Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Mechanisms underlying the long-term and withdrawal effects of denosumab therapy on bone

Subjects

Abstract

Denosumab, a human monoclonal antibody against receptor activator of nuclear factor-κB ligand (RANKL), is a potent inhibitor of osteoclast differentiation and activity. As the first biologic drug used to treat osteoporosis, denosumab has shown potent anti-resorptive properties and anti-fracture efficacy. The effects of this drug are also unique compared with the effects of bisphosphonates: namely, long-term treatment with this drug results in a continuous gain of bone mineral density, whereas withdrawal of the drug results in a transient overshoot in bone turnover and rapid bone loss. Although the mechanisms for these specific effects remain incompletely understood, emerging experimental and clinical data have started to highlight potential biological and pharmacological mechanisms by which denosumab might affect osteoclasts, as well as osteoblasts, and cause both sustained bone gain and bone loss upon treatment cessation. This Perspective discusses those potential mechanisms and the future studies and clinical implications that might ensue from these findings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Potential mechanisms of bone loss following denosumab cessation.
Fig. 2: Potential mechanisms underlying the long-term increase in BMD with denosumab compared with bisphosphonates.

Similar content being viewed by others

References

  1. Kendler, D. L., Cosman, F., Stad, R. K. & Ferrari, S. Denosumab in the treatment of osteoporosis: 10 years later: a narrative review. Adv. Ther. 39, 58–74 (2022).

    Article  PubMed  Google Scholar 

  2. Baron, R., Ferrari, S. & Russell, R. G. Denosumab and bisphosphonates: different mechanisms of action and effects. Bone 48, 677–692 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Bone, H. G. et al. 10 years of denosumab treatment in postmenopausal women with osteoporosis: results from the phase 3 randomised FREEDOM trial and open-label extension. Lancet Diabetes Endocrinol. 5, 513–523 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Black, D. M. et al. Treatment-related changes in bone mineral density as a surrogate biomarker for fracture risk reduction: meta-regression analyses of individual patient data from multiple randomised controlled trials. Lancet Diabetes Endocrinol. 8, 672–682 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Ferrari, S. et al. Further nonvertebral fracture reduction beyond 3 years for up to 10 years of denosumab treatment. J. Clin. Endocrinol. Metab. 104, 3450–3461 (2019).

    Article  PubMed  Google Scholar 

  6. Adachi, J. D. et al. Influence of subject discontinuation on long-term nonvertebral fracture rate in the denosumab FREEDOM Extension study. BMC Musculoskelet. Disord. 18, 174 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Boonen, S. et al. Postmenopausal osteoporosis treatment with antiresorptives: effects of discontinuation or long-term continuation on bone turnover and fracture risk — a perspective. J. Bone Min. Res. 27, 963–974 (2012).

    Article  CAS  Google Scholar 

  8. Brown, J. P. et al. Bone remodeling in postmenopausal women who discontinued denosumab treatment: off-treatment biopsy study. J. Bone Min. Res. 26, 2737–2744 (2011).

    Article  CAS  Google Scholar 

  9. Tsourdi, E. et al. Fracture risk and management of discontinuation of denosumab therapy: a systematic review and position statement by ECTS. J. Clin. Endocrinol. Metab. 106, 264–281 (2020).

    Article  Google Scholar 

  10. Reid, I. R., Horne, A. M., Mihov, B. & Gamble, G. D. Bone loss after denosumab: only partial protection with zoledronate. Calcif. Tissue Int. 101, 371–374 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Eastell, R. et al. Effect of ONO-5334 on bone mineral density and biochemical markers of bone turnover in postmenopausal osteoporosis: 2-year results from the OCEAN study. J. Bone Min. Res. 29, 458–466 (2014).

    Article  CAS  Google Scholar 

  12. Eisman, J. A. et al. Odanacatib in the treatment of postmenopausal women with low bone mineral density: three-year continued therapy and resolution of effect. J. Bone Min. Res. 26, 242–251 (2011).

    Article  CAS  Google Scholar 

  13. Fuller, K. et al. Cathepsin K inhibitors prevent matrix-derived growth factor degradation by human osteoclasts. Bone 42, 200–211 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Gallagher, J. C., Rapuri, P. B., Haynatzki, G. & Detter, J. R. Effect of discontinuation of estrogen, calcitriol, and the combination of both on bone density and bone markers. J. Clin. Endocrinol. Metab. 87, 4914–4923 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Eghbali-Fatourechi, G. et al. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J. Clin. Invest. 111, 1221–1230 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jiang, L., Cui, X., Ma, H. & Tang, X. Comparison of denosumab and zoledronic acid for the treatment of solid tumors and multiple myeloma with bone metastasis: a systematic review and meta-analysis based on randomized controlled trials. J. Orthop. Surg. Res. 16, 400 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Anastasilakis, A. D. et al. Clinical features of 24 patients with rebound-associated vertebral fractures after denosumab discontinuation: systematic review and additional cases. J. Bone Min. Res. 32, 1291–1296 (2017).

    Article  CAS  Google Scholar 

  18. Cummings, S. R. et al. Vertebral fractures after discontinuation of denosumab: a post hoc analysis of the randomized placebo-controlled FREEDOM trial and its extension. J. Bone Min. Res. 33, 190–198 (2018).

    Article  CAS  Google Scholar 

  19. Cosman, F., Huang, S., McDermott, M. & Cummings, S. R. Multiple vertebral fractures after denosumab discontinuation: FREEDOM and FREEDOM Extension trials additional post hoc analyses. J. Bone Min. Res. 37, 2112–2120 (2022).

    Article  CAS  Google Scholar 

  20. Burckhardt, P., Faouzi, M., Buclin, T. & Lamy, O., The Swiss Denosumab Study Group. Fractures after denosumab discontinuation: a retrospective study of 797 cases. J. Bone Min. Res. 36, 1717–1728 (2021).

    Article  CAS  Google Scholar 

  21. Omiya, T. et al. Sustained anti-osteoporotic action of risedronate compared to anti-RANKL antibody following discontinuation in ovariectomized mice. Bone Rep. 13, 100289 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Solling, A. S., Harslof, T. & Langdahl, B. Treatment with zoledronate subsequent to denosumab in osteoporosis: a randomized trial. J. Bone Min. Res. 35, 1858–1870 (2020).

    Article  CAS  Google Scholar 

  23. Solling, A. S., Harslof, T. & Langdahl, B. Treatment with zoledronate subsequent to denosumab in osteoporosis: a 2-year randomized study. J. Bone Min. Res. 36, 1245–1254 (2021).

    Article  Google Scholar 

  24. Makras, P. et al. The duration of denosumab treatment and the efficacy of zoledronate to preserve bone mineral density after its discontinuation. J. Clin. Endocrinol. Metab. 106, e4155–e4162 (2021).

    Article  PubMed  Google Scholar 

  25. Kearns, A. E., Khosla, S. & Kostenuik, P. J. Receptor activator of nuclear factor κB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr. Rev. 29, 155–192 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Dempster, D. W. et al. Effects of long-term denosumab on bone histomorphometry and mineralization in women with postmenopausal osteoporosis. J. Clin. Endocrinol. Metab. 103, 2498–2509 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Watanabe, H. et al. Transcription factor hematopoietically expressed homeobox protein (Hhex) negatively regulates osteoclast differentiation by controlling cyclin-dependent kinase inhibitors. JBMR Plus 6, e10608 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fontalis A, G. F., Schini, M., Walsh, J. & Eastell, R. The effect of denosumab treatment on osteoclast precursor cells in postmenopausal osteoporosis. Bone Rep. 135, 39 (2020).

    Google Scholar 

  29. Anastasilakis, A. D. et al. Increased osteoclastogenesis in patients with vertebral fractures following discontinuation of denosumab treatment. Eur. J. Endocrinol. 176, 677–683 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Solling, A. S., Harslof, T., Joergensen, N. R. & Langdahl, B. Changes in RANKL and TRAcP 5b after discontinuation of denosumab suggest RANKL mediated recruitment of osteoclasts. Bone Rep. 16, 12 (2022).

    Google Scholar 

  31. McDonald, M. M. et al. Osteoclasts recycle via osteomorphs during RANKL-stimulated bone resorption. Cell 184, 1940 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cawley, K. M. et al. Local production of osteoprotegerin by osteoblasts suppresses bone resorption. Cell Rep. 32, 108052 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rinotas, V. et al. Novel genetic models of osteoporosis by overexpression of human RANKL in transgenic mice. J. Bone Min. Res. 29, 1158–1169 (2014).

    Article  CAS  Google Scholar 

  34. Fu, Q. et al. Low osteoblast number and OPG levels may contribute to rebound resorption after discontinuation of denosumab administration. J. Bone Min. Res 37, 338 (2021).

    Google Scholar 

  35. Nakashima, T. et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat. Med. 17, 1231–1234 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Martinez-Reina, J., Calvo-Gallego, J. L. & Pivonka, P. Combined effects of exercise and denosumab treatment on local failure in post-menopausal osteoporosis-insights from bone remodelling simulations accounting for mineralisation and damage. Front. Bioeng. Biotechnol. 9, 635056 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bonnet, N. et al. Influence of fatigue loading and bone turnover on bone strength and pattern of experimental fractures of the tibia in mice. Calcif. Tissue Int. 99, 99–109 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Frost, H. M. Bone “mass” and the “mechanostat”: a proposal. Anat. Rec. 219, 1–9 (1987).

    Article  CAS  PubMed  Google Scholar 

  39. Hart, N. H. et al. Mechanical basis of bone strength: influence of bone material, bone structure and muscle action. J. Musculoskelet. Neuronal Interact. 17, 114–139 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Gerbaix, M., Vico, L., Ferrari, S. L. & Bonnet, N. Periostin expression contributes to cortical bone loss during unloading. Bone 71, 94–100 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Bonnet, N., Garnero, P. & Ferrari, S. Periostin action in bone. Mol. Cell Endocrinol. 432, 75–82 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Bonnet, N., Bourgoin, L., Biver, E., Douni, E. & Ferrari, S. RANKL inhibition improves muscle strength and insulin sensitivity and restores bone mass. J. Clin. Invest. 133, e169317 (2019).

    Article  Google Scholar 

  43. Kistler-Fischbacher, M., Yong, J. S., Weeks, B. K. & Beck, B. R. A comparison of bone-targeted exercise with and without antiresorptive bone medication to reduce indices of fracture risk in postmenopausal women with low bone mass: the MEDEX-OP randomized controlled trial. J. Bone Min. Res. 36, 1680–1693 (2021).

    Article  CAS  Google Scholar 

  44. Eastell, R., Walsh, J. S., Watts, N. B. & Siris, E. Bisphosphonates for postmenopausal osteoporosis. Bone 49, 82–88 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Farlay, D. et al. Bone mineral and organic properties in postmenopausal women treated with denosumab for up to 10 years. J. Bone Min. Res. 37, 856–864 (2022).

    Article  CAS  Google Scholar 

  46. Ominsky, M. S. et al. Sustained modeling-based bone formation during adulthood in cynomolgus monkeys may contribute to continuous BMD gains with denosumab. J. Bone Min. Res. 30, 1280–1289 (2015).

    Article  CAS  Google Scholar 

  47. Dempster, D. W. et al. Modeling-based bone formation in the human femoral neck in subjects treated with denosumab. J. Bone Min. Res. 35, 1282–1288 (2020).

    Article  CAS  Google Scholar 

  48. Kim, B. J. Effects of muscles on bone metabolism-with a focus on myokines. Ann. Geriatr. Med. Res. 26, 63–71 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pennypacker, B. L. et al. Inhibition of cathepsin K increases modeling-based bone formation, and improves cortical dimension and strength in adult ovariectomized monkeys. J. Bone Min. Res. 29, 1847–1858 (2014).

    Article  CAS  Google Scholar 

  50. Bonnet, N., Brun, J., Rousseau, J. C., Duong, L. T. & Ferrari, S. L. Cathepsin K controls cortical bone formation by degrading periostin. J. Bone Min. Res. 32, 1432–1441 (2017).

    Article  CAS  Google Scholar 

  51. Bonnet, N. et al. RANKL-induced increase in cathepsin K levels restricts cortical expansion in a periostin-dependent fashion: a potential new mechanism of bone fragility. J. Bone Min. Res. 36, 1636–1645 (2021).

    Article  CAS  Google Scholar 

  52. Ikebuchi, Y. et al. Coupling of bone resorption and formation by RANKL reverse signalling. Nature 561, 195–200 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Dennison, E. M. et al. Fracture risk following intermission of osteoporosis therapy. Osteoporos. Int. 30, 1733–1743 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Everts-Graber, J. et al. Risk factors for vertebral fractures and bone loss after denosumab discontinuation: a real-world observational study. Bone 144, 115830 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.F. researched data for the article and wrote the article. B.L. contributed to the writing of the article. Both authors contributed substantially to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Serge Ferrari.

Ethics declarations

Competing interests

B.L. has received research grants from Amgen and Novo Nordisk, and is on the advisory board and performs lectures for Amgen, Astellas, AstraZeneca, Eli Lilly, Gedeon-Richter, Gilead and UCB. S.F. has received research support from Agnovos, Alexion, Amgen, and UCB, and is on the scientific advisory board of Agnovos, Alexion, Amgen, Boehringer, Flowbone, Fresenius, Labatec, Myovant, Parexel, Radius and UCB.

Peer review

Peer review information

Nature Reviews Rheumatology thanks E. Seeman, R. Eastell and R. Baron for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrari, S., Langdahl, B. Mechanisms underlying the long-term and withdrawal effects of denosumab therapy on bone. Nat Rev Rheumatol 19, 307–317 (2023). https://doi.org/10.1038/s41584-023-00935-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-023-00935-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing