Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Spondyloarthritis with inflammatory bowel disease: the latest on biologic and targeted therapies

Abstract

Spondyloarthritis (SpA) encompasses a heterogeneous group of chronic inflammatory diseases that can affect both axial and peripheral joints, tendons and entheses. Among the extra-articular manifestations, inflammatory bowel disease (IBD) is associated with considerable morbidity and effects on quality of life. In everyday clinical practice, treatment of these conditions requires a close collaboration between gastroenterologists and rheumatologists to enable early detection of joint and intestinal manifestations during follow-up and to choose the most effective therapeutic regimen, implementing precision medicine for each patient’s subtype of SpA and IBD. The biggest issue in this field is the dearth of drugs that are approved for both diseases, as only TNF inhibitors are currently approved for the treatment of full-spectrum SpA–IBD. Janus tyrosine kinase inhibitors are among the most promising drugs for the treatment of peripheral and axial SpA, as well as for intestinal manifestations. Other therapies such as inhibitors of IL-23 and IL-17, phosphodiesterase 4 inhibitor, α4β7 integrin blockers and faecal microbiota transplantation seem to only be able to control some disease domains, or require further studies. Given the growing interest in the development of novel drugs to treat both conditions, it is important to understand the current state of the art and the unmet needs in the management of SpA–IBD.

Key points

  • Cytokine dysregulation is a main underlying factor involved in the pathogenesis of spondyloarthritis (SpA) and inflammatory bowel disease (IBD).

  • The co-occurrence of SpA and IBD requires a multidisciplinary approach, in which rheumatologists and gastroenterologists must work together to achieve the accurate diagnosis and the most effective drug choice.

  • Limited treatment options are currently available for combined SpA and IBD, and a failure of treatment response to anti-TNF, especially in patients with axial SpA and IBD, poses a particular challenge for clinicians.

  • Inhibitors of Janus kinases are among the most promising drugs for the treatment of full-spectrum SpA–IBD.

  • Further studies are needed to better understand the potential of several therapies, to enable the implementation of precision medicine and to find a balance between safety and efficacy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: IL-23 and IL-17 pathways and therapeutic targets in spondyloarthritis and inflammatory bowel disease.
Fig. 2: Stages of development and targets of drugs in spondyloarthritis and inflammatory bowel disease.

Similar content being viewed by others

References

  1. Rudwaleit, M. et al. The Assessment of SpondyloArthritis international Society classification criteria for peripheral spondyloarthritis and for spondyloarthritis in general. Ann. Rheum. Dis. 70, 25–31 (2011).

    CAS  PubMed  Google Scholar 

  2. Atzeni, F. et al. Rheumatic manifestations in inflammatory bowel disease. Autoimmun. Rev. 13, 20–23 (2014).

    PubMed  Google Scholar 

  3. Mandl, P. et al. EULAR recommendations for the use of imaging in the diagnosis and management of spondyloarthritis in clinical practice. Ann. Rheum. Dis. 74, 1327–1339 (2015).

    CAS  PubMed  Google Scholar 

  4. Webers, C. et al. Efficacy and safety of biological DMARDs: a systematic literature review informing the 2022 update of the ASAS-EULAR recommendations for the management of axial spondyloarthritis. Ann. Rheum. Dis. 82, 130–141 (2023).

    CAS  PubMed  Google Scholar 

  5. Brakenhoff, L. K. P. M., van der Heijde, D. M., Hommes, D. W., Huizinga, T. W. J. & Fidder, H. H. The joint–gut axis in inflammatory bowel diseases. J. Crohns Colitis 4, 257–268 (2010).

    PubMed  Google Scholar 

  6. Salvarani, C. & Fries, W. Clinical features and epidemiology of spondyloarthritides associated with inflammatory bowel disease. World J. Gastroenterol. 15, 2449–2455 (2009).

    PubMed  PubMed Central  Google Scholar 

  7. Vavricka, S. R. et al. Chronological order of appearance of extraintestinal manifestations relative to the time of IBD diagnosis in the Swiss Inflammatory Bowel Disease Cohort. Inflamm. Bowel Dis. 21, 1794–1800 (2015).

    PubMed  Google Scholar 

  8. Seo, M. R. et al. Delayed diagnosis is linked to worse outcomes and unfavourable treatment responses in patients with axial spondyloarthritis. Clin. Rheumatol. 34, 1397–1405 (2015).

    PubMed  Google Scholar 

  9. Generini, S. et al. Infliximab in spondyloarthropathy associated with Crohn’s disease: an open study on the efficacy of inducing and maintaining remission of musculoskeletal and gut manifestations. Ann. Rheum. Dis. 63, 1664–1669 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Marzo-Ortega, H., McGonagle, D., O’Connor, P. & Emery, P. Efficacy of etanercept for treatment of Crohn’s related spondyloarthritis but not colitis. Ann. Rheum. Dis. 62, 74–76 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Conigliaro, P. et al. Two years follow-up of golimumab treatment in refractory enteropathic spondyloarthritis patients with Crohn disease. Medicine 100, e25122 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. van der Heijde, D. et al. Efficacy and safety of infliximab in patients with ankylosing spondylitis: results of a randomized, placebo-controlled trial (ASSERT). Arthritis Rheum. 52, 582–591 (2005).

    PubMed  Google Scholar 

  13. van der Heijde, D. et al. Efficacy and safety of adalimumab in patients with ankylosing spondylitis: results of a multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 54, 2136–2146 (2006).

    PubMed  Google Scholar 

  14. Landewé, R. et al. Efficacy of certolizumab pegol on signs and symptoms of axial spondyloarthritis including ankylosing spondylitis: 24-week results of a double-blind randomised placebo-controlled Phase 3 study. Ann. Rheum. Dis. 73, 39–47 (2014).

    PubMed  Google Scholar 

  15. van der Heijde, D. et al. Ixekizumab, an interleukin-17A antagonist in the treatment of ankylosing spondylitis or radiographic axial spondyloarthritis in patients previously untreated with biological disease-modifying anti-rheumatic drugs (COAST-V): 16 week results of a phase 3 randomised, double-blind, active-controlled and placebo-controlled trial. Lancet 392, 2441–2451 (2018).

    PubMed  Google Scholar 

  16. Carron, P. et al. Anti-TNF-induced remission in very early peripheral spondyloarthritis: the CRESPA study. Ann. Rheum. Dis. 76, 1389–1395 (2017).

    CAS  PubMed  Google Scholar 

  17. Paramarta, J. E. et al. Efficacy and safety of adalimumab for the treatment of peripheral arthritis in spondyloarthritis patients without ankylosing spondylitis or psoriatic arthritis. Ann. Rheum. Dis. 72, 1793–1799 (2013).

    CAS  PubMed  Google Scholar 

  18. Sands, B. E. et al. Ustekinumab as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 381, 1201–1214 (2019).

    CAS  PubMed  Google Scholar 

  19. Sandborn, W. J. et al. Vedolizumab as induction and maintenance therapy for Crohn’s disease. N. Engl. J. Med. 369, 711–721 (2013).

    CAS  PubMed  Google Scholar 

  20. Feagan, B. G. et al. Ustekinumab as induction and maintenance therapy for Crohn’s disease. N. Engl. J. Med. 375, 1946–1960 (2016).

    CAS  PubMed  Google Scholar 

  21. Hanauer, S. B. et al. Human anti-tumor necrosis factor monoclonal antibody (adalimumab) in Crohn’s disease: the CLASSIC-I trial. Gastroenterology 130, 323–333 (2006).

    CAS  PubMed  Google Scholar 

  22. Hanauer, S. B. et al. Maintenance infliximab for Crohn’s disease: the ACCENT I randomised trial. Lancet 359, 1541–1549 (2002).

    CAS  PubMed  Google Scholar 

  23. Olivieri, I. et al. Italian Expert Panel on the management of patients with coexisting spondyloarthritis and inflammatory bowel disease. Autoimmun. Rev. 13, 822–830 (2014).

    PubMed  Google Scholar 

  24. Ben Nessib, D. et al. Update on therapeutic management of spondyloarthritis associated with inflammatory bowel disease. Clin. Rheumatol. 39, 3543–3553 (2020).

    PubMed  Google Scholar 

  25. Sharip, A. & Kunz, J. Understanding the pathogenesis of spondyloarthritis. Biomolecules 10, 1461 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Pittayanon, R. et al. Differences in gut microbiota in patients with vs without inflammatory bowel diseases: a systematic review. Gastroenterology 158, 930–946.e1 (2020).

    PubMed  Google Scholar 

  27. Braun, J. & Sieper, J. Ankylosing spondylitis. Lancet 369, 1379–1390 (2007).

    PubMed  Google Scholar 

  28. Hammer, R. E., Maika, S. D., Richardson, J. A., Tang, J. P. & Taurog, J. D. Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human β 2 m: an animal model of HLA-B27-associated human disorders. Cell 63, 1099–1112 (1990).

    CAS  PubMed  Google Scholar 

  29. Wellcome Trust Case Control Consortium. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat. Genet. 39, 1329–1337 (2007).

    Google Scholar 

  30. York, I. A. et al. The ER aminopeptidase ERAP1 enhances or limits antigen presentation by trimming epitopes to 8-9 residues. Nat. Immunol. 3, 1177–1184 (2002).

    CAS  PubMed  Google Scholar 

  31. DeLay, M. L. et al. HLA-B27 misfolding and the unfolded protein response augment interleukin-23 production and are associated with Th17 activation in transgenic rats. Arthritis Rheum. 60, 2633–2643 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Cho, J. H. & Brant, S. R. Recent insights into the genetics of inflammatory bowel disease. Gastroenterology 140, 1704–1712.e2 (2011).

    CAS  PubMed  Google Scholar 

  33. Jarmakiewicz-Czaja, S., Zielińska, M., Sokal, A. & Filip, R. Genetic and epigenetic etiology of inflammatory bowel disease: an update. Genes 13, 2388 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gracey, E. et al. Revisiting the gut–joint axis: links between gut inflammation and spondyloarthritis. Nat. Rev. Rheumatol. 16, 415–433 (2020).

    PubMed  Google Scholar 

  35. Schett, G. Structural bone changes in spondyloarthritis: mechanisms clinical impact and therapeutic considerations. Am. J. Med. Sci. 341, 269–271 (2011).

    PubMed  Google Scholar 

  36. Jacques, P. et al. Proof of concept: enthesitis and new bone formation in spondyloarthritis are driven by mechanical strain and stromal cells. Ann. Rheum. Dis. 73, 437–445 (2014).

    PubMed  Google Scholar 

  37. Ruff, C. B. Mechanical determinants of bone form: insights from skeletal remains. J. Musculoskelet. Neuronal Interact. 5, 202–212 (2005).

    CAS  PubMed  Google Scholar 

  38. D’ Agostino, M. A., Palazzi, C. & Olivieri, I. Entheseal involvement. Clin. Exp. Rheumatol. 27, S50–S55 (2009).

    PubMed  Google Scholar 

  39. Tsukazaki, H. & Kaito, T. The role of the IL-23/IL-17 pathway in the pathogenesis of spondyloarthritis. Int. J. Mol. Sci. 21, 6401 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mann, E. A. & Saeed, S. A. Gastrointestinal infection as a trigger for inflammatory bowel disease. Curr. Opin. Gastroenterol. 28, 24–29 (2012).

    CAS  PubMed  Google Scholar 

  41. Ananthakrishnan, A. N. et al. Environmental triggers in IBD: a review of progress and evidence. Nat. Rev. Gastroenterol. Hepatol. 15, 39–49 (2018).

    PubMed  Google Scholar 

  42. Schroeder, B. O. et al. Bifidobacteria or fiber protects against diet-induced microbiota-mediated colonic mucus deterioration. Cell Host Microbe 23, 27–40.e7 (2018).

    CAS  PubMed  Google Scholar 

  43. Iyer, N. & Corr, S. C. Gut microbial metabolite-mediated regulation of the intestinal barrier in the pathogenesis of inflammatory bowel disease. Nutrients 13, 4259 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Steinbach, E. C. & Plevy, S. E. The role of macrophages and dendritic cells in the initiation of inflammation in IBD. Inflamm. Bowel Dis. 20, 166–175 (2014).

    PubMed  Google Scholar 

  45. Sanchez-Munoz, F., Dominguez-Lopez, A. & Yamamoto-Furusho, J.-K. Role of cytokines in inflammatory bowel disease. World J. Gastroenterol. 14, 4280–4288 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ellinghaus, D. et al. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat. Genet. 48, 510–518 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Duerr, R. H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314, 1461–1463 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Vecellio, M. et al. The IL-17/IL-23 axis and its genetic contribution to psoriatic arthritis. Front. Immunol. 11, 596086 (2020).

    CAS  PubMed  Google Scholar 

  49. Iwakura, Y. & Ishigame, H. The IL-23/IL-17 axis in inflammation. J. Clin. Invest. 116, 1218–1222 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Shaw, A. T. & Gravallese, E. M. Mediators of inflammation and bone remodeling in rheumatic disease. Semin. Cell Dev. Biol. 49, 2–10 (2016).

    CAS  PubMed  Google Scholar 

  51. Gravallese, E. M. & Schett, G. Effects of the IL-23–IL-17 pathway on bone in spondyloarthritis. Nat. Rev. Rheumatol. 14, 631–640 (2018).

    CAS  PubMed  Google Scholar 

  52. Miossec, P. & Kolls, J. K. Targeting IL-17 and TH17 cells in chronic inflammation. Nat. Rev. Drug Discov. 11, 763–776 (2012).

    CAS  PubMed  Google Scholar 

  53. Tan, Z. Y., Bealgey, K. W., Fang, Y., Gong, Y. M. & Bao, S. Interleukin-23: immunological roles and clinical implications. Int. J. Biochem. Cell Biol. 41, 733–735 (2009).

    CAS  PubMed  Google Scholar 

  54. Schmitt, H. et al. Expansion of IL-23 receptor bearing TNFR2+ T cells is associated with molecular resistance to anti-TNF therapy in Crohn’s disease. Gut 68, 814–828 (2019).

    CAS  PubMed  Google Scholar 

  55. Kamada, N. et al. Unique CD14 intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-gamma axis. J. Clin. Invest. 118, 2269–2280 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Eken, A., Singh, A. K. & Oukka, M. Interleukin 23 in Crohn’s disease. Inflamm. Bowel Dis. 20, 587–595 (2014).

    PubMed  Google Scholar 

  57. Fujino, S. et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut 52, 65–70 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Maxwell, J. R. et al. Differential roles for interleukin-23 and interleukin-17 in intestinal immunoregulation. Immunity 43, 739–750 (2015).

    CAS  PubMed  Google Scholar 

  59. Yang, X. O. et al. Regulation of inflammatory responses by IL-17F. J. Exp. Med. 205, 1063–1075 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Bedoya, S. K., Lam, B., Lau, K. & Larkin, J. Th17 cells in immunity and autoimmunity. Clin. Dev. Immunol. 2013, 986789 (2013).

    PubMed  PubMed Central  Google Scholar 

  61. Ciccia, F. et al. Overexpression of interleukin-23, but not interleukin-17, as an immunologic signature of subclinical intestinal inflammation in ankylosing spondylitis. Arthritis Rheum. 60, 955–965 (2009).

    CAS  PubMed  Google Scholar 

  62. Deodhar, A. et al. Three multicenter, randomized, double-blind, placebo-controlled studies evaluating the efficacy and safety of ustekinumab in axial spondyloarthritis. Arthritis Rheumatol. 71, 258–270 (2019).

    CAS  PubMed  Google Scholar 

  63. Chimenti, M. S. et al. Effectiveness and safety of ustekinumab in naïve or TNF-inhibitors failure psoriatic arthritis patients: a 24-month prospective multicentric study. Clin. Rheumatol. 37, 397–405 (2018).

    PubMed  Google Scholar 

  64. Ramonda, R. et al. Effectiveness and safety of secukinumab in axial spondyloarthritis: a 24-month prospective, multicenter real-life study. Ther. Adv. Musculoskelet. Dis. 14, 1759720X221090310 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    CAS  PubMed  Google Scholar 

  66. Mangan, P. R. et al. Transforming growth factor-β induces development of the TH17 lineage. Nature 441, 231–234 (2006).

    CAS  PubMed  Google Scholar 

  67. Lorenzin, M. et al. An update on serum biomarkers to assess axial spondyloarthritis and to guide treatment decision. Ther. Adv. Musculoskelet. Dis. 12, 1759720X20934277 (2020).

    PubMed  PubMed Central  Google Scholar 

  68. Jiang, W. et al. Elevated levels of Th17 cells and Th17-related cytokines are associated with disease activity in patients with inflammatory bowel disease. Inflamm. Res. 63, 943–950 (2014).

    CAS  PubMed  Google Scholar 

  69. Guggino, G. et al. Interleukin (IL)-9/IL-9R axis drives γδ T cells activation in psoriatic arthritis patients. Clin. Exp. Immunol. 186, 277–283 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kenna, T. J. et al. Enrichment of circulating interleukin-17–secreting interleukin-23 receptor–positive γ/δ T cells in patients with active ankylosing spondylitis. Arthritis Rheum. 64, 1420–1429 (2012).

    CAS  PubMed  Google Scholar 

  71. Hayday, A. C. γδ T cells and the lymphoid stress-surveillance response. Immunity 31, 184–196 (2009).

    CAS  PubMed  Google Scholar 

  72. Jensen, K. D. C. et al. Thymic selection determines γδ T cell effector fate: antigen-naive cells make interleukin-17 and antigen-experienced cells make interferon γ. Immunity 29, 90–100 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Vivier, E. et al. Innate lymphoid cells: 10 years on. Cell 174, 1054–1066 (2018).

    CAS  PubMed  Google Scholar 

  74. Ciccia, F. et al. Interleukin-22 and interleukin-22-producing NKp44+ natural killer cells in subclinical gut inflammation in ankylosing spondylitis. Arthritis Rheum. 64, 1869–1878 (2012).

    CAS  PubMed  Google Scholar 

  75. Zeng, B. et al. ILC3 function as a double-edged sword in inflammatory bowel diseases. Cell Death Dis. 10, 315 (2019).

    PubMed  PubMed Central  Google Scholar 

  76. Serafini, N., Vosshenrich, C. A. J. & Di Santo, J. P. Transcriptional regulation of innate lymphoid cell fate. Nat. Rev. Immunol. 15, 415–428 (2015).

    CAS  PubMed  Google Scholar 

  77. Leijten, E. F. A. et al. Brief report: enrichment of activated group 3 innate lymphoid cells in psoriatic arthritis synovial fluid. Arthritis Rheumatol. 67, 2673–2678 (2015).

    PubMed  Google Scholar 

  78. Soare, A. et al. Cutting edge: homeostasis of innate lymphoid cells is imbalanced in psoriatic arthritis. J. Immunol. 200, 1249–1254 (2018).

    CAS  PubMed  Google Scholar 

  79. Teunissen, M. B. M. et al. The IL-17A-producing CD8+ T-cell population in psoriatic lesional skin comprises mucosa-associated invariant T cells and conventional T cells. J. Invest. Dermatol. 134, 2898–2907 (2014).

    CAS  PubMed  Google Scholar 

  80. Raychaudhuri, S. K., Abria, C., Mitra, A. & Raychaudhuri, S. P. Functional significance of MAIT cells in psoriatic arthritis. Cytokine 125, 154855 (2020).

    CAS  PubMed  Google Scholar 

  81. Serriari, N.-E. et al. Innate mucosal-associated invariant T (MAIT) cells are activated in inflammatory bowel diseases. Clin. Exp. Immunol. 176, 266–274 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Rios Rodriguez, V., Llop, M. & Poddubnyy, D. Hematopoietic and mesenchymal stem cells: a promising new therapy for spondyloarthritis? Immunotherapy 9, 899–911 (2017).

    PubMed  Google Scholar 

  83. Reider, S., Binder, L., Fürst, S., Hatzl, S. & Blesl, A. Hematopoietic stem cell transplantation in refractory Crohn’s disease: should it be considered? Cells 11, 3463 (2022).

    PubMed  PubMed Central  Google Scholar 

  84. Regan-Komito, D. et al. GM-CSF drives dysregulated hematopoietic stem cell activity and pathogenic extramedullary myelopoiesis in experimental spondyloarthritis. Nat. Commun. 11, 155 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Takizawa, H., Boettcher, S. & Manz, M. G. Demand-adapted regulation of early hematopoiesis in infection and inflammation. Blood 119, 2991–3002 (2012).

    CAS  PubMed  Google Scholar 

  86. Lopez-Cubero, S. O., Sullivan, K. M. & McDonald, G. B. Course of Crohn’s disease after allogeneic marrow transplantation. Gastroenterology 114, 433–440 (1998).

    CAS  PubMed  Google Scholar 

  87. Drakos, P. E., Nagler, A. & Or, R. Case of Crohn’s disease in bone marrow transplantation. Am. J. Hematol. 43, 157–158 (1993).

    CAS  PubMed  Google Scholar 

  88. Ditschkowski, M. et al. Improvement of inflammatory bowel disease after allogeneic stem-cell transplantation. Transplantation 75, 1745–1747 (2003).

    PubMed  Google Scholar 

  89. Kashyap, A. & Forman, S. J. Autologous bone marrow transplantation for non-Hodgkin’s lymphoma resulting in long-term remission of coincidental Crohn’s disease. Br. J. Haematol. 103, 651–652 (1998).

    CAS  PubMed  Google Scholar 

  90. López-García, A. et al. Autologous haematopoietic stem cell transplantation for refractory Crohn’s disease: efficacy in a single-centre cohort. J. Crohns Colitis 11, 1161–1168 (2017).

    PubMed  Google Scholar 

  91. Kuşkonmaz, B. et al. Successful outcome with second hematopoietic stem cell transplantation in a patient with IL-10R deficiency. Bone Marrow Transpl. 51, 615–616 (2016).

    Google Scholar 

  92. Lindsay, J. O. et al. Autologous stem-cell transplantation in treatment-refractory Crohn’s disease: an analysis of pooled data from the ASTIC trial. Lancet Gastroenterol. Hepatol. 2, 399–406 (2017).

    PubMed  Google Scholar 

  93. Brierley, C. K. et al. Autologous haematopoietic stem cell transplantation for Crohn’s disease: a retrospective survey of long-term outcomes from the European Society for Blood and Marrow Transplantation. J. Crohns Colitis 12, 1097–1103 (2018).

    PubMed  PubMed Central  Google Scholar 

  94. Hawkey, C. J. et al. Autologous hematopoietic stem cell transplantation for refractory Crohn disease: a randomized clinical trial. J. Am. Med. Assoc. 314, 2524–2534 (2015).

    CAS  Google Scholar 

  95. Mauro, D., Simone, D., Bucci, L. & Ciccia, F. Novel immune cell phenotypes in spondyloarthritis pathogenesis. Semin. Immunopathol. 43, 265–277 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Xie, Z. et al. Imbalance between bone morphogenetic protein 2 and noggin induces abnormal osteogenic differentiation of mesenchymal stem cells in ankylosing spondylitis. Arthritis Rheumatol. 68, 430–440 (2016).

    CAS  PubMed  Google Scholar 

  97. Ciccia, F. et al. Macrophage phenotype in the subclinical gut inflammation of patients with ankylosing spondylitis. Rheumatology 53, 104–113 (2014).

    CAS  PubMed  Google Scholar 

  98. Shiomi, A. et al. GM-CSF but not IL-17 is critical for the development of severe interstitial lung disease in SKG mice. J. Immunol. 193, 849–859 (2014).

    CAS  PubMed  Google Scholar 

  99. Sung, Y.-K. & Lee, Y. H. Comparison of the efficacy and safety of tofacitinib and mavrilimumab in patients with active rheumatoid arthritis: a Bayesian network meta-analysis of randomized controlled trials. Int. J. Clin. Pharmacol. Ther. 59, 557–565 (2021).

    CAS  PubMed  Google Scholar 

  100. Keir, M., Yi, T., Lu, T. & Ghilardi, N. The role of IL-22 in intestinal health and disease. J. Exp. Med. 217, e20192195 (2020).

    PubMed  PubMed Central  Google Scholar 

  101. El-Zayadi, A. A. et al. Interleukin-22 drives the proliferation, migration and osteogenic differentiation of mesenchymal stem cells: a novel cytokine that could contribute to new bone formation in spondyloarthropathies. Rheumatology 56, 488–493 (2017).

    CAS  PubMed  Google Scholar 

  102. Taurog, J. D. et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J. Exp. Med. 180, 2359–2364 (1994).

    CAS  PubMed  Google Scholar 

  103. Ciccia, F., Rizzo, A. & Triolo, G. Subclinical gut inflammation in ankylosing spondylitis. Curr. Opin. Rheumatol. 28, 89–96 (2016).

    CAS  PubMed  Google Scholar 

  104. Yang, K. L., Lejeune, A., Chang, G., Scher, J. U. & Koralov, S. B. Microbial-derived antigens and metabolites in spondyloarthritis. Semin. Immunopathol. 43, 163–172 (2021).

    CAS  PubMed  Google Scholar 

  105. Sharif, K., Bridgewood, C., Dubash, S. & McGonagle, D. Intestinal and enthesis innate immunity in early axial spondyloarthropathy. Rheumatology 59, iv67–iv78 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Pacheco‐Tena, C. et al. Bacterial DNA in synovial fluid cells of patients with juvenile onset spondyloarthropathies. Rheumatology 40, 920–927 (2001).

    PubMed  Google Scholar 

  107. Perica, M. et al. Single nucleotide polymorphism of toll-like receptor 4 (TLR4) is associated with juvenile spondyloarthritis in Croatian population. Clin. Rheumatol. 34, 2079–2086 (2015).

    PubMed  Google Scholar 

  108. Snelgrove, T. et al. Association of toll-like receptor 4 variants and ankylosing spondylitis: a case-control study. J. Rheumatol. 34, 368–370 (2007).

    CAS  PubMed  Google Scholar 

  109. Assassi, S. et al. Whole-blood gene expression profiling in ankylosing spondylitis shows upregulation of Toll-like receptor 4 and 5. J. Rheumatol. 38, 87–98 (2011).

    CAS  PubMed  Google Scholar 

  110. Yang, L. et al. Rifaximin alters intestinal microbiota and prevents progression of ankylosing spondylitis in mice. Front. Cell. Infect. Microbiol. 9, 44 (2019).

    PubMed  PubMed Central  Google Scholar 

  111. Ajene, A. N., Walker, C. L. F. & Black, R. E. Enteric pathogens and reactive arthritis: a systematic review of Campylobacter, Salmonella and Shigella-associated reactive arthritis. J. Health Popul. Nutr. 31, 299–307 (2013).

    PubMed  PubMed Central  Google Scholar 

  112. Klingberg, E. et al. A distinct gut microbiota composition in patients with ankylosing spondylitis is associated with increased levels of fecal calprotectin. Arthritis Res. Ther. 21, 248 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Li, M. et al. Altered bacterial-fungal interkingdom networks in the guts of ankylosing spondylitis patients. mSystems 4, e00176-18 (2019).

    PubMed  PubMed Central  Google Scholar 

  114. Manasson, J. et al. Interleukin-17 inhibition in spondyloarthritis is associated with subclinical gut microbiome perturbations and a distinctive interleukin-25-driven intestinal inflammation. Arthritis Rheumatol. 72, 645–657 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Lavelle, A. & Sokol, H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 17, 223–237 (2020).

    PubMed  Google Scholar 

  116. Turpin, W. et al. Increased intestinal permeability is associated with later development of Crohn’s disease. Gastroenterology 159, 2092–2100.e5 (2020).

    CAS  PubMed  Google Scholar 

  117. Chang, J. et al. Impaired intestinal permeability contributes to ongoing bowel symptoms in patients with inflammatory bowel disease and mucosal healing. Gastroenterology 153, 723–731.e1 (2017).

    PubMed  Google Scholar 

  118. Martini, E., Krug, S. M., Siegmund, B., Neurath, M. F. & Becker, C. Mend your fences: the epithelial barrier and its relationship with mucosal immunity in inflammatory bowel disease. Cell. Mol. Gastroenterol. Hepatol. 4, 33–46 (2017).

    PubMed  PubMed Central  Google Scholar 

  119. Macpherson, A., Khoo, U. Y., Forgacs, I., Philpott-Howard, J. & Bjarnason, I. Mucosal antibodies in inflammatory bowel disease are directed against intestinal bacteria. Gut 38, 365–375 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Kim, D. H. & Cheon, J. H. Pathogenesis of inflammatory bowel disease and recent advances in biologic therapies. Immune Netw. 17, 25–40 (2017).

    PubMed  PubMed Central  Google Scholar 

  121. Ni, J., Wu, G. D., Albenberg, L. & Tomov, V. T. Gut microbiota and IBD: causation or correlation? Nat. Rev. Gastroenterol. Hepatol. 14, 573–584 (2017).

    PubMed  PubMed Central  Google Scholar 

  122. Glassner, K. L., Abraham, B. P. & Quigley, E. M. M. The microbiome and inflammatory bowel disease. J. Allergy Clin. Immunol. 145, 16–27 (2020).

    CAS  PubMed  Google Scholar 

  123. Machiels, K. et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63, 1275–1283 (2014).

    CAS  PubMed  Google Scholar 

  124. Lopez-Siles, M. et al. Mucosa-associated Faecalibacterium prausnitzii phylotype richness is reduced in patients with inflammatory bowel disease. Appl. Environ. Microbiol. 81, 7582–7592 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Ek, W. et al. Microbial factors associated with postoperative Crohn’s disease recurrence. J. Crohns Colitis 11, 191–203 (2017).

    Google Scholar 

  126. Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Shen, Z. et al. Insights into Roseburia intestinalis which alleviates experimental colitis pathology by inducing anti-inflammatory responses. J. Gastroenterol. Hepatol. 33, 1751–1760 (2018).

    CAS  PubMed  Google Scholar 

  128. Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Vich Vila, A. et al. Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Sci. Transl. Med. 10, eaap8914 (2018).

    PubMed  Google Scholar 

  130. Nagano, Y., Itoh, K. & Honda, K. The induction of Treg cells by gut-indigenous Clostridium. Curr. Opin. Immunol. 24, 392–397 (2012).

    CAS  PubMed  Google Scholar 

  131. Shen, Z. et al. Roseburia intestinalis stimulates TLR5-dependent intestinal immunity against Crohn’s disease. eBioMedicine 85, 104285 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Chehoud, C. et al. Fungal signature in the gut microbiota of pediatric patients with inflammatory bowel disease. Inflamm. Bowel Dis. 21, 1948–1956 (2015).

    PubMed  Google Scholar 

  133. Li, Q. et al. Dysbiosis of gut fungal microbiota is associated with mucosal inflammation in Crohn’s disease. J. Clin. Gastroenterol. 48, 513–523 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Sokol, H. et al. Fungal microbiota dysbiosis in IBD. Gut 66, 1039–1048 (2017).

    CAS  PubMed  Google Scholar 

  135. Mar, J. S. et al. Disease severity and immune activity relate to distinct interkingdom gut microbiome states in ethnically distinct ulcerative colitis patients. mBio 7, e01072-16 (2016).

    PubMed  PubMed Central  Google Scholar 

  136. Limon, J. J. et al. Malassezia is associated with Crohn’s disease and exacerbates colitis in mouse models. Cell Host Microbe 25, 377–388.e6 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Felice, C. et al. Red flags for appropriate referral to the gastroenterologist and the rheumatologist of patients with inflammatory bowel disease and spondyloarthritis. Clin. Exp. Immunol. 196, 123–138 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Lorenzetti, R. et al. Integrated gastroenterology and rheumatology ambulatory: an innovative approach for enteropathic spondyloarthritis early diagnosis. Ann. Ist. Super. Sanita 55, 246–248 (2019).

    PubMed  Google Scholar 

  139. Conigliaro, P. et al. Impact of a multidisciplinary approach in enteropathic spondyloarthritis patients. Autoimmun. Rev. 15, 184–190 (2016).

    PubMed  Google Scholar 

  140. Di Carlo, M. et al. The DETection of Arthritis in Inflammatory boweL diseases (DETAIL) questionnaire: development and preliminary testing of a new tool to screen patients with inflammatory bowel disease for the presence of spondyloarthritis. Clin. Rheumatol. 37, 1037–1044 (2018).

    PubMed  Google Scholar 

  141. Sanz Sanz, J. et al. Screening of inflammatory bowel disease and spondyloarthritis for referring patients between rheumatology and gastroenterology. Reumatol. Clin. 14, 68–74 (2018).

    PubMed  Google Scholar 

  142. Hasler, S. et al. VAlidation of an 8-item-questionnaire predictive for a positive caLprotectin tEst and Real-life implemenTation in primary care to reduce diagnostic delay in inflammatory bowel disease (ALERT): protocol for a prospective diagnostic study. BMJ Open 5, e007306 (2015).

    PubMed  PubMed Central  Google Scholar 

  143. Variola, A. et al. The IBIS-Q [IBd Identification of Spondyloarthritis Questionnaire]: a novel tool to detect both axial and peripheral arthritis in inflammatory bowel disease patients. J. Crohns Colitis 14, 1680–1686 (2020).

    PubMed  Google Scholar 

  144. Varkas, G. et al. Expert consensus: practical algorithms for management of inflammatory bowel disease patients presenting with back pain or peripheral arthropathies. Aliment. Pharmacol. Ther. 50, 1204–1213 (2019).

    PubMed  Google Scholar 

  145. Østgård, R. D. et al. Faecal calprotectin detects subclinical bowel inflammation and may predict treatment response in spondyloarthritis. Scand. J. Rheumatol. 47, 48–55 (2018).

    PubMed  Google Scholar 

  146. Klingberg, E., Carlsten, H., Hilme, E., Hedberg, M. & Forsblad-d’Elia, H. Calprotectin in ankylosing spondylitis-frequently elevated in feces, but normal in serum. Scand. J. Gastroenterol. 47, 435–444 (2012).

    CAS  PubMed  Google Scholar 

  147. Cypers, H. et al. Elevated calprotectin levels reveal bowel inflammation in spondyloarthritis. Ann. Rheum. Dis. 75, 1357–1362 (2016).

    CAS  PubMed  Google Scholar 

  148. Fauny, M. et al. Faecal calprotectin for the diagnosis of bowel inflammation in patients with rheumatological diseases: a systematic review. J. Crohns Colitis 14, 688–693 (2020).

    PubMed  Google Scholar 

  149. Combe, B. et al. 2016 update of the EULAR recommendations for the management of early arthritis. Ann. Rheum. Dis. 76, 948–959 (2017).

    PubMed  Google Scholar 

  150. Maaser, C. et al. ECCO-ESGAR Guideline for Diagnostic Assessment in IBD Part 1: initial diagnosis, monitoring of known IBD, detection of complications. J. Crohns Colitis 13, 144–164 K (2019).

    PubMed  Google Scholar 

  151. Coates, L. C. et al. GRAPPA treatment recommendations: 2021 update. J. Rheumatol. 49, 52–54 (2022).

    PubMed  Google Scholar 

  152. Ramiro, S. et al. ASAS-EULAR recommendations for the management of axial spondyloarthritis: 2022 update. Ann. Rheum. Dis. 82, 19–34 (2023).

    PubMed  Google Scholar 

  153. Gomollón, F. et al. 3rd European evidence-based consensus on the diagnosis and management of Crohn’s disease 2016: part 1: diagnosis and medical management. J. Crohns Colitis 11, 3–25 (2017).

    PubMed  Google Scholar 

  154. Harbord, M. et al. Third European evidence-based consensus on diagnosis and management of ulcerative colitis. part 2: current management. J. Crohns Colitis 11, 769–784 (2017).

    PubMed  Google Scholar 

  155. van der Heijde, D. et al. 2016 update of the ASAS-EULAR management recommendations for axial spondyloarthritis. Ann. Rheum. Dis. 76, 978–991 (2017).

    PubMed  Google Scholar 

  156. Sandborn, W. J. et al. Etanercept for active Crohn’s disease: a randomized, double-blind, placebo-controlled trial. Gastroenterology 121, 1088–1094 (2001).

    CAS  PubMed  Google Scholar 

  157. Toussirot, É. et al. Development of inflammatory bowel disease during anti-TNF-α therapy for inflammatory rheumatic disease. a nationwide series. Jt. Bone Spine 79, 457–463 (2012).

    Google Scholar 

  158. Bieber, A., Fawaz, A., Novofastovski, I. & Mader, R. Antitumor necrosis factor-α therapy associated with inflammatory bowel disease: three cases and a systematic literature review. J. Rheumatol. 44, 1088–1095 (2017).

    CAS  PubMed  Google Scholar 

  159. van Dijken, T. D. et al. Development of inflammatory bowel disease in patients with juvenile idiopathic arthritis treated with etanercept. J. Rheumatol. 38, 1441–1446 (2011).

    PubMed  Google Scholar 

  160. Baeten, D. et al. Risankizumab, an IL-23 inhibitor, for ankylosing spondylitis: results of a randomised, double-blind, placebo-controlled, proof-of-concept, dose-finding phase 2 study. Ann. Rheum. Dis. 77, 1295–1302 (2018).

    CAS  PubMed  Google Scholar 

  161. Visvanathan, S. et al. Selective IL-23 inhibition by risankizumab modulates the molecular profile in the colon and ileum of patients with active Crohn’s disease: results from a randomised phase II biopsy sub-study. J. Crohns Colitis 12, 1170–1179 (2018).

    PubMed  PubMed Central  Google Scholar 

  162. Feagan, B. G. et al. Guselkumab plus golimumab combination therapy versus guselkumab or golimumab monotherapy in patients with ulcerative colitis (VEGA): a randomised, double-blind, controlled, phase 2, proof-of-concept trial. Lancet Gastroenterol. Hepatol. 8, 307–320 (2023).

    PubMed  Google Scholar 

  163. Burisch, J. et al. Risk for development of inflammatory bowel disease under inhibition of interleukin 17: a systematic review and meta-analysis. PLoS One 15, e0233781 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Yamada, A. et al. Systematic review with meta-analysis: risk of new onset IBD with the use of anti-interleukin-17 agents. Aliment. Pharmacol. Ther. 50, 373–385 (2019).

    PubMed  Google Scholar 

  165. Petitpain, N. et al. IL-17 Inhibitors and inflammatory bowel diseases: a postmarketing study in Vigibase. Clin. Pharmacol. Ther. 110, 159–168 (2021).

    CAS  PubMed  Google Scholar 

  166. Lebwohl, M. G. et al. Psychiatric adverse events during treatment with brodalumab: analysis of psoriasis clinical trials. J. Am. Acad. Dermatol. 78, 81–89.e5 (2018).

    CAS  PubMed  Google Scholar 

  167. Chiricozzi, A., Romanelli, M., Saraceno, R. & Torres, T. No meaningful association between suicidal behavior and the use of IL-17A-neutralizing or IL-17RA-blocking agents. Expert. Opin. Drug Saf. 15, 1653–1659 (2016).

    CAS  PubMed  Google Scholar 

  168. Mease, P. J., Helliwell, P. S., Hjuler, K. F., Raymond, K. & McInnes, I. Brodalumab in psoriatic arthritis: results from the randomised phase III AMVISION-1 and AMVISION-2 trials. Ann. Rheum. Dis. 80, 185–193 (2021).

    CAS  PubMed  Google Scholar 

  169. Wei, J. C.-C. et al. Efficacy and safety of brodalumab, an anti-IL17RA monoclonal antibody, in patients with axial spondyloarthritis: 16-week results from a randomised, placebo-controlled, phase 3 trial. Ann. Rheum. Dis. 80, 1014–1021 (2021).

    PubMed  Google Scholar 

  170. Targan, S. R. et al. A randomized, double-blind, placebo-controlled phase 2 study of brodalumab in patients with moderate-to-severe Crohn’s disease. Am. J. Gastroenterol. 111, 1599–1607 (2016).

    CAS  PubMed  Google Scholar 

  171. Boland, B. S., Sandborn, W. J. & Chang, J. T. Update on Janus kinase antagonists in inflammatory bowel disease. Gastroenterol. Clin. North Am. 43, 603–617 (2014).

    PubMed  PubMed Central  Google Scholar 

  172. De Vries, L. C. S., Wildenberg, M. E., De Jonge, W. J. & D’Haens, G. R. The future of Janus kinase inhibitors in inflammatory bowel disease. J. Crohns Colitis 11, 885–893 (2017).

    PubMed  PubMed Central  Google Scholar 

  173. Yang, L. et al. Augmented Th17 differentiation leads to cutaneous and synovio-entheseal inflammation in a novel model of psoriatic arthritis. Arthritis Rheumatol. 70, 855–867 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Gracey, E. et al. TYK2 inhibition reduces type 3 immunity and modifies disease progression in murine spondyloarthritis. J. Clin. Invest. 130, 1863–1878 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. van der Heijde, D. et al. Tofacitinib in patients with ankylosing spondylitis: a phase II, 16-week, randomised, placebo-controlled, dose-ranging study. Ann. Rheum. Dis. 76, 1340–1347 (2017).

    PubMed  Google Scholar 

  176. Sandborn, W. J. et al. A phase 2 study of tofacitinib, an oral Janus kinase inhibitor, in patients with Crohn’s disease. Clin. Gastroenterol. Hepatol. 12, 1485–1493.e2 (2014).

    CAS  PubMed  Google Scholar 

  177. Panés, J. et al. Tofacitinib for induction and maintenance therapy of Crohn’s disease: results of two phase IIb randomised placebo-controlled trials. Gut 66, 1049–1059 (2017).

    PubMed  Google Scholar 

  178. Taneja, V. et al. Effectiveness and safety of tofacitinib for ulcerative colitis: systematic review and meta-analysis. J. Clin. Gastroenterol. 56, e323–e333 (2021).

    PubMed  Google Scholar 

  179. Sandborn, W. J. et al. Efficacy and safety of upadacitinib in a randomized trial of patients with Crohn’s disease. Gastroenterology 158, 2123–2138.e8 (2020).

    CAS  PubMed  Google Scholar 

  180. Lasa, J. S., Olivera, P. A., Danese, S. & Peyrin-Biroulet, L. Efficacy and safety of biologics and small molecule drugs for patients with moderate-to-severe ulcerative colitis: a systematic review and network meta-analysis. Lancet Gastroenterol. Hepatol. 7, 161–170 (2022).

    PubMed  Google Scholar 

  181. Mease, P. et al. Efficacy and safety of filgotinib, a selective Janus kinase 1 inhibitor, in patients with active psoriatic arthritis (EQUATOR): results from a randomised, placebo-controlled, phase 2 trial. Lancet 392, 2367–2377 (2018).

    CAS  PubMed  Google Scholar 

  182. van der Heijde, D. et al. Efficacy and safety of filgotinib, a selective Janus kinase 1 inhibitor, in patients with active ankylosing spondylitis (TORTUGA): results from a randomised, placebo-controlled, phase 2 trial. Lancet 392, 2378–2387 (2018).

    PubMed  Google Scholar 

  183. Tahir, H., Byravan, S., Fardanesh, A. & Moorthy, A. Promising treatment options for axial spondyloarthritis: an overview of experimental pharmacological agents. J. Exp. Pharmacol. 13, 627–635 (2021).

    PubMed  PubMed Central  Google Scholar 

  184. Tanaka, Y., Kavanaugh, A., Wicklund, J. & McInnes, I. B. Filgotinib, a novel JAK1-preferential inhibitor for the treatment of rheumatoid arthritis: an overview from clinical trials. Mod. Rheumatol. 32, 1–11 (2021).

    Google Scholar 

  185. Feagan, B. G. et al. Filgotinib as induction and maintenance therapy for ulcerative colitis (SELECTION): a phase 2b/3 double-blind, randomised, placebo-controlled trial. Lancet 397, 2372–2384 (2021).

    CAS  PubMed  Google Scholar 

  186. Vermeire, S. et al. Clinical remission in patients with moderate-to-severe Crohn’s disease treated with filgotinib (the FITZROY study): results from a phase 2, double-blind, randomised, placebo-controlled trial. Lancet 389, 266–275 (2017).

    CAS  PubMed  Google Scholar 

  187. Galapagos N. V. Galapagos announces topline results from Phase 3 DIVERSITY trial of filgotinib in Crohn’s disease [online], https://www.glpg.com/press-release/3766/galapagos-announces-topline-results-from-phase-3-diversity-trial-of-filgotinib-in-crohn-s-disease (2023).

  188. Mease, P. J. et al. Efficacy and safety of selective TYK2 inhibitor, deucravacitinib, in a phase II trial in psoriatic arthritis. Ann. Rheum. Dis. 81, 815–822 (2022).

    CAS  PubMed  Google Scholar 

  189. Gordon, K. et al. BMS-986165, an oral, selective tyrosine kinase 2 (TYK2) inhibitor: evaluation of changes in laboratory parameters in response to treatment in a phase 2 trial in psoriasis patients. SKIN J. Cutan. Med. 4, s28 (2020).

    Google Scholar 

  190. Theravance Biopharma. Theravance Biopharma, Inc. announces top-line results from phase 2b dose-finding induction study of izencitinib in patients with ulcerative colitis [online], https://investor.theravance.com/news-releases/news-release-details/theravance-biopharma-inc-announces-top-line-results-phase-2b (2021).

  191. Pathan, E. et al. Efficacy and safety of apremilast, an oral phosphodiesterase 4 inhibitor, in ankylosing spondylitis. Ann. Rheum. Dis. 72, 1475–1480 (2013).

    CAS  PubMed  Google Scholar 

  192. Danese, S. et al. Effects of apremilast, an oral inhibitor of phosphodiesterase 4, in a randomized trial of patients with active ulcerative colitis. Clin. Gastroenterol. Hepatol. 18, 2526–2534.e9 (2020).

    CAS  PubMed  Google Scholar 

  193. Dubash, S. et al. Emergence of severe spondyloarthropathy-related entheseal pathology following successful vedolizumab therapy for inflammatory bowel disease. Rheumatology 58, 963–968 (2019).

    CAS  PubMed  Google Scholar 

  194. Varkas, G. et al. An induction or flare of arthritis and/or sacroiliitis by vedolizumab in inflammatory bowel disease: a case series. Ann. Rheum. Dis. 76, 878–881 (2017).

    CAS  PubMed  Google Scholar 

  195. Tadbiri, S. et al. Impact of vedolizumab therapy on extra-intestinal manifestations in patients with inflammatory bowel disease: a multicentre cohort study nested in the OBSERV-IBD cohort. Aliment. Pharmacol. Ther. 47, 485–493 (2018).

    CAS  PubMed  Google Scholar 

  196. Salmi, M. & Jalkanen, S. Human leukocyte subpopulations from inflamed gut bind to joint vasculature using distinct sets of adhesion molecules. J. Immunol. 166, 4650–4657 (2001).

    CAS  PubMed  Google Scholar 

  197. Ciccia, F. et al. Type 3 innate lymphoid cells producing IL-17 and IL-22 are expanded in the gut, in the peripheral blood, synovial fluid and bone marrow of patients with ankylosing spondylitis. Ann. Rheum. Dis. 74, 1739–1747 (2015).

    CAS  PubMed  Google Scholar 

  198. De Galan, C. et al. The impact of vedolizumab and ustekinumab on articular extra-intestinal manifestations in inflammatory bowel disease patients: a real-life multicentre cohort study. J. Crohns Colitis 16, 1676–1686 (2022).

    PubMed  Google Scholar 

  199. Dupré, A. et al. Articular manifestations in patients with inflammatory bowel disease treated with vedolizumab. Rheumatology 59, 3275–3283 (2020).

    PubMed  Google Scholar 

  200. Kelly, C. R. et al. Fecal microbiota transplantation is highly effective in real-world practice: initial results from the FMT National Registry. Gastroenterology 160, 183–192.e3 (2021).

    PubMed  Google Scholar 

  201. Kragsnaes, M. S. et al. Safety and efficacy of faecal microbiota transplantation for active peripheral psoriatic arthritis: an exploratory randomised placebo-controlled trial. Ann. Rheum. Dis. 80, 1158–1167 (2021).

    CAS  PubMed  Google Scholar 

  202. Kragsnaes, M. S. et al. Experiences and perceptions of patients with psoriatic arthritis participating in a trial of faecal microbiota transplantation: a nested qualitative study. BMJ Open 11, e039471 (2021).

    PubMed  PubMed Central  Google Scholar 

  203. Cui, B. et al. Fecal microbiota transplantation through mid-gut for refractory Crohn’s disease: safety, feasibility, and efficacy trial results. J. Gastroenterol. Hepatol. 30, 51–58 (2015).

    CAS  PubMed  Google Scholar 

  204. Zhou, S., Cui, Y., Zhang, Y., Zhao, T. & Cong, J. Fecal microbiota transplantation for induction of remission in Crohn’s disease: a systematic review and meta-analysis. Int. J. Colorectal Dis. 38, 62 (2023).

    PubMed  Google Scholar 

  205. Costello, S. P. et al. Effect of fecal microbiota transplantation on 8-week remission in patients with ulcerative colitis: a randomized clinical trial. J. Am. Med. Assoc. 321, 156–164 (2019).

    Google Scholar 

  206. Moayyedi, P. et al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology 149, 102–109.e6 (2015).

    PubMed  Google Scholar 

  207. Paramsothy, S. et al. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet 389, 1218–1228 (2017).

    PubMed  Google Scholar 

  208. Rossen, N. G. et al. Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology 149, 110–118.e4 (2015).

    PubMed  Google Scholar 

  209. Liu, X., Wu, K., Shi, Y. & Chen, M. Fecal microbiota transplantation as therapy for treatment of active ulcerative colitis: a systematic review and meta-analysis. Gastroenterol. Res. Pract. 2021, 6612970 (2021).

    PubMed  PubMed Central  Google Scholar 

  210. Haifer, C. et al. Lyophilised oral faecal microbiota transplantation for ulcerative colitis (LOTUS): a randomised, double-blind, placebo-controlled trial. Lancet Gastroenterol. Hepatol. 7, 141–151 (2022).

    PubMed  Google Scholar 

  211. Godala, M., Gaszyńska, E., Zatorski, H. & Małecka-Wojciesko, E. Dietary interventions in inflammatory bowel disease. Nutrients 14, 4261 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Weaver, K. N. & Herfarth, H. Gluten-free diet in IBD: time for a recommendation? Mol. Nutr. Food Res. 65, 1901274 (2021).

    CAS  Google Scholar 

  213. Ortolan, A. et al. The impact of diet on disease activity in spondyloarthritis: a systematic literature review. Jt. Bone Spine 90, 105476 (2023).

    Google Scholar 

  214. Ometto, F. et al. Mediterranean diet in axial spondyloarthritis: an observational study in an Italian monocentric cohort. Arthritis Res. Ther. 23, 219 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Gratacós, J., Casado, E., Real, J. & Torre-Alonso, J. C. Prediction of major clinical response (ACR50) to infliximab in psoriatic arthritis refractory to methotrexate. Ann. Rheum. Dis. 66, 493–497 (2007).

    PubMed  Google Scholar 

  216. Jürgens, M. et al. Levels of C-reactive protein are associated with response to infliximab therapy in patients with Crohn’s disease. Clin. Gastroenterol. Hepatol. 9, 421–427.e1 (2011).

    PubMed  Google Scholar 

  217. Detrez, I. et al. Variability in golimumab exposure: a ‘real-life’ observational study in active ulcerative colitis. J. Crohns Colitis 10, 575–581 (2016).

    PubMed  PubMed Central  Google Scholar 

  218. Chimenti, M. S. et al. Complement system in psoriatic arthritis: a useful marker in response prediction and monitoring of anti-TNF treatment. Clin. Exp. Rheumatol. 30, 23–30 (2012).

    CAS  PubMed  Google Scholar 

  219. Chandran, V. et al. Soluble biomarkers associated with response to treatment with tumor necrosis factor inhibitors in psoriatic arthritis. J. Rheumatol. 40, 866–871 (2013).

    CAS  PubMed  Google Scholar 

  220. Wagner, C. L. et al. Markers of inflammation and bone remodelling associated with improvement in clinical response measures in psoriatic arthritis patients treated with golimumab. Ann. Rheum. Dis. 72, 83–88 (2013).

    CAS  PubMed  Google Scholar 

  221. Miyagawa, I. et al. Precision medicine using different biological DMARDs based on characteristic phenotypes of peripheral T helper cells in psoriatic arthritis. Rheumatology 58, 336–344 (2019).

    CAS  PubMed  Google Scholar 

  222. Sands, B. E. et al. Efficacy and safety of MEDI2070, an antibody against interleukin 23, in patients with moderate to severe Crohn’s disease: a phase 2a study. Gastroenterology 153, 77–86.e6 (2017).

    CAS  PubMed  Google Scholar 

  223. Frin, A.-C. et al. Accuracies of fecal calprotectin, lactoferrin, M2-pyruvate kinase, neopterin and zonulin to predict the response to infliximab in ulcerative colitis. Dig. Liver Dis. 49, 11–16 (2017).

    CAS  PubMed  Google Scholar 

  224. Collins, E. S. et al. A clinically based protein discovery strategy to identify potential biomarkers of response to anti-TNF-α treatment of psoriatic arthritis. Proteom. Clin. Appl. 10, 645–662 (2016).

    CAS  Google Scholar 

  225. Ademowo, O. S. et al. Discovery and confirmation of a protein biomarker panel with potential to predict response to biological therapy in psoriatic arthritis. Ann. Rheum. Dis. 75, 234–241 (2016).

    CAS  PubMed  Google Scholar 

  226. Belarif, L. et al. IL-7 receptor influences anti-TNF responsiveness and T cell gut homing in inflammatory bowel disease. J. Clin. Invest. 129, 1910–1925 (2019).

    PubMed  PubMed Central  Google Scholar 

  227. Olsen, T., Cui, G., Goll, R., Husebekk, A. & Florholmen, J. Infliximab therapy decreases the levels of TNF-α and IFN-γ mRNA in colonic mucosa of ulcerative colitis. Scand. J. Gastroenterol. 44, 727–735 (2009).

    CAS  PubMed  Google Scholar 

  228. Mavragani, C. P. et al. Type I and II interferon signatures can predict the response to anti-TNF agents in inflammatory bowel disease patients: involvement of the microbiota. Inflamm. Bowel Dis. 26, 1543–1553 (2020).

    PubMed  Google Scholar 

  229. Rismo, R. et al. Mucosal cytokine gene expression profiles as biomarkers of response to infliximab in ulcerative colitis. Scand. J. Gastroenterol. 47, 538–547 (2012).

    CAS  PubMed  Google Scholar 

  230. Atreya, R. et al. In vivo imaging using fluorescent antibodies to tumor necrosis factor predicts therapeutic response in Crohn’s disease. Nat. Med. 20, 313–318 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Rath, T., Bojarski, C., Neurath, M. F. & Atreya, R. Molecular imaging of mucosal α4β7 integrin expression with the fluorescent anti-adhesion antibody vedolizumab in Crohn’s disease. Gastrointest. Endosc. 86, 406–408 (2017).

    PubMed  Google Scholar 

  232. Bazin, T. et al. Microbiota composition may predict anti-Tnf alpha response in spondyloarthritis patients: an exploratory study. Sci. Rep. 8, 5446 (2018).

    PubMed  PubMed Central  Google Scholar 

  233. Chen, Z. et al. Adalimumab therapy restores the gut microbiota in patients with ankylosing spondylitis. Front. Immunol. 12, 700570 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Ananthakrishnan, A. N. et al. Gut microbiome function predicts response to anti-integrin biologic therapy in inflammatory bowel diseases. Cell Host Microbe 21, 603–610.e3 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Kolho, K.-L. et al. Fecal microbiota in pediatric inflammatory bowel disease and its relation to inflammation. Am. J. Gastroenterol. 110, 921–930 (2015).

    PubMed  Google Scholar 

  236. Ortolan, A. et al. The genetic contribution to drug response in spondyloarthritis: a systematic literature review. Front. Genet. 12, 703911 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Harrison, S. R., Burska, A. N., Emery, P., Marzo-Ortega, H. & Ponchel, F. Interferon-related gene expression in response to TNF inhibitor treatment in ankylosing spondylitis patients: a pilot study. Rheumatology 60, 3607–3616 (2021).

    CAS  PubMed  Google Scholar 

  238. Jürgens, M. et al. Disease activity, ANCA, and IL23R genotype status determine early response to infliximab in patients with ulcerative colitis. Am. J. Gastroenterol. 105, 1811–1819 (2010).

    PubMed  Google Scholar 

  239. Bank, S. et al. Genetically determined high activity of IL-12 and IL-18 in ulcerative colitis and TLR5 in Crohns disease were associated with non-response to anti-TNF therapy. Pharmacogenomics J. 18, 87–97 (2018).

    CAS  PubMed  Google Scholar 

  240. Medrano, L. M. et al. Role of TNFRSF1B polymorphisms in the response of Crohn’s disease patients to infliximab. Hum. Immunol. 75, 71–75 (2014).

    CAS  PubMed  Google Scholar 

  241. Netz, U. et al. Genetic polymorphisms predict response to anti-tumor necrosis factor treatment in Crohn’s disease. World J. Gastroenterol. 23, 4958–4967 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Taylor, K. D. et al. ANCA pattern and LTA haplotype relationship to clinical responses to anti-TNF antibody treatment in Crohn’s disease. Gastroenterology 120, 1347–1355 (2001).

    CAS  PubMed  Google Scholar 

  243. Koder, S. et al. Genetic polymorphism in ATG16L1 gene influences the response to adalimumab in Crohn’s disease patients. Pharmacogenomics 16, 191–204 (2015).

    CAS  PubMed  Google Scholar 

  244. Wang, X., Qin, L., Cao, J. & Zhao, J. Impact of NOD2/CARD15 polymorphisms on response to monoclonal antibody therapy in Crohn’s disease: a systematic review and meta-analysis. Curr. Med. Res. Opin. 32, 2007–2012 (2016).

    CAS  PubMed  Google Scholar 

  245. Guillo, L. et al. Endpoints for extraintestinal manifestations in inflammatory bowel disease trials: the EXTRA consensus from the International Organization for the Study of Inflammatory Bowel Diseases. Lancet Gastroenterol. Hepatol. 7, 254–261 (2022).

    PubMed  Google Scholar 

  246. Siebert, S., Millar, N. L. & McInnes, I. B. Why did IL-23p19 inhibition fail in AS: a tale of tissues, trials or translation? Ann. Rheum. Dis. 78, 1015–1018 (2019).

    PubMed  Google Scholar 

  247. Kavanaugh, A. et al. Genetic and molecular distinctions between axial psoriatic arthritis and radiographic axial spondyloarthritis: post hoc analyses from four phase 3 clinical trials. Adv. Ther. 40, 2439–2456 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Braun, J. & Landewé, R. B. No efficacy of anti-IL-23 therapy for axial spondyloarthritis in randomised controlled trials but in post-hoc analyses of psoriatic arthritis-related ‘physician-reported spondylitis’? Ann. Rheum. Dis. 81, 466–468 (2022).

    CAS  PubMed  Google Scholar 

  249. Atreya, R. et al. P504 Guselkumab, an IL-23p19 subunit–specific monoclonal antibody, binds CD64+ myeloid cells and potently neutralises IL-23 produced from the same cells. J. Crohns Colitis 17, i634–i635 (2023).

    Google Scholar 

  250. Blauvelt, A. et al. Efficacy and safety of mirikizumab in psoriasis: results from a 52-week, double-blind, placebo-controlled, randomized withdrawal, phase III trial (OASIS-1). Br. J. Dermatol. 187, 866–877 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Sandborn, W. J. et al. Efficacy and safety of mirikizumab in a randomized phase 2 study of patients with ulcerative colitis. Gastroenterology 158, 537–549.e10 (2020).

    CAS  PubMed  Google Scholar 

  252. Sands, B. E. et al. Efficacy and safety of mirikizumab in a randomized phase 2 study of patients with Crohn’s disease. Gastroenterology 162, 495–508 (2022).

    CAS  PubMed  Google Scholar 

  253. Castro-Santos, P., Moro-García, M. A., Marcos-Fernández, R., Alonso-Arias, R. & Díaz-Peña, R. ERAP1 and HLA-C interaction in inflammatory bowel disease in the Spanish population. Innate Immun. 23, 476–481 (2017).

    CAS  PubMed  Google Scholar 

  254. Vecellio, M., Cohen, C. J., Roberts, A. R., Wordsworth, P. B. & Kenna, T. J. RUNX3 and T-Bet in immunopathogenesis of ankylosing spondylitis—novel targets for therapy? Front. Immunol. 9, 3132 (2019).

    PubMed  PubMed Central  Google Scholar 

  255. Withers, D. R. et al. Transient inhibition of ROR-γt therapeutically limits intestinal inflammation by reducing TH17 cells and preserving group 3 innate lymphoid cells. Nat. Med. 22, 319–323 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. de Wit, J. et al. RORγt inhibitors suppress TH17 responses in inflammatory arthritis and inflammatory bowel disease. J. Allergy Clin. Immunol. 137, 960–963 (2016).

    PubMed  Google Scholar 

  257. Gege, C. Retinoic acid-related orphan receptor gamma t (RORγt) inverse agonists/antagonists for the treatment of inflammatory diseases — where are we presently? Expert. Opin. Drug Discov. 16, 1517–1535 (2021).

    CAS  PubMed  Google Scholar 

  258. Felice, C., Dal Buono, A., Gabbiadini, R., Rattazzi, M. & Armuzzi, A. Cytokines in spondyloarthritis and inflammatory bowel diseases: from pathogenesis to therapeutic implications. Int. J. Mol. Sci. 24, 3957 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Ahmed, W. et al. Dual biologic or small molecule therapy for treatment of inflammatory bowel disease: a systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 20, e361–e379 (2022).

    CAS  PubMed  Google Scholar 

  260. Alayo, Q. A. et al. Systematic review with meta-analysis: safety and effectiveness of combining biologics and small molecules in inflammatory bowel disease. Crohns Colitis 360 4, otac002 (2022).

    PubMed  PubMed Central  Google Scholar 

  261. Gossec, L. et al. EULAR recommendations for the management of psoriatic arthritis with pharmacological therapies: 2019 update. Ann. Rheum. Dis. 79, 700–712 (2020).

    PubMed  Google Scholar 

  262. Ward, M. M. et al. 2019 Update of the American College of Rheumatology/Spondylitis Association of America/Spondyloarthritis Research and Treatment Network recommendations for the treatment of ankylosing spondylitis and nonradiographic axial spondyloarthritis. Arthritis Care Res. 71, 1285–1299 (2019).

    Google Scholar 

  263. Steinhart, A. H., Ewe, K., Griffiths, A. M., Modigliani, R. & Thomsen, O. O. Corticosteroids for maintenance of remission in Crohn’s disease. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD000301 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  264. Lim, W.-C., Wang, Y., MacDonald, J. K. & Hanauer, S. Aminosalicylates for induction of remission or response in Crohn’s disease. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD008870.pub2 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  265. Chen, J., Veras, M. M. S., Liu, C. & Lin, J. Methotrexate for ankylosing spondylitis. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD004524.pub4 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Haibel, H. et al. No efficacy of subcutaneous methotrexate in active ankylosing spondylitis: a 16‐week open‐label trial. Ann. Rheum. Dis. 66, 419–421 (2007).

    CAS  PubMed  Google Scholar 

  267. Herfarth, H. et al. Methotrexate is not superior to placebo in maintaining steroid-free response or remission in ulcerative colitis. Gastroenterology 155, 1098 (2018).

    CAS  PubMed  Google Scholar 

  268. van Denderen, J. C. et al. Double blind, randomised, placebo controlled study of leflunomide in the treatment of active ankylosing spondylitis. Ann. Rheum. Dis. 64, 1761–1764 (2005).

    PubMed  PubMed Central  Google Scholar 

  269. Prajapati, D. N. et al. Leflunomide treatment of Crohn’s disease patients intolerant to standard immunomodulator therapy. J. Clin. Gastroenterol. 37, 125–128 (2003).

    CAS  PubMed  Google Scholar 

  270. Bridgewood, C., Sharif, K., Sherlock, J., Watad, A. & McGonagle, D. Interleukin-23 pathway at the enthesis: the emerging story of enthesitis in spondyloarthropathy. Immunol. Rev. 294, 27–47 (2020).

    CAS  PubMed  Google Scholar 

  271. Lee, J. S. et al. IL-23-independent IL-17 production regulates intestinal epithelial permeability. Immunity 43, 727–738 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  272. McGonagle, D. G., McInnes, I. B., Kirkham, B. W., Sherlock, J. & Moots, R. The role of IL-17A in axial spondyloarthritis and psoriatic arthritis: recent advances and controversies. Ann. Rheum. Dis. 78, 1167–1178 (2019).

    CAS  PubMed  Google Scholar 

  273. Cuthbert, R. J. et al. Evidence that tissue resident human enthesis γδT-cells can produce IL-17A independently of IL-23R transcript expression. Ann. Rheum. Dis. 78, 1559–1565 (2019).

    CAS  PubMed  Google Scholar 

  274. Klose, C. S. N. et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157, 340–356 (2014).

    CAS  PubMed  Google Scholar 

  275. Ghoreschi, K., Laurence, A. & O’Shea, J. J. Janus kinases in immune cell signaling. Immunol. Rev. 228, 273–287 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  276. Langrish, C. L. et al. IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol. Rev. 202, 96–105 (2004).

    CAS  PubMed  Google Scholar 

  277. Danese, S. & Peyrin-Biroulet, L. Selective tyrosine kinase 2 inhibition for treatment of inflammatory bowel disease: new hope on the rise. Inflamm. Bowel Dis. 27, 2023–2030 (2021).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Augusta Ortolan for comments that greatly improved the manuscript, and Eric Franck Nde for editing the English version.

Author information

Authors and Affiliations

Authors

Contributions

G.C. and L.S. researched data for the article and wrote the article. R.R., G.C., M.L. and A.D. contributed substantially to discussion of the content. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Roberta Ramonda.

Ethics declarations

Competing interests

G.C., L.S., F.O. and M.F. declare no competing interests; M.L. has received consulting fees from AbbVie; E.S. has served as a speaker for AbbVie, Agave, AGPharma, Alfasigma, Aurora Pharma, CaDiGroup, Celltrion, Dr Falk, EG Stada Group, Fenix Pharma, Fresenius Kabi, Galapagos, Janssen, JB Pharmaceuticals, Innovamedica/Adacyte, Malesci, Mayoly Biohealth, Omega Pharma, Pfizer, Reckitt Benckiser, Sandoz, SILA, Sofar, Takeda, Tillots and Unifarco, as a consultant for AbbVie, Agave, Alfasigma, Biogen, Bristol-Myers Squibb, Celltrion, Diadema Farmaceutici, Dr Falk, Fenix Pharma, Fresenius Kabi, Janssen, JB Pharmaceuticals, Merck & Co, Reckitt Benckiser, Regeneron, Sanofi, SILA, Sofar, Synformulas GmbH, Takeda and Unifarco, and has received research support from Pfizer, Reckitt Benckiser, SILA, Sofar, Unifarco and Zeta Farmaceutici; F.Z. has served as speaker for EG Stada Group, Fresenius Kabi, Janssen, Pfizer, Takeda, Unifarco and Malesci, and has served as a consultant for Galapagos; A.D. has received consulting fees from GSK, Pfizer, AstraZeneca, Celgene, Eli Lilly and Baxalta; S.R.V. has received consulting fees, speaker’s honoraria and unrestricted research grants from Abbott, Alfasigma, Amgen, Arenapharm, BMS, Falk Pharma GmbH, Ferring Pharmaceuticals, Gilead, iQuone, Janssen, MSD, Permamed, Pfizer, Sanofi-Aventis, Schwabe Pharma, Takeda, Tillotts, UCB and Vifor; R.R. has received honoraria and speaker fees from Novartis, AbbVie, Pfizer, MSD and Janssen.

Peer review

Peer review information

Nature Reviews Rheumatology thanks C.-R. Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cozzi, G., Scagnellato, L., Lorenzin, M. et al. Spondyloarthritis with inflammatory bowel disease: the latest on biologic and targeted therapies. Nat Rev Rheumatol 19, 503–518 (2023). https://doi.org/10.1038/s41584-023-00984-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-023-00984-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing