Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biological and clinical roles of IL-18 in inflammatory diseases

Abstract

Several new discoveries have revived interest in the pathogenic potential and possible clinical roles of IL-18. IL-18 is an IL-1 family cytokine with potent ability to induce IFNγ production. However, basic investigations and now clinical observations suggest a more complex picture. Unique aspects of IL-18 biology at the levels of transcription, activation, secretion, neutralization, receptor distribution and signalling help to explain its pleiotropic roles in mucosal and systemic inflammation. Blood biomarker studies reveal a cytokine for which profound elevation, associated with detectable ‘free IL-18’, defines a group of autoinflammatory diseases in which IL-18 dysregulation can be a primary driving feature, the so-called ‘IL-18opathies’. This impressive specificity might accelerate diagnoses and identify patients amenable to therapeutic IL-18 blockade. Pathogenically, human and animal studies identify a preferential activation of CD8+ T cells over other IL-18-responsive lymphocytes. IL-18 agonist treatments that leverage the site of production or subversion of endogenous IL-18 inhibition show promise in augmenting immune responses to cancer. Thus, the unique aspects of IL-18 biology are finally beginning to have clinical impact in precision diagnostics, disease monitoring and targeted treatment of inflammatory and malignant diseases.

Key points

  • Unique features of IL-18 create challenges in investigating its biology, but also offer opportunities for therapeutic modulation.

  • Most cytokines are non-specific biomarkers, but profoundly elevated IL-18 levels (consistent with detectable free IL-18) are specific for macrophage activation syndrome-prone and PSTPIP1-related diseases.

  • IL-18 binding protein is a valuable biomarker of IFNγ activity.

  • IL-18-mediated pathology includes multiple organs and systems, particularly systemic hyperinflammation, which is consistent with the pleiotropic amplification of multiple pathways, particularly IFNγ.

  • Ongoing efforts to both block and augment IL-18 function will better elucidate its role in health, cancer and rheumatic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Origins, extracellular fate and signalling of IL-18.
Fig. 2: Pathological manifestations of the IL-18opathies relative to sources of IL-18 production.
Fig. 3: Genotype/phenotype and domain architecture of genes implicated in monogenic IL-18opathies.

Similar content being viewed by others

References

  1. Jordan, J. A. et al. Role of IL-18 in acute lung inflammation. J. Immunol. 167, 7060–7068 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Kitasato, Y. et al. Enhanced expression of interleukin-18 and its receptor in idiopathic pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 31, 619–625 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Harms, R. Z., Creer, A. J., Lorenzo-Arteaga, K. M., Ostlund, K. R. & Sarvetnick, N. E. Interleukin (IL)-18 binding protein deficiency disrupts natural killer cell maturation and diminishes circulating IL-18. Front. Immunol. 8, 1020 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Weiss, E. S. et al. Interleukin-18 diagnostically distinguishes and pathogenically promotes human and murine macrophage activation syndrome. Blood 131, 1442 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Uhlén, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  PubMed  Google Scholar 

  6. Pechkovsky, D. V., Goldmann, T., Vollmer, E., Müller-Quernheim, J. & Zissel, G. Interleukin-18 expression by alveolar epithelial cells type II in tuberculosis and sarcoidosis. FEMS Immunol. Med. Microbiol. 46, 30–38 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Okazawa, A. et al. Human intestinal epithelial cell-derived interleukin (IL)-18, along with IL-2, IL-7 and IL-15, is a potent synergistic factor for the proliferation of intraepithelial lymphocytes. Clin. Exp. Immunol. 136, 269–276 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nowarski, R. et al. Epithelial IL-18 equilibrium controls barrier function in colitis. Cell 163, 1444–1456 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wittmann, M., Macdonald, A. & Renne, J. IL-18 and skin inflammation. Autoimmun. Rev. 9, 45–48 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Companjen, A. R. et al. Human keratinocytes are major producers of IL-18: predominant expression of the unprocessed form. Eur. Cytokine Netw. 11, 383–390 (2000).

    CAS  PubMed  Google Scholar 

  11. Rood, J. E. et al. Improvement of refractory systemic juvenile idiopathic arthritis-associated lung disease with single-agent blockade of IL-1β and IL-18. J. Clin. Immunol. 43, 101–108 (2023).

    Article  CAS  PubMed  Google Scholar 

  12. Ten Hove, T. et al. Blockade of endogenous IL-18 ameliorates TNBS-induced colitis by decreasing local TNF-α production in mice. Gastroenterology 121, 1372–1379 (2001).

    Article  PubMed  Google Scholar 

  13. Heng, T. S. & Painter, M. W. The immunological genome project: networks of gene expression in immune cells. Nat. Immunol. 9, 1091–1094 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Mostafavi, S. et al. Parsing the interferon transcriptional network and its disease associations. Cell 164, 564–578 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen, G. et al. Identification of distinct inflammatory programs and biomarkers in systemic juvenile idiopathic arthritis and related lung disease by serum proteome analysis. Arthritis Rheumatol. 74, 1271–1283 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Muñoz, M. et al. Interleukin-22 induces interleukin-18 expression from epithelial cells during intestinal infection. Immunity 42, 321–331 (2015).

    Article  PubMed  Google Scholar 

  17. Rauch, K. S. et al. Regulatory T cells characterized by low Id3 expression are highly suppressive and accumulate during chronic infection. Oncotarget 8, 102835–102851 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chudnovskiy, A. et al. Host-protozoan interactions protect from mucosal infections through activation of the inflammasome. Cell 167, 444–456.e414 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Van Der Kraak, L. A. et al. Genetic and commensal induction of IL-18 drive intestinal epithelial MHCII via IFNγ. Mucosal Immunol. https://doi.org/10.1038/s41385-021-00419-1 (2021).

    Article  PubMed  Google Scholar 

  20. Dinarello, C. A. Interleukin-18. Methods 19, 121–132 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Biswas, S. K. & Lopez-Collazo, E. Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol. 30, 475–487 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Verweyen, E. et al. Synergistic signaling of TLR and IFNα/β facilitates escape of IL-18 expression from endotoxin tolerance. Am. J. Respir. Crit. Care Med. 201, 526–539 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhu, Q. & Kanneganti, T. D. Cutting edge: distinct regulatory mechanisms control proinflammatory cytokines IL-18 and IL-1β. J. Immunol. 198, 4210–4215 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Gu, Y. et al. Activation of interferon-γ inducing factor mediated by interleukin-1β converting enzyme. Science 275, 206–209 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Fantuzzi, G., Puren, A. J., Harding, M. W., Livingston, D. J. & Dinarello, C. A. Interleukin-18 regulation of interferon γ production and cell proliferation as shown in interleukin-1β-converting enzyme (caspase-1)-deficient mice. Blood 91, 2118–2125 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Ghayur, T. et al. Caspase-1 processes IFN-γ-inducing factor and regulates LPS-induced IFN-γ production. Nature 386, 619–623 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Martinon, F., Pétrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Canna, S. W. et al. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat. Genet. 46, 1140–1146 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Levy, M. et al. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 163, 1428–1443 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhu, S. et al. Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells. Nature 546, 667–670 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bossaller, L. et al. Cutting edge: FAS (CD95) mediates noncanonical IL-1β and IL-18 maturation via caspase-8 in an RIP3-independent manner. J. Immunol. 189, 5508–5512 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Omoto, Y. et al. Granzyme B is a novel interleukin-18 converting enzyme. J. Dermatol. Sci. 59, 129–135 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Akeda, T. et al. CD8+ T cell granzyme B activates keratinocyte endogenous IL-18. Arch. Dermatol. Res. 306, 125–130 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Sugawara, S. et al. Neutrophil proteinase 3-mediated induction of bioactive IL-18 secretion by human oral epithelial cells. J. Immunol. 167, 6568–6575 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Omoto, Y. et al. Human mast cell chymase cleaves pro-IL-18 and generates a novel and biologically active IL-18 fragment. J. Immunol. 177, 8315–8319 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Witko-Sarsat, V. et al. Presence of proteinase 3 in secretory vesicles: evidence of a novel, highly mobilizable intracellular pool distinct from azurophil granules. Blood 94, 2487–2496 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Chen, K. W. et al. The neutrophil NLRC4 inflammasome selectively promotes IL-1β maturation without pyroptosis during acute Salmonella challenge. Cell Rep. 8, 570–582 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Baroja-Mazo, A. et al. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat. Immunol. 15, 738–748 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Franklin, B. S. et al. The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nat. Immunol. 15, 727–737 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tapia, V. S. et al. The three cytokines IL-1β, IL-18, and IL-1α share related but distinct secretory routes. J. Biol. Chem. 294, 8325–8335 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. He, W. T. et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 25, 1285–1298 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Heilig, R. et al. The Gasdermin-D pore acts as a conduit for IL-1β secretion in mice. Eur. J. Immunol. 48, 584–592 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Xia, S. et al. Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature 593, 607–611 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tsuchiya, K. et al. Gasdermin D mediates the maturation and release of IL-1α downstream of inflammasomes. Cell Rep. 34, 108887 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Kayagaki, N. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666–671 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Chauhan, D., Vande Walle, L. & Lamkanfi, M. Therapeutic modulation of inflammasome pathways. Immunol. Rev. 297, 123–138 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kayagaki, N. et al. NINJ1 mediates plasma membrane rupture during lytic cell death. Nature 591, 131–136 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Rühl, S. et al. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science 362, 956–960 (2018).

    Article  PubMed  Google Scholar 

  49. Hosohara, K. et al. Interleukin-18 induces acute biphasic reduction in the levels of circulating leukocytes in mice. Clin. Diagn. Lab. Immunol. 9, 777–783 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Novick, D. et al. Interleukin-18 binding protein: a novel modulator of the Th1 cytokine response. Immunity 10, 127–136 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Ha, C. T., Li, X., Fu, D. & Xiao, M. Circulating IL-18 binding protein (IL-18BP) and IL-18 as dual biomarkers of total-body irradiation in mice. Radiat. Res. 185, 375–383 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Zhou, T. et al. IL-18BP is a secreted immune checkpoint and barrier to IL-18 immunotherapy. Nature 583, 609–614 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Girard-Guyonvarc’h, C. et al. Unopposed IL-18 signaling leads to severe TLR9-induced macrophage activation syndrome in mice. Blood 131, 1430 (2018).

    Article  PubMed  Google Scholar 

  54. Bufler, P. et al. A complex of the IL-1 homologue IL-1F7b and IL-18-binding protein reduces IL-18 activity. Proc. Natl Acad. Sci. 99, 13723–13728 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Harel, M., Girard-Guyonvarc’h, C., Rodriguez, E., Palmer, G. & Gabay, C. Production of IL-18 binding protein by radiosensitive and radioresistant cells in CpG-induced macrophage activation syndrome. J. Immunol. https://doi.org/10.4049/jimmunol.2000168 (2020).

  56. Prencipe, G., Bracaglia, C. & De Benedetti, F. Interleukin-18 in pediatric rheumatic diseases. Curr. Opin. Rheumatol. 31, 421–427 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Chirathaworn, C., Rianthavorn, P., Wuttirattanakowit, N. & Poovorawan, Y. Serum IL-18 and IL-18BP levels in patients with Chikungunya virus infection. Viral Immunol. 23, 113–117 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Chirathaworn, C., Poovorawan, Y., Lertmaharit, S. & Wuttirattanakowit, N. Cytokine levels in patients with chikungunya virus infection. Asian Pac. J. Trop. Med. 6, 631–634 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Michels, M. et al. Normal free interleukin-18 (IL-18) plasma levels in dengue virus infection and the need to measure both total IL-18 and IL-18 binding protein levels. Clin. Vaccin. Immunol. 22, 650–655 (2015).

    Article  CAS  Google Scholar 

  60. Kaser, A. et al. Interferon‐α induces interleukin‐18 binding protein in chronic hepatitis C patients. Clin. Exp. Immunol. 129, 332–338 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mele, D. et al. Monocytes inhibit hepatitis C virus-induced TRAIL expression on CD56bright NK cells. J. Hepatol. 67, 1148–1156 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Nazarian, S. H. et al. Yaba monkey tumor virus encodes a functional inhibitor of interleukin-18. J. Virol. 82, 522–528 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Smith, V. P., Bryant, N. A. & Alcamí, A. Ectromelia, vaccinia and cowpox viruses encode secreted interleukin-18-binding proteins. Microbiology 81, 1223–1230 (2000).

    Article  CAS  Google Scholar 

  64. Xiang, Y. & Moss, B. IL-18 binding and inhibition of interferon γ induction by human poxvirus-encoded proteins. Proc. Natl Acad. Sci. 96, 11537–11542 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hoshino, K. et al. Cutting edge: generation of IL-18 receptor-deficient mice: evidence for IL-1 receptor-related protein as an essential IL-18 binding receptor. J. Immunol. 162, 5041 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Tsutsumi, N. et al. The structural basis for receptor recognition of human interleukin-18. Nat. Commun. 5, 5340 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Yasuda, K., Nakanishi, K. & Tsutsui, H. Interleukin-18 in health and disease. Int. J. Mol. Sci. 20, https://doi.org/10.3390/ijms20030649 (2019).

  68. Kim, S. H. et al. Functional reconstitution and regulation of IL-18 activity by the IL-18Rβ chain. J. Immunol. 166, 148–154 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Wu, C. et al. IL-18 receptor β-induced changes in the presentation of IL-18 binding sites affect ligand binding and signal transduction. J. Immunol. 170, 5571 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. de Jager, W. et al. Defective phosphorylation of interleukin-18 receptor β causes impaired natural killer cell function in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 60, 2782–2793 (2009).

    Article  PubMed  Google Scholar 

  71. Ohnishi, H. et al. TRAM is involved in IL-18 signaling and functions as a sorting adaptor for MyD88. PLoS One 7, e38423 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kaplanski, G. Interleukin-18: biological properties and role in disease pathogenesis. Immunol. Rev. 281, 138–153 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. Cao, Z., Henzel, W. J. & Gao, X. IRAK: a kinase associated with the interleukin-1 receptor. Science 271, 1128–1131 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Adachi, O. et al. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9, 143–150 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Rex, D. A. B. et al. A comprehensive pathway map of IL-18-mediated signalling. J. Cell Commun. Signal. 14, 257–266 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Airoldi, I. et al. Expression and function of IL-12 and IL-18 receptors on human tonsillar B cells. J. Immunol. 165, 6880 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Gutzmer, R. et al. Human dendritic cells express the IL-18R and are chemoattracted to IL-18. J. Immunol. 171, 6363 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Tucci, M., Quatraro, C., Dammacco, F. & Silvestris, F. Increased IL-18 production by dendritic cells in active inflammatory myopathies. Ann. N. Y. Acad. Sci. 1107, 184–192 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Gracie, J. A. et al. A proinflammatory role for IL-18 in rheumatoid arthritis. J. Clin. Investig. 104, 1393–1401 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yoshimoto, T. et al. IL-18, although antiallergic when administered with IL-12, stimulates IL-4 and histamine release by basophils. Proc. Natl Acad. Sci. 96, 13962–13966 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Leung, B. P. et al. A role for IL-18 in neutrophil activation. J. Immunol. 167, 2879 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Ricardo-Gonzalez, R. R. et al. Tissue signals imprint ILC2 identity with anticipatory function. Nat. Immunol. 19, 1093–1099 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang, X. et al. Differential IL18 signaling via IL18 receptor and Na-Cl co-transporter discriminating thermogenesis and glucose metabolism regulation. Nat. Commun. 13, 7582 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang, J. et al. Interleukin 18 function in atherosclerosis is mediated by the interleukin 18 receptor and the Na-Cl co-transporter. Nat. Med. 21, 820–826 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Molgora, M., Barajon, I., Mantovani, A. & Garlanda, C. Regulatory role of IL-1R8 in immunity and disease. Front. Immunol. 7, 149 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Cavalli, G. et al. Interleukin 37 reverses the metabolic cost of inflammation, increases oxidative respiration, and improves exercise tolerance. Proc. Natl Acad. Sci. USA 114, 2313–2318 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hu, B. et al. Augmentation of antitumor immunity by human and mouse CAR T cells secreting IL-18. Cell Rep. 20, 3025–3033 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Landy, E. et al. Complementary HLH susceptibility factors converge on CD8 T-cell hyperactivation. Blood Adv. 7, 6949–6963 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sharma, D. et al. Pyrin inflammasome regulates tight junction integrity to restrict colitis and tumorigenesis. Gastroenterology 154, 948–964.e948 (2018).

    Article  CAS  PubMed  Google Scholar 

  90. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Netea, M. G. et al. Deficiency of interleukin-18 in mice leads to hyperphagia, obesity and insulin resistance. Nat. Med. 12, 650–656 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Nakanishi, K., Yoshimoto, T., Tsutsui, H. & Okamura, H. Interleukin-18 is a unique cytokine that stimulates both Th1 and Th2 responses depending on its cytokine milieu. Cytokine Growth Factor. Rev. 12, 53–72 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Freeman, B. E., Hammarlund, E., Raué, H. P. & Slifka, M. K. Regulation of innate CD8+ T-cell activation mediated by cytokines. Proc. Natl Acad. Sci. USA 109, 9971–9976 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tominaga, K. et al. IL-12 synergizes with IL-18 or IL-1β for IFN-γ production from human T cells. Int. Immunol. 12, 151–160 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Cirella, A. et al. Intratumoral gene transfer of mRNAs encoding IL12 in combination with decoy-resistant IL18 improves local and systemic antitumor immunity. Cancer Immunol. Res. 11, 184–198 (2023).

    Article  CAS  PubMed  Google Scholar 

  96. Chaix, J. et al. Cutting edge: priming of NK cells by IL-18. J. Immunol. 181, 1627 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Ni, J., Miller, M., Stojanovic, A., Garbi, N. & Cerwenka, A. Sustained effector function of IL-12/15/18-preactivated NK cells against established tumors. J. Exp. Med. 209, 2351–2365 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hashimoto, W. et al. Differential antitumor effects of administration of recombinant IL-18 or recombinant IL-12 are mediated primarily by Fas-Fas ligand- and perforin-induced tumor apoptosis, respectively. J. Immunol. 163, 583–589 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Osaki, T. et al. IFN-γ-inducing factor/IL-18 administration mediates IFN-γ- and IL-12-independent antitumor effects. J. Immunol. 160, 1742–1749 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Tsoukas, P. et al. Interleukin-18 and cytotoxic impairment are independent and synergistic causes of murine virus-induced hyperinflammation. Blood https://doi.org/10.1182/blood.2019003846 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Hoshino, T. et al. Cutting edge: IL-18-transgenic mice: in vivo evidence of a broad role for IL-18 in modulating immune function. J. Immunol. 166, 7014 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Clark, J. T. et al. IL-18BP mediates the balance between protective and pathological immune responses to Toxoplasma gondii. Cell Rep. 42, https://doi.org/10.1016/j.celrep.2023.112147 (2023).

  103. Kanai, T. et al. Macrophage-derived IL-18-mediated intestinal inflammation in the murine model of Crohn’s disease. Gastroenterology 121, 875–888 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Siegmund, B. et al. Neutralization of interleukin-18 reduces severity in murine colitis and intestinal IFN-γ and TNF-α production. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R1264–R1273 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Elinav, E. et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145, 745–757 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Son, Y. I. et al. Interleukin-18 (IL-18) synergizes with IL-2 to enhance cytotoxicity, interferon-γ production, and expansion of natural killer cells. Cancer Res. 61, 884–888 (2001).

    CAS  PubMed  Google Scholar 

  107. Rodriguez-Galán, M. C., Bream, J. H., Farr, A. & Young, H. A. Synergistic effect of IL-2, IL-12, and IL-18 on thymocyte apoptosis and Th1/Th2 cytokine expression. J. Immunol. 174, 2796–2804 (2005).

    Article  PubMed  Google Scholar 

  108. Konishi, H. et al. IL-18 contributes to the spontaneous development of atopic dermatitis-like inflammatory skin lesion independently of IgE/stat6 under specific pathogen-free conditions. Proc. Natl Acad. Sci. USA 99, 11340–11345 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Harrison, O. J. et al. Commensal-specific T cell plasticity promotes rapid tissue adaptation to injury. Science 363, eaat6280 (2019).

    Article  CAS  PubMed  Google Scholar 

  110. Lalor, S. J. et al. Caspase-1–processed cytokines IL-1β and IL-18 promote IL-17 production by γδ and CD4 T cells that mediate autoimmunity. J. Immunol. 186, 5738 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Millward, J. M., Løbner, M., Wheeler, R. D. & Owens, T. Inflammation in the central nervous system and Th17 responses are inhibited by IFN-γ-induced IL-18 binding protein. J. Immunol. 185, 2458 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Shi, F.-D., Takeda, K., Akira, S., Sarvetnick, N. & Ljunggren, H.-G. IL-18 directs autoreactive T cells and promotes autodestruction in the central nervous system via induction of IFN-γ by NK cells. J. Immunol. 165, 3099 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Andoh, T. et al. Protective effect of IL-18 on kainate- and IL-1 β-induced cerebellar ataxia in mice. J. Immunol. 180, 2322–2328 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Akimova, T. et al. Obesity-related IL-18 impairs T-regulatory cell function and promotes lung ischemia-reperfusion injury. Am. J. Respir. Crit. Care Med. 204, 1060–1074 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Min, H. K. et al. IL-18 binding protein suppresses IL-17-induced osteoclastogenesis and rectifies type 17 helper T cell/regulatory T cell imbalance in rheumatoid arthritis. J. Transl. Med. 19, 392 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Harrison, O. J. et al. Epithelial-derived IL-18 regulates Th17 cell differentiation and Foxp3+ Treg cell function in the intestine. Mucosal Immunol. 8, 1226–1236 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ma, J., Lam, I. K. Y., Lau, C.-S. & Chan, V. S. F. Elevated interleukin-18 receptor accessory protein mediates enhancement in reactive oxygen species production in neutrophils of systemic lupus erythematosus patients. Cells 10, 964 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Netea, M. G. et al. Neutralization of IL-18 reduces neutrophil tissue accumulation and protects mice against lethal Escherichia coli and Salmonella typhimurium endotoxemia. J. Immunol. 164, 2644–2649 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Ingram, J. T., Yi, J. S. & Zajac, A. J. Exhausted CD8 T cells downregulate the IL-18 receptor and become unresponsive to inflammatory cytokines and bacterial co-infections. PLoS Pathog. 7, e1002273 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lutz, V. et al. IL18 receptor signaling regulates tumor-reactive CD8+ T-cell exhaustion via activation of the IL2/STAT5/mTOR pathway in a pancreatic cancer model. Cancer Immunol. Res. https://doi.org/10.1158/2326-6066.CIR-22-0398 (2023).

    Article  PubMed  Google Scholar 

  121. Li, J. et al. Induction of dendritic cell maturation by IL-18. Cell Immunol. 227, 103–108 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Semino, C., Angelini, G., Poggi, A. & Rubartelli, A. NK/iDC interaction results in IL-18 secretion by DCs at the synaptic cleft followed by NK cell activation and release of the DC maturation factor HMGB1. Blood 106, 609–616 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Iwai, Y. et al. An IFN-γ-IL-18 signaling loop accelerates memory CD8+ T cell proliferation. PLoS One 3, e2404 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Takahara, T., Shimizu, M., Nakagishi, Y., Kinjo, N. & Yachie, A. Serum IL-18 as a potential specific marker for differentiating systemic juvenile idiopathic arthritis from incomplete Kawasaki disease. Rheumatol. Int. 35, 81–84 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Oliveira, J. B. et al. Revised diagnostic criteria and classification for the autoimmune lymphoproliferative syndrome (ALPS): report from the 2009 NIH International Workshop. Blood 116, e35–e40 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Iannello, A. et al. Potential role of IL-18 in the immunopathogenesis of AIDS, HIV-associated lipodystrophy and related clinical conditions. Curr. HIV Res. 8, 147–164 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Zhong, C. et al. NLRP3 inflammasome promotes the progression of acute myeloid leukemia via IL-1β pathway. Front. Immunol. 12, 661939 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Liu, D. H., Cui, W., Chen, Q. & Huang, C. M. Can circulating interleukin-18 differentiate between sarcoidosis and idiopathic pulmonary fibrosis? Scand. J. Clin. Lab. Invest. 71, 593–597 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Ponasenko, A. V., Tsepokina, A. V., Khutornaya, M. V., Sinitsky, M. Y. & Barbarash, O. L. IL18-family genes polymorphism is associated with the risk of myocardial infarction and IL18 concentration in patients with coronary artery disease. Immunol. Invest. 51, 1–15 (2021).

    Google Scholar 

  130. Chen, S., Jiang, F., Ren, J., Liu, J. & Meng, W. Association of IL-18 polymorphisms with rheumatoid arthritis and systemic lupus erythematosus in Asian populations: a meta-analysis. BMC Med. Genet. 13, 107 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tanaka, H. et al. IL-18 might reflect disease activity in mild and moderate asthma exacerbation. J. Allergy Clin. Immunol. 107, 331–336 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Imaoka, H. et al. Interleukin-18 production and pulmonary function in COPD. Eur. Respir. J. 31, 287–297 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Park, H. J. et al. Increased expression of IL-18 in cutaneous graft-versus-host disease. Immunol. Lett. 95, 57–61 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Stojanov, S. et al. Periodic fever, aphthous stomatitis, pharyngitis, and adenitis (PFAPA) is a disorder of innate immunity and Th1 activation responsive to IL-1 blockade. Proc. Natl Acad. Sci. USA 108, 7148–7153 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Thorand, B. et al. Elevated levels of interleukin-18 predict the development of type 2 diabetes results from the MONICA/KORA Augsburg study, 1984–2002. Diabetes 54, 2932–2938 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Zhan, Y. et al. Interleukin (IL)-1 family cytokines could differentiate primary immune thrombocytopenia from systemic lupus erythematosus-associated thrombocytopenia. Ann. Transl. Med. 9, 222 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Espinola-Klein, C. et al. Inflammation, atherosclerotic burden and cardiovascular prognosis. Atherosclerosis 195, e126–e134 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Kawashima, M. et al. Levels of interleukin-18 and its binding inhibitors in the blood circulation of patients with adult-onset Still’s disease. Arthritis Rheum. 44, 550–560 (2001).

    Article  CAS  PubMed  Google Scholar 

  139. Maeno, N. et al. Highly elevated serum levels of interleukin-18 in systemic juvenile idiopathic arthritis but not in other juvenile idiopathic arthritis subtypes or in Kawasaki disease: comment on the article by Kawashima et al. Arthritis Rheum. 46, 2539–2541 (2002).

    Article  PubMed  Google Scholar 

  140. Shimizu, M. et al. Distinct cytokine profiles of systemic-onset juvenile idiopathic arthritis-associated macrophage activation syndrome with particular emphasis on the role of interleukin-18 in its pathogenesis. Rheumatology 49, 1645–1653 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Girard, C. et al. Elevated serum levels of free interleukin-18 in adult-onset Still’s disease. Rheumatology 55, 2237–2247 (2016).

    Article  CAS  PubMed  Google Scholar 

  142. Xia, Y. et al. Extremely elevated IL-18 levels may help distinguish systemic-onset juvenile idiopathic arthritis from other febrile diseases. Braz. J. Med. Biol. Res. 50, e5958 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Krei, J. M., Moller, H. J. & Larsen, J. B. The role of interleukin-18 in the diagnosis and monitoring of hemophagocytic lymphohistiocytosis/macrophage activation syndrome — a systematic review. Clin. Exp. Immunol. 203, 174–182 (2021).

    Article  CAS  PubMed  Google Scholar 

  144. Shimizu, M. et al. Interleukin-18 for predicting the development of macrophage activation syndrome in systemic juvenile idiopathic arthritis. Clin. Immunol. 160, 277–281 (2015).

    Article  CAS  PubMed  Google Scholar 

  145. Hinze, T. et al. A dysregulated interleukin-18-interferon-γ-CXCL9 axis impacts treatment response to canakinumab in systemic juvenile idiopathic arthritis. Rheumatology 60, 5165–5174 (2021).

    Article  CAS  PubMed  Google Scholar 

  146. Kessel, C., Holzinger, D. & Foell, D. Phagocyte-derived S100 proteins in autoinflammation: putative role in pathogenesis and usefulness as biomarkers. Clin. Immunol. 147, 229–241 (2013).

    Article  CAS  PubMed  Google Scholar 

  147. Holzinger, D. et al. The Toll-like receptor 4 agonist MRP8/14 protein complex is a sensitive indicator for disease activity and predicts relapses in systemic-onset juvenile idiopathic arthritis. Ann. Rheum. Dis. 71, 974–980 (2012).

    Article  CAS  PubMed  Google Scholar 

  148. Canna, S. W. et al. Life-threatening NLRC4-associated hyperinflammation successfully treated with IL-18 inhibition. J. Allergy Clin. Immunol. 139, 1698–1701 (2017).

    Article  CAS  PubMed  Google Scholar 

  149. Canna, S. W. & Marsh, R. A. Pediatric hemophagocytic lymphohistiocytosis. Blood 135, 1332–1343 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Still, G. F. On a form of chronic joint disease in children. Med. Chir. Trans. 80, 47–60.9 (1897).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Pay, S. et al. A multicenter study of patients with adult-onset Still’s disease compared with systemic juvenile idiopathic arthritis. Clin. Rheumatol. 25, 639–644 (2006).

    Article  PubMed  Google Scholar 

  152. Billiau, A. D., Roskams, T., Van Damme-Lombaerts, R., Matthys, P. & Wouters, C. Macrophage activation syndrome: characteristic findings on liver biopsy illustrating the key role of activated, IFN-γ-producing lymphocytes and IL-6- and TNF-α-producing macrophages. Blood 105, 1648–1651 (2005).

    Article  CAS  PubMed  Google Scholar 

  153. Shimizu, M., Kizawa, T., Kato, R., Suzuki, T. & Yachie, A. Macrophage activation syndrome in neonates born to mothers with adult-onset Still’s disease: perinatal effect of maternal IL-18. Clin. Immunol. 207, 36–39 (2019).

    Article  CAS  PubMed  Google Scholar 

  154. Quartier, P. et al. A multicentre, randomised, double-blind, placebo-controlled trial with the interleukin-1 receptor antagonist anakinra in patients with systemic-onset juvenile idiopathic arthritis (ANAJIS trial). Ann. Rheum. Dis. 70, 747–754 (2011).

    Article  CAS  PubMed  Google Scholar 

  155. Brown, R. A. et al. Neutrophils from children with systemic juvenile idiopathic arthritis exhibit persistent proinflammatory activation despite long-standing clinically inactive disease. Front. Immunol. 9, 2995 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Schulert, G. S. et al. Monocyte and bone marrow macrophage transcriptional phenotypes in systemic juvenile idiopathic arthritis reveal TRIM8 as a mediator of IFN-γ hyper-responsiveness and risk for macrophage activation syndrome. Ann. Rheum. Dis. 80, 617–625 (2021).

    Article  CAS  PubMed  Google Scholar 

  157. Gabay, C. et al. Open-label, multicentre, dose-escalating phase II clinical trial on the safety and efficacy of tadekinig alfa (IL-18BP) in adult-onset Still’s disease. Ann. Rheum. Dis. 77, 840–847 (2018).

    CAS  PubMed  Google Scholar 

  158. Jordan, M. B., Hildeman, D., Kappler, J. & Marrack, P. An animal model of hemophagocytic lymphohistiocytosis (HLH): CD8+ T cells and interferon gamma are essential for the disorder. Blood 104, 735–743 (2004).

    Article  CAS  PubMed  Google Scholar 

  159. Terrell, C. E. & Jordan, M. B. Perforin deficiency impairs a critical immunoregulatory loop involving murine CD8+ T cells and dendritic cells. Blood 121, 5184–5191 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. De Matteis, A. et al. Expansion of CD4dimCD8+ T cells characterizes macrophage activation syndrome and other secondary HLH. Blood https://doi.org/10.1182/blood.2021013549 (2022).

  161. Chaturvedi, V. et al. T-cell activation profiles distinguish hemophagocytic lymphohistiocytosis and early sepsis. Blood 137, 2337–2346 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Locatelli, F. et al. Emapalumab in children with primary hemophagocytic lymphohistiocytosis. N. Engl. J. Med. 382, 1811–1822 (2020).

    Article  PubMed  Google Scholar 

  163. De Benedetti, F. et al. Efficacy and safety of emapalumab in macrophage activation syndrome. Ann. Rheum. Dis. https://doi.org/10.1136/ard-2022-223739 (2023).

  164. Eloseily, E. M. et al. Benefit of anakinra in treating pediatric secondary hemophagocytic lymphohistiocytosis. Arthritis Rheumatol. 72, 326–334 (2020).

    Article  CAS  PubMed  Google Scholar 

  165. Phadke, O., Rouster-Stevens, K., Giannopoulos, H., Chandrakasan, S. & Prahalad, S. Intravenous administration of anakinra in children with macrophage activation syndrome. Pediatr. Rheumatol. Online J. 19, 98 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Neelapu, S. S. et al. Chimeric antigen receptor T-cell therapy — assessment and management of toxicities. Nat. Rev. Clin. Oncol. 15, 47–62 (2018).

    Article  CAS  PubMed  Google Scholar 

  167. Shimizu, M. et al. Tocilizumab masks the clinical symptoms of systemic juvenile idiopathic arthritis-associated macrophage activation syndrome: the diagnostic significance of interleukin-18 and interleukin-6. Cytokine 58, 287–294 (2012).

    Article  CAS  PubMed  Google Scholar 

  168. Schulert, G. S. et al. Effect of biologic therapy on clinical and laboratory features of macrophage activation syndrome associated with systemic juvenile idiopathic arthritis. Arthritis Care Res. 70, 409–419 (2018).

    Article  CAS  Google Scholar 

  169. Grom, A. A. et al. Rate and clinical presentation of macrophage activation syndrome in patients with systemic juvenile idiopathic arthritis treated with canakinumab. Arthritis Rheumatol. 68, 218–228 (2016).

    Article  CAS  PubMed  Google Scholar 

  170. De Benedetti, F. et al. Randomized trial of tocilizumab in systemic juvenile idiopathic arthritis. N. Engl. J. Med. 367, 2385–2395 (2012).

    Article  PubMed  Google Scholar 

  171. Ruperto, N. et al. Two randomized trials of canakinumab in systemic juvenile idiopathic arthritis. N. Engl. J. Med. 367, 2396–2406 (2012).

    Article  CAS  PubMed  Google Scholar 

  172. Saper, V. E. et al. Emergent high fatality lung disease in systemic juvenile arthritis. Ann. Rheum. Dis. 78, 1722–1731 (2019).

    Article  CAS  PubMed  Google Scholar 

  173. Schulert, G. S. et al. Systemic juvenile idiopathic arthritis-associated lung disease: characterization and risk factors. Arthritis Rheumatol. 71, 1943–1954 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. de Jesus, A. A. et al. Distinct interferon signatures and cytokine patterns define additional systemic autoinflammatory diseases. J. Clin. Invest. 130, 1669–1682 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Saper, V. E. et al. Severe delayed hypersensitivity reactions to IL-1 and IL-6 inhibitors link to common HLA-DRB1*15 alleles. Ann. Rheum. Dis. 81, 406–415 (2022).

    Article  CAS  PubMed  Google Scholar 

  176. Yasin, S. et al. IL-18 as therapeutic target in a patient with resistant systemic juvenile idiopathic arthritis and recurrent macrophage activation syndrome. Rheumatology 59, 442–445 (2020).

    Article  PubMed  Google Scholar 

  177. Kawasaki, Y. et al. Identification of a high-frequency somatic NLRC4 mutation as a cause of autoinflammation by pluripotent cell-based phenotype dissection. Arthritis Rheumatol. 69, 447–459 (2017).

    Article  CAS  PubMed  Google Scholar 

  178. Liang, J. et al. Novel NLRC4 mutation causes a syndrome of perinatal autoinflammation with hemophagocytic lymphohistiocytosis, hepatosplenomegaly, fetal thrombotic vasculopathy, and congenital anemia and ascites. Pediatr. Dev. Pathol. 20, 498–505 (2017).

    Article  PubMed  Google Scholar 

  179. Wang, J. et al. Low-ratio somatic NLRC4 mutation causes late-onset autoinflammatory disease. Ann. Rheum. Dis. 81, 1173–1178 (2022).

    Article  CAS  PubMed  Google Scholar 

  180. De Langhe, E. et al. TET2-driver and NLRC4-passenger variants in adult-onset autoinflammation. N. Engl. J. Med. 388, 1626–1629 (2023).

    Article  PubMed  Google Scholar 

  181. Hu, Z. et al. Crystal structure of NLRC4 reveals its autoinhibition mechanism. Science 341, 172–175 (2013).

    Article  CAS  PubMed  Google Scholar 

  182. Romberg, N. et al. Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat. Genet. 46, 1135–1139 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Wang, Q. et al. NLRC4 gain-of-function variant is identified in a patient with systemic lupus erythematosus. Clin. Immunol. 255, 109731 (2023).

    Article  CAS  PubMed  Google Scholar 

  184. Romberg, N., Vogel, T. P. & Canna, S. W. NLRC4 inflammasomopathies. Curr. Opin. Allergy Clin. Immunol. 17, 398–404 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Johansson, Å. et al. NLRC4 inflammasome is an important regulator of interleukin-18 levels in patients with acute coronary syndromes: genome-wide association study in the PLATelet inhibition and patient Outcomes Trial (PLATO). Circ. Cardiovasc. Genet. 8, 498–506 (2015).

    Article  CAS  PubMed  Google Scholar 

  186. Zeller, T. et al. Molecular characterization of the NLRC4 expression in relation to interleukin-18 levels. Circ. Cardiovasc. Genet. 8, 717–726 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Ahola-Olli, A. V. et al. Genome-wide association study identifies 27 loci influencing concentrations of circulating cytokines and growth factors. Am. J. Hum. Genet. 100, 40–50 (2017).

    Article  CAS  PubMed  Google Scholar 

  188. Mudde, A. C. A., Booth, C. & Marsh, R. A. Evolution of our understanding of XIAP deficiency. Front. Pediatr. 9, 660520 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Chiang, S. C. C. et al. Quercetin ameliorates XIAP deficiency-associated hyperinflammation. Blood 140, 706–715 (2022).

    Article  CAS  PubMed  Google Scholar 

  190. Scott, F. L. et al. XIAP inhibits caspase-3 and -7 using two binding sites: evolutionarily conserved mechanism of IAPs. EMBO J. 24, 645–655 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Shiozaki, E. N. et al. Mechanism of XIAP-mediated inhibition of caspase-9. Mol. Cell 11, 519–527 (2003).

    Article  CAS  PubMed  Google Scholar 

  192. Wada, T. et al. Sustained elevation of serum interleukin-18 and its association with hemophagocytic lymphohistiocytosis in XIAP deficiency. Cytokine 65, 74–78 (2014).

    Article  CAS  PubMed  Google Scholar 

  193. Coppola, S. et al. Mutations at the C-terminus of CDC42 cause distinct hematopoietic and autoinflammatory disorders. J. Allergy Clin. Immunol. 150, 223–228 (2022).

    Article  CAS  PubMed  Google Scholar 

  194. Gernez, Y. et al. Severe autoinflammation in 4 patients with C-terminal variants in cell division control protein 42 homolog (CDC42) successfully treated with IL-1β inhibition. J. Allergy Clin. Immunol. 144, 1122–1125.e26 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Lam, M. T. et al. A novel disorder involving dyshematopoiesis, inflammation, and HLH due to aberrant CDC42 function. J. Exp. Med. 216, 2778–2799 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Stone, D. L. et al. Excess serum interleukin-18 distinguishes patients with pathogenic mutations in PSTPIP1. Arthritis Rheumatol. 74, 353–357 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Nishitani-Isa, M. et al. Trapping of CDC42 C-terminal variants in the Golgi drives pyrin inflammasome hyperactivation. J. Exp. Med. 219, https://doi.org/10.1084/jem.20211889 (2022).

  198. Spel, L. et al. CDC42 regulates PYRIN inflammasome assembly. Cell Rep. 41, 111636 (2022).

    Article  CAS  PubMed  Google Scholar 

  199. Stoler, I. et al. Gene-dose effect of MEFV gain-of-function mutations determines ex vivo neutrophil activation in familial Mediterranean fever. Front. Immunol. 11, 716 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Kim, M. L. et al. Aberrant actin depolymerization triggers the pyrin inflammasome and autoinflammatory disease that is dependent on IL-18, not IL-1β. J. Exp. Med. 212, 927–938 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Kuhns, D. B. et al. Cytoskeletal abnormalities and neutrophil dysfunction in WDR1 deficiency. Blood 128, 2135–2143 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Arduini, A. et al. An unusual presentation of purine nucleoside phosphorylase deficiency mimicking systemic juvenile idiopathic arthritis complicated by macrophage activation syndrome. Pediatr. Rheumatol. Online J. 17, 25 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Yamamoto, T. et al. High IL-18 (interferon-γ inducing factor) concentration in a purine nucleoside phosphorylase deficient patient. Arch. Dis. Child. 81, 179–180 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Belkaya, S. et al. Inherited IL-18BP deficiency in human fulminant viral hepatitis. J. Exp. Med. 216, 1777–1790 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Alrumayyan, N. et al. Prolidase deficiency, a rare inborn error of immunity, clinical phenotypes, immunological features, and proposed treatments in twins. Allergy Asthma Clin. Immunol. 18, 17 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Haller, C. N., George-Abraham, J. K., Peterson, R. G. & Diaz, L. Z. A case of prolidase deficiency in a male patient. Pediatr. Dermatol. 39, 94–98 (2022).

    Article  PubMed  Google Scholar 

  207. Wolf, C. et al. Hemophagocytic lymphohistiocytosis-like hyperinflammation due to a de novo mutation in DPP9. J. Allergy Clin. Immunol. https://doi.org/10.1016/j.jaci.2023.07.013 (2023).

    Article  PubMed  Google Scholar 

  208. Doyle, S. L. et al. IL-18 immunotherapy for neovascular AMD: tolerability and efficacy in nonhuman primates. Invest. Ophthalmol. Vis. Sci. 56, 5424–5430 (2015).

    Article  CAS  PubMed  Google Scholar 

  209. Tarallo, V. et al. DICER1 loss and Alu RNA induce age-related macular degeneration via the NLRP3 inflammasome and MyD88. Cell 149, 847–859 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Eidt, M. V. et al. Biochemical and inflammatory aspects in patients with severe sepsis and septic shock: the predictive role of IL-18 in mortality. Clin. Chim. Acta 453, 100–106 (2016).

    Article  CAS  PubMed  Google Scholar 

  211. Grobmyer, S. R. et al. Elevation of IL-18 in human sepsis. J. Clin. Immunol. 20, 212–215 (2000).

    Article  CAS  PubMed  Google Scholar 

  212. Vanden Berghe, T. et al. Simultaneous targeting of IL-1 and IL-18 is required for protection against inflammatory and septic shock. Am. J. Respir. Crit. Care Med. 189, 282–291 (2014).

    Article  CAS  PubMed  Google Scholar 

  213. Wynn, J. L. et al. Targeting IL-17A attenuates neonatal sepsis mortality induced by IL-18. Proc. Natl Acad. Sci. USA 113, E2627–E2635 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Karki, R. et al. ZBP1-dependent inflammatory cell death, PANoptosis, and cytokine storm disrupt IFN therapeutic efficacy during coronavirus infection. Sci. Immunol. 7, eabo6294 (2022).

    Article  CAS  PubMed  Google Scholar 

  215. Tan, H. Y. et al. Plasma interleukin-18 levels are a biomarker of innate immune responses that predict and characterize tuberculosis-associated immune reconstitution inflammatory syndrome. AIDS 29, 421–431 (2015).

    Article  CAS  PubMed  Google Scholar 

  216. Diorio, C. et al. Comprehensive serum proteome profiling of cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome patients with B-cell ALL receiving CAR T19. Clin. Cancer Res. 28, 3804–3813 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Robertson, M. J. et al. Clinical and biological effects of recombinant human interleukin-18 administered by intravenous infusion to patients with advanced cancer. Clin. Cancer Res. 12, 4265–4273 (2006).

    Article  CAS  PubMed  Google Scholar 

  218. Robertson, M. J. et al. A dose-escalation study of recombinant human interleukin-18 using two different schedules of administration in patients with cancer. Clin. Cancer Res. 14, 3462–3469 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Svoboda, J. et al. Interleukin-18 secreting autologous anti-CD19 CAR T-cells (huCART19-IL18) in patients with non-Hodgkin lymphomas relapsed or refractory to prior CAR T-cell therapy [abstract]. 64th ASH Annual Meeting and Exposition (2022).

  220. Minnie, S. A. et al. Depletion of exhausted alloreactive T cells enables targeting of stem-like memory T cells to generate tumor-specific immunity. Sci. Immunol. 7, eabo3420 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Simcha Il, I. Phase 1a and phase 2 study for PK, PD, safety and preliminary efficacy of ST-067. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT04787042 (2023).

  222. Vastert, S. J. et al. Mutations in the perforin gene can be linked to macrophage activation syndrome in patients with systemic onset juvenile idiopathic arthritis. Rheumatology 49, 441–449 (2010).

    Article  CAS  PubMed  Google Scholar 

  223. Hazen, M. M. et al. Mutations of the hemophagocytic lymphohistiocytosis-associated gene UNC13D in a patient with systemic juvenile idiopathic arthritis. Arthritis Rheum. 58, 567–570 (2008).

    Article  CAS  PubMed  Google Scholar 

  224. Kaufman, K. M. et al. Whole-exome sequencing reveals overlap between macrophage activation syndrome in systemic juvenile idiopathic arthritis and familial hemophagocytic lymphohistiocytosis. Arthritis Rheumatol. 66, 3486–3495 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Kitamura, A., Sasaki, Y., Abe, T., Kano, H. & Yasutomo, K. An inherited mutation in NLRC4 causes autoinflammation in human and mice. J. Exp. Med. 211, 2385–2396 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Latour, S. & Aguilar, C. XIAP deficiency syndrome in humans. Semin. Cell Dev. Biol. 39, 115–123 (2015).

    Article  CAS  PubMed  Google Scholar 

  227. Speckmann, C. et al. X-linked inhibitor of apoptosis (XIAP) deficiency: the spectrum of presenting manifestations beyond hemophagocytic lymphohistiocytosis. Clin. Immunol. 149, 133–141 (2013).

    Article  CAS  PubMed  Google Scholar 

  228. Bekhouche, B. et al. A toxic palmitoylation of Cdc42 enhances NF-κB signaling and drives a severe autoinflammatory syndrome. J. Allergy Clin. Immunol. 146, 1201–1204.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  229. He, T., Huang, Y., Ling, J. & Yang, J. A new patient with NOCARH syndrome due to CDC42 defect. J. Clin. Immunol. 40, 571–575 (2020).

    Article  PubMed  Google Scholar 

  230. Verboon, J. M. et al. Infantile myelofibrosis and myeloproliferation with CDC42 dysfunction. J. Clin. Immunol. 40, 554–566 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Holzinger, D. et al. Single amino acid charge switch defines clinically distinct proline-serine-threonine phosphatase-interacting protein 1 (PSTPIP1)-associated inflammatory diseases. J. Allergy Clin. Immunol. 136, 1337–1345 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Holzinger, D. & Roth, J. in Auto-Inflammatory Syndromes: Pathophysiology, Diagnosis, and Management (ed. Efthimiou, P.) 39–59 (Springer International Publishing, 2019).

  233. Klötgen, H. W. et al. The expanding spectrum of clinical phenotypes associated with PSTPIP1 mutations: from PAPA to PAMI syndrome and beyond. Br. J. Dermatol. 178, 982–983 (2018).

    Article  PubMed  Google Scholar 

  234. Aguilar, C. et al. Characterization of Crohn disease in X-linked inhibitor of apoptosis-deficient male patients and female symptomatic carriers. J. Allergy Clin. Immunol. 134, 1131–1141.e9 (2014).

    Article  CAS  PubMed  Google Scholar 

  235. Canna, S. W. et al. Brief report: alternative activation of laser-captured murine hemophagocytes. Arthritis Rheumatol. 66, 1666–1671 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Volker-Touw, C. M. et al. Erythematous nodes, urticarial rash and arthralgias in a large pedigree with NLRC4-related autoinflammatory disease, expansion of the phenotype. Br. J. Dermatol. 176, 244–248 (2017).

    Article  CAS  PubMed  Google Scholar 

  237. Yang, L. et al. Phenotype, genotype, treatment, and survival outcomes in patients with X-linked inhibitor of apoptosis deficiency. J. Allergy Clin. Immunol. 150, 456–466 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

E.L., H.C. and S.C. researched data for the article. All authors contributed substantially to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Scott Canna.

Ethics declarations

Competing interests

S.C. is a site PI for a clinical trial run by Novartis and also does consulting for Simcha Therapeutics, Apollo Therapeutics, and Sobi. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Cem Gabay, Charles Dinarello and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landy, E., Carol, H., Ring, A. et al. Biological and clinical roles of IL-18 in inflammatory diseases. Nat Rev Rheumatol 20, 33–47 (2024). https://doi.org/10.1038/s41584-023-01053-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-023-01053-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing