on the pathogenic role of neutrophils in systemic juvenile idiopathic arthritis and adult-onset Still’s disease. Int. J. Mol. Sci. 22, 13038 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu, Y., Xia, C., Chen, J., Fan, C. & He, J. Elevated circulating pro-inflammatory low-density granulocytes in adult-onset Still’s disease. Rheumatology 60, 297–303 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Chen, P. K. et al. Elevated expression of C-type lectin domain family 5-member A (CLEC5A) and its relation to inflammatory parameters and disease course in adult-onset Still’s disease. J. Immunol. Res. 2020, 9473497 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Liao, T. L. et al. MicroRNA-223 inhibits neutrophil extracellular traps formation through regulating calcium influx and small extracellular vesicles transmission. Sci. Rep. 11, 15676 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jia, J. et al. Circulating neutrophil extracellular traps signature for identifying organ involvement and response to glucocorticoid in adult-onset Still’s disease: a machine learning study. Front. Immunol. 11, 563335 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Backlund, M., Venge, P. & Berntson, L. A cross-sectional cohort study of the activity and turnover of neutrophil granulocytes in juvenile idiopathic arthritis. Pediatr. Rheumatol. Online J. 19, 102 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ma, Y. et al. Enhanced type I interferon signature induces neutrophil extracellular traps enriched in mitochondrial DNA in adult-onset Still’s disease. J. Autoimmun. 127, 102793 (2022).

    Article  CAS  PubMed  Google Scholar 

  66. Tsuboi, H. et al. Activation mechanisms of monocytes/macrophages in adult-onset Still disease. Front. Immunol. 13, 953730 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen, P.-K. & Chen, D.-Y. An update on the pathogenic role of macrophages in adult-onset Still’s disease and its implication in clinical manifestations and novel therapeutics. J. Immunol. Res. 2021, 8998358 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Hu, Q. et al. Increased neutrophil extracellular traps activate NLRP3 and inflammatory macrophages in adult-onset Still’s disease. Arthritis Res. Ther. 21, 9 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Di Cola, I., Ruscutti, P., Giacomelli, R. & Cipriani, P. The pathogenic role of interferons in the hyperinflammatory response on adult-onset Still’s disease and macrophage activation syndrome: paving the way towards new therapeutic targets. J. Clin. Med. 10, 1164 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Segawa, S. et al. Placenta specific 8 suppresses IL-18 production through regulation of autophagy and is associated with adult Still disease. J. Immunol. 201, 3534–3545 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Huang, Z. et al. mTORC1 links pathology in experimental models of Still’s disease and macrophage activation syndrome. Nat. Commun. 13, 6915 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Concha, S., Rey-Jurado, E., Poli, M. C., Hoyos-Bachiloglu, R. & Borzutzky, A. Refractory systemic juvenile idiopathic arthritis successfully treated with rapamycin. Rheumatology 60, e250–e251 (2021).

    Article  PubMed  Google Scholar 

  73. Vandenhaute, J., Wouters, C. H. & Matthys, P. Natural killer cells in systemic autoinflammatory diseases: a focus on systemic juvenile idiopathic arthritis and macrophage activation syndrome. Front. Immunol. 10, 3089 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Lee, S. J. et al. Natural killer T cell deficiency in active adult-onset Still’s disease: correlation of deficiency of natural killer T cells with dysfunction of natural killer cells. Arthritis Rheum. 64, 2868–2877 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Put, K. et al. Inflammatory gene expression profile and defective interferon-γ and granzyme K in natural killer cells from systemic juvenile idiopathic arthritis patients. Arthritis Rheumatol. 69, 213–224 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Ohya, T. et al. Impaired interleukin-18 signaling in natural killer cells from patients with systemic juvenile idiopathic arthritis. ACR Open Rheumatol. 4, 503–510 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Huang, Z. et al. Type I interferon signature and cycling lymphocytes in macrophage activation syndrome. J. Clin. Invest. 26, e165616 (2023).

    Article  Google Scholar 

  78. Domínguez-Andrés, J. et al. Inflammatory Ly6Chigh monocytes protect against candidiasis through IL-15-driven NK cell/neutrophil activation. Immunity 46, 1059–1072.e4 (2017).

    Article  PubMed  Google Scholar 

  79. Jain, A. et al. T cells instruct myeloid cells to produce inflammasome-independent IL-1β and cause autoimmunity. Nat. Immunol. 21, 65–74 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Omoyinmi, E. et al. Th1 and Th17 cell subpopulations are enriched in the peripheral blood of patients with systemic juvenile idiopathic arthritis. Rheumatology 51, 1881–1886 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chen, D. Y. et al. Potential role of Th17 cells in the pathogenesis of adult-onset Still’s disease. Rheumatology 49, 2305–2312 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Chen, D. Y. et al. The associations of circulating CD4+CD25high regulatory T cells and TGF-β with disease activity and clinical course in patients with adult-onset Still’s disease. Connect. Tissue Res. 51, 370–377 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Henderson, L. A. et al. Th17 reprogramming of T cells in systemic juvenile idiopathic arthritis. JCI Insight 5, e132508 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Avau, A. et al. Systemic juvenile idiopathic arthritis-like syndrome in mice following stimulation of the immune system with Freund’s complete adjuvant: regulation by interferon-γ. Arthritis Rheumatol. 66, 1340–1351 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Kessel, C. et al. Proinflammatory cytokine environments can drive interleukin-17 overexpression by γ/δ T cells in systemic juvenile idiopathic arthritis. Arthritis Rheumatol. 69, 1480–1494 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Kuehn, J. et al. Aberrant naive CD4-positive T cell differentiation in systemic juvenile idiopathic arthritis committed to B cell help. Arthritis Rheumatol. 75, 826–841 (2023).

    Article  CAS  PubMed  Google Scholar 

  87. Fang, X. et al. B cell subsets in adult-onset Still’s disease: potential candidates for disease pathogenesis and immunophenotyping. Arthritis Res. Ther. 25, 104 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rosário, C., Zandman-Goddard, G., Meyron-Holtz, E. G., D’Cruz, D. P. & Shoenfeld, Y. The hyperferritinemic syndrome: macrophage activation syndrome, Still’s disease, septic shock and catastrophic antiphospholipid syndrome. BMC Med. 11, 185 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Schulert, G. S. & Canna, S. W. Convergent pathways of the hyperferritinemic syndromes. Int. Immunol. 30, 195–203 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ruscitti, P. et al. Expanding the spectrum of the hyperferritinemic syndrome, from pathogenic mechanisms to clinical observations, and therapeutic implications. Autoimmun. Rev. 21, 103114 (2022).

    Article  CAS  PubMed  Google Scholar 

  91. Ruddell, R. G. et al. Ferritin functions as a proinflammatory cytokine via iron-independent protein kinase C zeta/nuclear factor kappaB-regulated signaling in rat hepatic stellate cells. Hepatology 49, 887–900 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Ruscitti, P. et al. Pro-inflammatory properties of H-ferritin on human macrophages, ex vivo and in vitro observations. Sci. Rep. 10, 12232 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ruscitti, P. et al. H-ferritin and CD68+/H-ferritin+ monocytes/macrophages are increased in the skin of adult-onset Still’s disease patients and correlate with the multi-visceral involvement of the disease. Clin. Exp. Immunol. 186, 30–38 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ruscitti, P. et al. The CD68+/H-ferritin+ cells colonize the lymph nodes of the patients with adult onset Still’s disease and are associated with increased extracellular level of H-ferritin in the same tissue: correlation with disease severity and implication for pathogenesis. Clin. Exp. Immunol. 183, 397–404 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. Ruscitti, P. et al. H-ferritin and proinflammatory cytokines are increased in the bone marrow of patients affected by macrophage activation syndrome. Clin. Exp. Immunol. 191, 220–228 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Zarjou, A. et al. Ferritin light chain confers protection against sepsis-induced inflammation and organ injury. Front. Immunol. 10, 131 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jia, J. et al. Ferritin triggers neutrophil extracellular trap-mediated cytokine storm through Msr1 contributing to adult-onset Still’s disease pathogenesis. Nat. Commun. 13, 6804 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chen, P. K. et al. Increased lipid peroxidation may be linked to ferritin levels elevation in adult-onset Still’s disease. Biomedicines 9, 1508 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Fujita, Y. et al. Clinical relevance for circulating cold-inducible RNA-binding protein (CIRP) in patients with adult-onset Still’s disease. PLoS ONE 16, e0255493 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Berardicurti, O. et al. The similar expression of both ferritin and scavenger receptors activation genes in patients with COVID19 and AOSD support their role in the pathogenesis of these diseases and identify a common mechanism at the basis of the “hyperferritinemic syndromes”. Autoimmun. Rev. 22, 103309 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ruscitti, P. et al. The hyper-expression of NLRP4 characterizes the occurrence of macrophage activation syndrome assessing STING pathway in adult-onset Still’s disease. Clin. Exp. Immunol. 208, 95–102 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Fan, J., Jiang, T. & He, D. Emerging insights into the role of ferroptosis in the pathogenesis of autoimmune diseases. Front. Immunol. 14, 1120519 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhou, G. et al. Retrospective analysis of 1,641 cases of classic fever of unknown origin. Ann. Transl. Med. 8, 690 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Yachie, A. Clinical perspectives and therapeutic strategies: pediatric autoinflammatory disease-a multi-faceted approach to fever of unknown origin of childhood. Inflamm. Regen. 42, 21 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bilgin, E. et al. Proposal for a simple algorithm to differentiate adult-onset Still’s disease with other fever of unknown origin causes: a longitudinal prospective study. Clin. Rheumatol. 38, 1699–1706 (2019).

    Article  PubMed  Google Scholar 

  106. Ying, S. et al. Development and validation of the AF score for diagnosis of adult-onset Still’s disease in fever of unknown origin. J. Transl. Autoimmun. 6, 100184 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Daghor-Abbaci, K. et al. Proposal of a new diagnostic algorithm for adult-onset Still’s disease. Clin. Rheumatol. 42, 1125–1135 (2023).

    Article  PubMed  Google Scholar 

  108. Fautrel, B. Adult-onset Still disease. Best Pract. Res. Clin. Rheumatol. 22, 773–792 (2008).

    Article  PubMed  Google Scholar 

  109. Ruscitti, P. et al. The joint involvement in adult onset Still’s disease is characterised by a peculiar magnetic resonance imaging and a specific transcriptomic profile. Sci. Rep. 11, 12455 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Barile, A. et al. Computed tomography and MR imaging in rheumatoid arthritis. Radiol. Clin. North Am. 55, 997–1007 (2017).

    Article  PubMed  Google Scholar 

  111. Zuelgaray, E. et al. Increased severity and epidermal alterations in persistent versus evanescent skin lesions in adult-onset Still disease. J. Am. Acad. Dermatol. 279, 969–971 (2018).

    Article  Google Scholar 

  112. Ding, Y. et al. Risk of macrophage activation syndrome in patients with adult-onset Still’s disease with skin involvement: a retrospective cohort study. J. Am. Acad. Dermatol. 85, 1503–1509 (2021).

    Article  CAS  PubMed  Google Scholar 

  113. Ruscitti, P. et al. Adult-onset Still’s disease: evaluation of prognostic tools and validation of the systemic score by analysis of 100 cases from three centers. BMC Med. 14, 194 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Tibaldi, J. et al. Development and initial validation of a composite disease activity score for systemic juvenile idiopathic arthritis. Rheumatology 59, 3505–3514 (2020).

    Article  CAS  PubMed  Google Scholar 

  115. Zhu, D. et al. Performance of the modified Systemic Manifestation Score for systemic juvenile idiopathic arthritis in adult-onset Still’s disease. Clin. Rheumatol. 42, 187–195 (2023).

    Article  PubMed  Google Scholar 

  116. Di Benedetto, P. et al. Ferritin and C-reactive protein are predictive biomarkers of mortality and macrophage activation syndrome in adult onset Still’s disease. Analysis of the multicentre Gruppo Italiano di Ricerca in Reumatologia Clinica e Sperimentale (GIRRCS) cohort. PLoS ONE 15, e0235326 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Cron, R. Q., Davi, S., Minoia, F. & Ravelli, A. Clinical features and correct diagnosis of macrophage activation syndrome. Expert Rev. Clin. Immunol. 11, 1043–1053 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Eloseily, E. M. A. et al. Ferritin to erythrocyte sedimentation rate ratio: simple measure to identify macrophage activation syndrome in systemic juvenile idiopathic arthritis. ACR Open Rheumatol. 1, 345–349 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Zou, L. X. et al. Clinical and laboratory features, treatment, and outcomes of macrophage activation syndrome in 80 children: a multi-center study in China. World J. Pediatr. 16, 89–98 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Cush, J. J., Medsger, T. A., Christy, W. C., Herbert, D C. & Cooperstein, L. A. Adult-onset Still’s disease. Clinical course and outcome. Arthritis Rheum. 30, 186–194 (1987).

    Article  CAS  PubMed  Google Scholar 

  121. Maria, A. T. et al. Adult onset Still’s disease (AOSD) in the era of biologic therapies: dichotomous view for cytokine and clinical expressions. Autoimmun. Rev. 13, 1149–1159 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Vercruysse, F. et al. Adult-onset Still’s disease biological treatment strategy may depend on the phenotypic dichotomy. Arthritis Res. Ther. 21, 53 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Neau, P. A. et al. The spectrum of Still’s disease: a comparative analysis of phenotypic forms in a cohort of 238 patients. J. Clin. Med. 11, 6703 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Mitrovic, S. & Fautrel, B. Clinical phenotypes of adult-onset Still’s disease: new insights from pathophysiology and literature findings. J. Clin. Med. 10, 2633 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Webster, A. J., Gaitskell, K., Turnbull, I., Cairns, B. J. & Clarke, R. Characterisation, identification, clustering, and classification of disease. Sci. Rep. 11, 5405 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sugiyama, T. et al. Latent class analysis of 216 patients with adult-onset Still’s disease. Arthritis Res. Ther. 24, 7 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Li, R. et al. Clinical phenotypes and prognostic factors of adult-onset Still’s disease: data from a large inpatient cohort. Arthritis Res. Ther. 23, 300 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Wahbi, A. et al. Catastrophic adult-onset Still’s disease as a distinct life-threatening clinical subset: case-control study with dimension reduction analysis. Arthritis Res. Ther. 23, 256 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Di Cola, I. et al. Adult-onset Still’s disease with elderly onset: results from a multicentre study. Clin. Exp. Rheumatol. 40, 1517–1525 (2022).

    PubMed  Google Scholar 

  130. Kishida, D. et al. Clinical characteristics and treatment of elderly onset adult-onset Still’s disease. Sci. Rep. 12, 6787 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Berardicurti, O. et al. Dissecting the clinical heterogeneity of adult-onset Still’s disease: results from a multi-dimensional characterization and stratification. Rheumatology 60, 4844–4849 (2021).

    Article  CAS  PubMed  Google Scholar 

  132. Ruscitti, P. et al. Derivation and validation of four patient clusters in Still’s disease, results from GIRRCS AOSD-study group and AIDA Network Still Disease Registry. RMD Open 9, e003419 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Ruscitti, P., Berardicurti, O., Giacomelli, R. & Cipriani, P. The clinical heterogeneity of adult onset Still’s disease may underlie different pathogenic mechanisms. Implications for a personalised therapeutic management of these patients. Semin. Immunol. 58, 101632 (2021).

    Article  PubMed  Google Scholar 

  134. Guo, R. et al. AOSD endotypes based on immune cell profiles: patient stratification with hierarchical clustering analysis. Rheumatology 62, 1636–1644 (2023).

    Article  PubMed  Google Scholar 

  135. Grom, A. A., Horne, A. & De Benedetti, F. Macrophage activation syndrome in the era of biologic therapy. Nat. Rev. Rheumatol. 12, 259–268 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bracaglia, C. et al. Elevated circulating levels of interferon-γ and interferon-γ-induced chemokines characterise patients with macrophage activation syndrome complicating systemic juvenile idiopathic arthritis. Ann. Rheum. Dis. 76, 166–172 (2017).

    Article  CAS  PubMed  Google Scholar 

  137. Chaturvedi, V. et al. T-cell activation profiles distinguish hemophagocytic lymphohistiocytosis and early sepsis. Blood 137, 2337–2346 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lin, H. et al. IFN-γ signature in the plasma proteome distinguishes pediatric hemophagocytic lymphohistiocytosis from sepsis and SIRS. Blood Adv. 5, 3457–3467 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. De Benedetti, F., Prencipe, G., Bracaglia, C., Marasco, E. & Grom, A. A. Targeting interferon-γ in hyperinflammation: opportunities and challenges. Nat. Rev. Rheumatol. 17, 678–691 (2021).

    Article  PubMed  Google Scholar 

  140. Prencipe, G. et al. Neutralization of IFN-γ reverts clinical and laboratory features in a mouse model of macrophage activation syndrome. J. Allergy Clin. Immunol. 141, 1439–1449 (2018).

    Article  CAS  PubMed  Google Scholar 

  141. Girard-Guyonvarc’h, C. et al. Unopposed IL-18 signaling leads to severe TLR9-induced macrophage activation syndrome in mice. Blood 131, 1430–1441 (2018).

    Article  PubMed  Google Scholar 

  142. Ruscitti, P. et al. Cytokine profile, ferritin and multi-visceral involvement characterize macrophage activation syndrome during adult-onset Still’s disease. Rheumatology 62, 321–329 (2022).

    Article  PubMed  Google Scholar 

  143. Shimizu, M. et al. Interleukin-18 for predicting the development of macrophage activation syndrome in systemic juvenile idiopathic arthritis. Clin. Immunol. 160, 277–281 (2015).

    Article  CAS  PubMed  Google Scholar 

  144. Inoue, N. et al. Cytokine profile in adult-onset Still’s disease: comparison with systemic juvenile idiopathic arthritis. Clin. Immunol. 169, 8–13 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. Yagishita, M. et al. Clinical features and serum cytokine profiles of elderly-onset adult-onset Still’s disease. Sci. Rep. 12, 21334 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Saper, V. E. et al. Emergent high fatality lung disease in systemic juvenile arthritis. Ann. Rheum. Dis. 78, 1722–1731 (2019).

    Article  CAS  PubMed  Google Scholar 

  147. Schulert, G. S. et al. Systemic juvenile idiopathic arthritis-associated lung disease: characterization and risk factors. Arthritis Rheumatol. 71, 1943–1954 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ruscitti, P. et al. Parenchymal lung disease in adult onset Still’s disease: an emergent marker of disease severity-characterisation and predictive factors from Gruppo Italiano di Ricerca in Reumatologia Clinica e Sperimentale (GIRRCS) cohort of patients. Arthritis Res. Ther. 22, 151 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Saper, V. E. et al. Severe delayed hypersensitivity reactions to IL-1 and IL-6 inhibitors link to common HLA-DRB1*15 alleles. Ann. Rheum. Dis. 81, 406–415 (2022).

    Article  CAS  PubMed  Google Scholar 

  150. Wobma, H. et al. Incidence and risk factors for eosinophilia and lung disease in biologic-exposed children with systemic juvenile idiopathic arthritis. Arthritis Care Res. 75, 2063–2072 (2023).

    Article  CAS  Google Scholar 

  151. Lerman, A. M. et al. HLA-DRB1*15 and eosinophilia are common among patients with systemic juvenile idiopathic arthritis. Arthritis Care Res. 75, 2082–2087 (2023).

    Article  CAS  Google Scholar 

  152. Huang, Y. et al. Disease course, treatments, and outcomes of children with systemic juvenile idiopathic arthritis associated lung disease (SJIA-LD). Arthritis Care Res., https://doi.org/10.1002/acr.25234 (2023).

    Article  Google Scholar 

  153. Binstadt, B. A. & Nigrovic, P. A. The conundrum of lung disease and drug hypersensitivity-like reactions in systemic juvenile idiopathic arthritis. Arthritis Rheumatol. 74, 1122–1131 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Chen, G. et al. Identification of distinct inflammatory programs and biomarkers in systemic juvenile idiopathic arthritis and related lung disease by serum proteome analysis. Arthritis Rheumatol. 74, 1271–1283 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Malengier-Devlies, B. et al. Lung functioning and inflammation in a mouse model of systemic juvenile idiopathic arthritis. Front. Immunol. 12, 642778 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ruscitti, P. et al. Managing adult-onset Still’s disease: the effectiveness of high-dosage of corticosteroids as first-line treatment in inducing the clinical remission. Results from an observational study. Medicine 98, e15123 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kondo, F. et al. Associated factors with poor treatment response to initial glucocorticoid therapy in patients with adult-onset Still’s disease. Arthritis Res. Ther. 24, 92 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Cipriani, P., Ruscitti, P., Carubbi, F., Liakouli, V. & Giacomelli, R. Methotrexate: an old new drug in autoimmune disease. Expert Rev. Clin. Immunol. 10, 1519–1530 (2014).

    Article  CAS  PubMed  Google Scholar 

  159. Nakamura, H. et al. Calcineurin inhibitors for adult-onset Still’s disease: a multicentre retrospective cohort study. Clin. Exp. Rheumatol. 38, 11–16 (2020).

    PubMed  Google Scholar 

  160. Erkens, R., Esteban, Y., Towe, C., Schulert, G. & Vastert, S. Pathogenesis and treatment of refractory disease courses in systemic juvenile idiopathic arthritis: refractory arthritis, recurrent macrophage activation syndrome and chronic lung disease. Rheum. Dis. Clin. North Am. 47, 585–606 (2021).

    Article  PubMed  Google Scholar 

  161. Fautrel, B. et al. Systematic review on the use of biologics in adult-onset Still’s disease. Semin. Arthritis Rheum. 58, 152139 (2023).

    Article  CAS  PubMed  Google Scholar 

  162. Vastert, S. J. et al. Anakinra in children and adults with Still’s disease. Rheumatology 58, vi9–vi22 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Mejbri, M., Theodoropoulou, K., Hofer, M. & Cimaz, R. Interleukin-1 blockade in systemic juvenile idiopathic arthritis. Paediatr. Drugs 22, 251–262 (2020).

    Article  PubMed  Google Scholar 

  164. Giacomelli, R. et al. The treatment of adult-onset Still’s disease with anakinra, a recombinant human IL-1 receptor antagonist: a systematic review of literature. Clin. Exp. Rheumatol. 39, 187–195 (2021).

    Article  PubMed  Google Scholar 

  165. Giancane, G. et al. Anakinra in patients with systemic juvenile idiopathic arthritis: long-term safety from the Pharmachild Registry. J. Rheumatol. 49, 398–407 (2022).

    Article  CAS  PubMed  Google Scholar 

  166. Ruscitti, P. et al. The reduction of concomitant glucocorticoids dosage following treatment with IL-1 receptor antagonist in adult onset Still’s disease. A systematic review and meta-analysis of observational studies. Ther. Adv. Musculoskelet. Dis. 12, 1759720X20933133 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Pardeo, M. et al. Anakinra in systemic juvenile idiopathic arthritis: a single-center experience. J. Rheumatol. 42, 1523–1527 (2015).

    Article  CAS  PubMed  Google Scholar 

  168. Nigrovic, P. A. et al. Anakinra as first-line disease-modifying therapy in systemic juvenile idiopathic arthritis: report of forty-six patients from an international multicenter series. Arthritis Rheum. 63, 545–555 (2011).

    Article  CAS  PubMed  Google Scholar 

  169. Pardeo, M. et al. Early treatment and IL1RN single-nucleotide polymorphisms affect response to anakinra in systemic juvenile idiopathic arthritis. Arthritis Rheumatol. 73, 1053–1061 (2021).

    Article  CAS  PubMed  Google Scholar 

  170. Vastert, S. J. et al. Effectiveness of first-line treatment with recombinant interleukin-1 receptor antagonist in steroid-naive patients with new-onset systemic juvenile idiopathic arthritis: results of a prospective cohort study. Arthritis Rheumatol. 66, 1034–1043 (2014).

    Article  CAS  PubMed  Google Scholar 

  171. Ter Haar, N. M. et al. Treatment to target using recombinant interleukin-1 receptor antagonist as first-line monotherapy in new-onset systemic juvenile idiopathic arthritis: results from a five-year follow-up study. Arthritis Rheumatol. 71, 1163–1173 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Erkens, R. G. A. et al. Recombinant interleukin-1 receptor antagonist is an effective first-line treatment strategy in new-onset systemic Juvenile Idiopathic Arthritis, irrespective of HLA-DRB1 background and IL1RN variants. Arthritis Rheumatol., https://doi.org/10.1002/art.42656 (2023).

    Article  PubMed  Google Scholar 

  173. Arthur, V. L. et al. IL1RN variation influences both disease susceptibility and response to recombinant human interleukin-1 receptor antagonist therapy in systemic juvenile idiopathic arthritis. Arthritis Rheumatol. 70, 1319–1330 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Kedor, C., Tomaras, S., Baeumer, D. & Feist, E. Update on the therapy of adult-onset Still’s disease with a focus on IL-1-inhibition: a systematic review. Ther. Adv. Musculoskelet. Dis. 13, 1759720X211059598 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Ruperto, N. et al. Two randomized trials of canakinumab in systemic juvenile idiopathic arthritis. N. Engl. J. Med. 367, 2396–2406 (2012).

    Article  CAS  PubMed  Google Scholar 

  176. Ruperto, N. et al. Canakinumab in patients with systemic juvenile idiopathic arthritis and active systemic features: results from the 5-year long-term extension of the phase III pivotal trials. Ann. Rheum. Dis. 77, 1710–1719 (2018).

    Article  CAS  PubMed  Google Scholar 

  177. Alexeeva, E. et al. Efficacy and safety of canakinumab as a second line biologic after tocilizumab treatment failure in children with systemic juvenile idiopathic arthritis: a single-centre cohort study using routinely collected health data. Front. Pediatr. 11, 1114207 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Quartier, P. et al. Tapering canakinumab monotherapy in patients with systemic juvenile idiopathic arthritis in clinical remission: results from a phase IIIb/IV open-label, randomized study. Arthritis Rheumatol. 73, 336–346 (2021).

    Article  CAS  PubMed  Google Scholar 

  179. Kedor, C. et al. Canakinumab for treatment of adult-onset Still’s disease to achieve reduction of arthritic manifestation (CONSIDER): phase II, randomised, double-blind, placebo-controlled, multicentre, investigator-initiated trial. Ann. Rheum. Dis. 79, 1090–1097 (2020).

    Article  CAS  PubMed  Google Scholar 

  180. Laskari, K. et al. Outcome of refractory to conventional and/or biologic treatment adult Still’s disease following canakinumab treatment: countrywide data in 50 patients. Semin. Arthritis Rheum. 51, 137–143 (2021).

    Article  CAS  PubMed  Google Scholar 

  181. Vitale, A. et al. Canakinumab as first-line biological therapy in Still’s disease and differences between the systemic and the chronic-articular courses: real-life experience from the international AIDA registry. Front. Med. 9, 1071732 (2022).

    Article  Google Scholar 

  182. Ghannam, K. et al. Distinct effects of interleukin-1β inhibition upon cytokine profile in patients with adult-onset Still’s disease and active articular manifestation responding to canakinumab. J. Clin. Med. 10, 4400 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Brachat, A. et al. Early changes in gene expression and inflammatory proteins in systemic juvenile idiopathic arthritis patients on canakinumab therapy. Arthritis Res. Ther. 19, 13 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Verweyen, E. L., Pickering, A., Grom, A. A. & Schulert, G. S. Distinct gene expression signatures characterize strong clinical responders versus nonresponders to canakinumab in children with systemic juvenile idiopathic arthritis. Arthritis Rheumatol. 73, 1334–1340 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Galozzi, P., Bindoli, S., Doria, A. & Sfriso, P. The revisited role of interleukin-1 alpha and beta in autoimmune and inflammatory disorders and in comorbidities. Autoimmun. Rev. 20, 102785 (2021).

    Article  CAS  PubMed  Google Scholar 

  186. Choy, E. H. et al. Translating IL-6 biology into effective treatments. Nat. Rev. Rheumatol. 16, 335–345 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. De Benedetti, F. et al. Randomized trial of tocilizumab in systemic juvenile idiopathic arthritis. N. Engl. J. Med. 367, 2385–2395 (2012).

    Article  PubMed  Google Scholar 

  188. Kaneko, Y. et al. Tocilizumab in patients with adult-onset still’s disease refractory to glucocorticoid treatment: a randomised, double-blind, placebo-controlled phase III trial. Ann. Rheum. Dis. 77, 1720–1729 (2018).

    Article  CAS  PubMed  Google Scholar 

  189. Pacharapakornpong, T., Vallibhakara, S. A.-O., Lerkvaleekul, B. & Vilaiyuk, S. Comparisons of the outcomes between early and late tocilizumab treatment in systemic juvenile idiopathic arthritis. Rheumatol. Int. 37, 251–255 (2017).

    Article  CAS  PubMed  Google Scholar 

  190. Yan, X. et al. Tocilizumab in systemic juvenile idiopathic arthritis: response differs by disease duration at medication initiation and by phenotype of disease. Front. Pediatr. 9, 735846 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Nada, D. W., Moghazy, A., El-Sayed Allam, A., Alunno, A. & Ibrahim, A. M. Short-term outcomes and predictors of effectiveness of tocilizumab in systemic juvenile idiopathic arthritis: a prospective cohort study. Front. Med. 8, 665028 (2021).

    Article  Google Scholar 

  192. Kaneko, Y. & Takeuchi, T. Interleukin-6 inhibition: a therapeutic strategy for the management of adult-onset Still’s disease. Expert Opin. Biol. Ther. 22, 79–85 (2022).

    Article  CAS  PubMed  Google Scholar 

  193. Sota, J. et al. Efficacy and safety of tocilizumab in adult-onset Still’s disease: real-life experience from the international AIDA registry. Semin. Arthritis Rheum. 57, 152089 (2022).

    Article  CAS  PubMed  Google Scholar 

  194. Locatelli, F. et al. Emapalumab in children with primary hemophagocytic lymphohistiocytosis. N. Engl. J. Med. 382, 1811–1822 (2020).

    Article  PubMed  Google Scholar 

  195. De Benedetti, F. et al. Efficacy and safety of emapalumab in macrophage activation syndrome. Ann. Rheum. Dis. 82, 857–865 (2023).

    Article  PubMed  Google Scholar 

  196. Tanaka, Y., Luo, Y., O’Shea, J. J. & Nakayamada, S. Janus kinase-targeting therapies in rheumatology: a mechanisms-based approach. Nat. Rev. Rheumatol. 18, 133–145 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Favoino, E. et al. Working and safety profiles of JAK/STAT signaling inhibitors. Are these small molecules also smart? Autoimmun. Rev. 20, 102750 (2021).

    Article  CAS  PubMed  Google Scholar 

  198. He, T., Xia, Y., Luo, Y. & Yang, J. JAK inhibitors in systemic juvenile idiopathic arthritis. Front. Pediatr. 11, 1134312 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Hu, Q. et al. Tofacitinib in refractory adult-onset Still’s disease: 14 cases from a single centre in China. Ann. Rheum. Dis. 79, 842–844 (2020).

    Article  CAS  PubMed  Google Scholar 

  200. Gillard, L. et al. JAK inhibitors in difficult-to-treat adult-onset Still’s disease and systemic-onset juvenile idiopathic arthritis. Rheumatology 62, 1594–1604 (2023).

    Article  PubMed  Google Scholar 

  201. Furuya, M. Y. et al. Tofacitinib inhibits granulocyte-macrophage colony-stimulating factor-induced NLRP3 inflammasome activation in human neutrophils. Arthritis Res. Ther. 20, 196 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Ahmed, A. et al. Ruxolitinib in adult patients with secondary haemophagocytic lymphohistiocytosis: an open-label, single-centre, pilot trial. Lancet Haematol. 6, e630–e637 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Wang, J. et al. Ruxolitinib-combined doxorubicin-etoposide-methylprednisolone regimen as a salvage therapy for refractory/relapsed haemophagocytic lymphohistiocytosis: a single-arm, multicentre, phase 2 trial. Br. J. Haematol. 193, 761–768 (2021).

    Article  CAS  PubMed  Google Scholar 

  204. Keenan, C., Nichols, K. E. & Albeituni, S. Use of the JAK inhibitor ruxolitinib in the treatment of hemophagocytic lymphohistiocytosis. Front. Immunol. 12, 614704 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Yang, L. et al. The signal pathways and treatment of cytokine storm in COVID-19. Signal Transduct. Target. Ther. 6, 255 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Dessie, Z. G. & Zewotir, T. Mortality-related risk factors of COVID-19: a systematic review and meta-analysis of 42 studies and 423,117 patients. BMC Infect. Dis. 21, 855 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Ruscitti, P. et al. Severe COVID-19, another piece in the puzzle of the hyperferritinemic syndrome. An immunomodulatory perspective to alleviate the storm. Front. Immunol. 11, 1130 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Ruscitti, P. et al. Lung involvement in macrophage activation syndrome and severe COVID-19: results from a cross-sectional study to assess clinical, laboratory and artificial intelligence-radiological differences. Ann. Rheum. Dis. 79, 1152–1155 (2020).

    Article  CAS  PubMed  Google Scholar 

  209. GTEx Consortium. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).

    Article  PubMed Central  Google Scholar 

  210. McGonagle, D., Sharif, K., O’Regan, A. & Bridgewood, C. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun. Rev. 19, 102537 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Sposito, B. et al. The interferon landscape along the respiratory tract impacts the severity of COVID-19. Cell 184, 4953–4968.e16 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Fajgenbaum, D. C. & June, C. H. Cytokine storm. N. Engl. J. Med. 383, 2255–2273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Diamond, M. S., Lambris, J. D., Ting, J. P. & Tsang, J. S. Considering innate immune responses in SARS-CoV-2 infection and COVID-19. Nat. Rev. Immunol. 22, 465–470 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Vora, S. M., Lieberman, J. & Wu, H. Inflammasome activation at the crux of severe COVID-19. Nat. Rev. Immunol. 21, 694–703 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  215. McGonagle, D., O’Donnell, J. S., Sharif, K., Emery, P. & Bridgewood, C. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol. 2, e437–e445 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  216. McGonagle, D., Bridgewood, C., Ramanan, A. V., Meaney, J. F. M. & Watad, A. COVID-19 vasculitis and novel vasculitis mimics. Lancet Rheumatol. 3, e224–e233 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Giryes, S., Bragazzi, N. L., Bridgewood, C., De Marco, G. & McGonagle, D. COVID-19 vasculitis and vasculopathy-distinct immunopathology emerging from the close juxtaposition of type II pneumocytes and pulmonary endothelial cells. Semin. Immunopathol. 44, 375–390 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. McGonagle, D. et al. Therapeutic implications of ongoing alveolar viral replication in COVID-19. Lancet Rheumatol. 4, e135–e144 (2022).

    Article  CAS  PubMed  Google Scholar 

  219. van de Veerdonk, F. L. et al. A guide to immunotherapy for COVID-19. Nat. Med. 28, 39–50 (2022).

    Article  PubMed  Google Scholar 

  220. Potere, N. et al. Interleukin-1 and the NLRP3 inflammasome in COVID-19: pathogenetic and therapeutic implications. EBioMedicine 85, 104299 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Zizzo, G. et al. Immunotherapy of COVID-19: inside and beyond IL-6 signalling. Front. Immunol. 13, 795315 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Matuozzo, D. et al. Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19. Genome Med. 15, 22 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Zhang, Q. et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 370, eabd4570 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Zhang, Q. et al. Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature 603, 587–598 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Bastard, P. et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 370, eabd4585 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Pfeifer, J. et al. Autoantibodies against interleukin-1 receptor antagonist in multisystem inflammatory syndrome in children: a multicentre, retrospective, cohort study. Lancet Rheumatol. 4, e329–e337 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Ursini, F. et al. Spectrum of short-term inflammatory musculoskeletal manifestations after COVID-19 vaccine administration: a report of 66 cases. Ann. Rheum. Dis. 81, 440–441 (2022).

    Article  CAS  PubMed  Google Scholar 

  228. Chen, C. C. & Chen, C.-J. New-onset inflammatory arthritis after COVID-19 vaccination: a systematic review. Int. J. Rheum. Dis. 26, 267–277 (2023).

    Article  CAS  PubMed  Google Scholar 

  229. Scholkmann, F. & May, C.-A. COVID-19, post-acute COVID-19 syndrome (PACS, “long COVID”) and post-COVID-19 vaccination syndrome (PCVS, “post-COVIDvac-syndrome”): similarities and differences. Pathol. Res. Pract. 246, 154497 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Palassin, P. et al. Comprehensive description of adult-onset Still’s disease after COVID-19 vaccination. J. Autoimmun. 134, 102980 (2023).

    Article  PubMed  Google Scholar 

  231. Tahtinen, S. et al. IL-1 and IL-1ra are key regulators of the inflammatory response to RNA vaccines. Nat. Immunol. 23, 532–542 (2022).

    Article  CAS  PubMed  Google Scholar 

  232. Giacomelli, R. et al. International consensus: what else can we do to improve diagnosis and therapeutic strategies in patients affected by autoimmune rheumatic diseases (rheumatoid arthritis, spondyloarthritides, systemic sclerosis, systemic lupus erythematosus, antiphospholipid syndrome and Sjogren’s syndrome)? the unmet needs and the clinical grey zone in autoimmune disease management. Autoimmun. Rev. 16, 911–924 (2017).

    Article  PubMed  Google Scholar 

  233. Inoue, N. & Schulert, G. S. Mouse models of systemic juvenile idiopathic arthritis and macrophage activation syndrome. Arthritis Res. Ther. 25, 48 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Mizuta, M. et al. Distinct roles of IL-18 and IL-1β in murine model of macrophage activation syndrome. J. Allergy Clin. Immunol. 152, 940–948 (2023).

    Article  CAS  PubMed  Google Scholar 

  235. Chi, H. et al. The landscape of innate and adaptive immune cell subsets in patients with adult-onset Still’s disease. Rheumatology, https://doi.org/10.1093/rheumatology/kead507 (2023).

    Article  PubMed  Google Scholar 

  236. Mitrovic, S. et al. Adult-onset Still’s disease or systemic-onset juvenile idiopathic arthritis and spondyloarthritis: overlapping syndrome or phenotype shift? Rheumatology 61, 2535–2547 (2022).

    Article  CAS  PubMed  Google Scholar 

  237. Giacomelli, R. et al. Guidelines for biomarkers in autoimmune rheumatic diseases — evidence based analysis. Autoimmun. Rev. 18, 93–106 (2019).

    Article  CAS  PubMed  Google Scholar 

  238. Mitrovic, S. & Fautrel, B. New markers for adult-onset Still’s disease. Jt Bone Spine 85, 285–293 (2018).

    Article  Google Scholar 

  239. Colafrancesco, S., Priori, R. & Valsini, G. Presentation and diagnosis of adult-onset Still’s disease: the implications of current and emerging markers in overcoming the diagnostic challenge. Expert Rev. Clin. Immunol. 11, 749–761 (2015).

    Article  CAS  PubMed  Google Scholar 

  240. Chen, P. K., Wey, S. J. & Chen, D. Y. Interleukin-18: a biomarker with therapeutic potential in adult-onset Still’s disease. Expert Rev. Clin. Immunol. 18, 823–833 (2022).

    Article  CAS  PubMed  Google Scholar 

  241. Manfredi, M. et al. Circulating calprotectin (cCLP) in autoimmune diseases. Autoimmun. Rev. 22, 103295 (2023).

    Article  CAS  PubMed  Google Scholar 

  242. Leavis, H. L. et al. Management of adult-onset Still’s disease: evidence- and consensus-based recommendations by experts. Rheumatology, https://doi.org/10.1093/rheumatology/kead461 (2023).

    Article  PubMed  Google Scholar 

  243. Giacomelli, R. et al. Expert consensus on the treatment of patients with adult-onset still’s disease with the goal of achieving an early and long-term remission. Autoimmun. Rev. 22, 103400 (2023).

    Article  CAS  PubMed  Google Scholar 

  244. Schett, G. et al. Tapering biologic and conventional DMARD therapy in rheumatoid arthritis: current evidence and future directions. Ann. Rheum. Dis. 75, 1428–1437 (2016).

    Article  CAS  PubMed  Google Scholar 

  245. Giacomelli, R. et al. The growing role of precision medicine for the treatment of autoimmune diseases; results of a systematic review of literature and Experts’ Consensus. Autoimmun. Rev. 20, 102738 (2021).

    Article  CAS  PubMed  Google Scholar 

  246. Quartier, P. Systemic juvenile idiopathic arthritis/pediatric Still’s disease, a syndrome but several clinical forms: recent therapeutic approaches. J. Clin. Med. 11, 1357 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Rood, J. E. et al. Improvement of refractory systemic juvenile idiopathic arthritis-associated lung disease with single-agent blockade of IL-1β and IL-18. J. Clin. Immunol. 43, 101–108 (2023).

    Article  CAS  PubMed  Google Scholar 

  248. Girard-Guyonvarc’h, C., Harel, M. & Gabay, C. The role of interleukin 18/interleukin 18-binding protein in adult-onset Still’s disease and systemic juvenile idiopathic arthritis. J. Clin. Med. 11, 430 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Ambler, W. G., Nanda, K., Onel, C. B. & Shenoi, S. Refractory systemic onset juvenile idiopathic arthritis: current challenges and future perspectives. Ann. Med. 54, 1839–1850 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Ma, Y. et al. Current and emerging biological therapy in adult-onset Still’s disease. Rheumatology 60, 3986–4000 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Ruscitti, P. et al. Macrophage activation syndrome in patients affected by adult-onset still disease: analysis of survival rates and predictive factors in the Gruppo Italiano di Ricerca in Reumatologia Clinica e Sperimentale Cohort. J. Rheumatol. 45, 864–872 (2018).

    Article  CAS  PubMed  Google Scholar 

  252. Ruscitti, P. et al. Macrophage activation syndrome in Still’s disease: analysis of clinical characteristics and survival in paediatric and adult patients. Clin. Rheumatol. 36, 2839–2845 (2017).

    Article  PubMed  Google Scholar 

  253. Ruscitti, P. et al. Prognostic factors of macrophage activation syndrome, at the time of diagnosis, in adult patients affected by autoimmune disease: analysis of 41 cases collected in 2 rheumatologic centers. Autoimmun. Rev. 16, 16–21 (2017).

    Article  CAS  PubMed  Google Scholar 

  254. Ruscitti, P. et al. Impact of smoking habit on adult-onset Still’s disease prognosis, findings from a multicentre observational study. Clin. Rheumatol. 41, 641–647 (2022).

    Article  PubMed  Google Scholar 

  255. Di Cola, I. et al. Clinical characteristics of obese patients with adult-onset Still’s disease. Data from a large multicentre cohort. Jt. Bone Spine 18, 105576 (2023).

    Article  Google Scholar 

  256. Lenert, A., Oh, G., Ombrello, M. J. & Kim, S. Clinical characteristics and comorbidities in adult-onset Still’s disease using a large US administrative claims database. Rheumatology 59, 1725–1733 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Meng, J. et al. Characteristics and risk factors of relapses in patients with adult-onset Still’s disease: a long-term cohort study. Rheumatology 60, 4520–4529 (2021).

    Article  CAS  PubMed  Google Scholar 

  258. Mitrovic, S. et al. Clinical and biological characteristics of children and adults affected with Still’s disease: a systematic review and meta-analysis informing the 2023 EULAR/PReS recommendations for the diagnosis and management of systemic juvenile idiopathic arthritis and adult-onset Still’s disease. Arthritis Rheumatol. 75 (Suppl. 9), Abstr. 0758 (2023).

    Google Scholar 

  259. Bindoli, S. et al. Efficacy and safety of therapeutic interventions for the treatment of Still’s disease: a systematic review and meta-analysis informing the EULAR/PReS recommendations for the diagnosis and management of systemic juvenile idiopathic arthritis and adult-onset Still’s disease? Arthritis Rheumatol. 75 (Suppl. 9), Abstr. 2569 (2023).

    Google Scholar 

  260. Fautrel, B. et al. EULAR/PreS recommendations for the diagnosis and management of systemic juvenile idiopathic arthritis (sJIA) and adult onset Still’s disease (AOSD). Arthritis Rheumatol. 75 (Suppl. 9), Abstr. 0761 (2023).

    Google Scholar 

  261. Fardet, L. et al. Development and validation of the HScore, a score for the diagnosis of reactive hemophagocytic syndrome. Arthritis Rheumatol. 66, 2613–2620 (2014).

    Article  PubMed  Google Scholar 

  262. Minoia, F. et al. Development and initial validation of the MS score for diagnosis of macrophage activation syndrome in systemic juvenile idiopathic arthritis. Ann. Rheum. Dis. 78, 1357–1362 (2019).

    Article  CAS  PubMed  Google Scholar 

  263. Wobma, H. et al. Development of a screening algorithm for lung disease in systemic juvenile idiopathic arthritis. ACR Open Rheumatol. 5, 556–562 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  264. Vitale, A. et al. Still’s disease continuum from childhood to elderly: data from the international AIDA Network Still’s disease registry. RMD Open 9, e003578 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  265. Colafrancesco, S. et al. Management of adult-onset Still’s disease with interleukin-1 inhibitors: evidence- and consensus-based statements by a panel of Italian experts. Arthritis Res. Ther. 21, 275 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Ursini, F. et al. Care pathway analysis and evidence gaps in adult-onset Still’s disease: interviews with experts from the UK, France, Italy, and Germany. Front. Med. 10, 1257413 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank M. Vomero for her assistance in creating the figures. P.A.N. was funded by NIH grants R01AR073201 and P30AR070253.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Piero Ruscitti.

Ethics declarations

Competing interests

P.A.N. discloses consulting for Apollo, BMS, Exo Therapeutics, Fresh Tracks Therapeutics, Merck, Novartis, Pfizer, Qiagen and Sobi; investigator-initiated research grants from BMS and Pfizer; and authorship royalties from UpToDate, the American Academy of Paediatrics and Arthritis & Rheumatology. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Qiongyi Hu, Masaki Shimizu, Chang Hee Suh and Chengde Yang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruscitti, P., Cantarini, L., Nigrovic, P.A. et al. Recent advances and evolving concepts in Still’s disease. Nat Rev Rheumatol 20, 116–132 (2024). https://doi.org/10.1038/s41584-023-01065-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-023-01065-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing