Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Intervertebral disc degeneration and osteoarthritis: a common molecular disease spectrum

Abstract

Intervertebral disc degeneration (IDD) and osteoarthritis (OA) affecting the facet joint of the spine are biomechanically interdependent, typically occur in tandem, and have considerable epidemiological and pathophysiological overlap. Historically, the distinctions between these degenerative diseases have been emphasized. Therefore, research in the two fields often occurs independently without adequate consideration of the co-dependence of the two sites, which reside within the same functional spinal unit. Emerging evidence from animal models of spine degeneration highlight the interdependence of IDD and facet joint OA, warranting a review of the parallels between these two degenerative phenomena for the benefit of both clinicians and research scientists. This Review discusses the pathophysiological aspects of IDD and OA, with an emphasis on tissue, cellular and molecular pathways of degeneration. Although the intervertebral disc and synovial facet joint are biologically distinct structures that are amenable to reductive scientific consideration, substantial overlap exists between the molecular pathways and processes of degeneration (including cartilage destruction, extracellular matrix degeneration and osteophyte formation) that occur at these sites. Thus, researchers, clinicians, advocates and policy-makers should consider viewing the burden and management of spinal degeneration holistically as part of the OA disease continuum.

Key points

  • Each functional spinal unit is made up of two vertebrae, one fibrocartilaginous intervertebral disc (IVD) joint and two conventional synovial facet joints.

  • Phenomenological features of IVD degeneration and facet joint osteoarthritis have considerable overlap, including the destruction of cartilage and other joint tissues, subchondral bone changes, osteophyte formation and reduced joint space.

  • Important overlapping endogenous molecular processes of IVD degeneration and facet joint osteoarthritis include extracellular matrix degeneration, inflammation, oxidative stress, apoptosis, senescence and reduced autophagy.

  • An important objective for the field will be to determine whether unique clinically relevant overlapping endotypes are present, which might correspond to a specific molecular process or biomarker.

  • Further unified studies are required that directly compare the molecular signatures of matched tissue samples from the IVD and facet joint using clinical samples and/or mouse models of disease progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of normal and degenerated vertebral and knee joints.
Fig. 2: Computer tomography images of endstage intervertebral disc and facet joint degeneration.
Fig. 3: Regional impact of alignment.
Fig. 4: Processes that promote pathology in IVD and OA.

Similar content being viewed by others

References

  1. Lo, J., Chan, L. & Flynn, S. A Systematic review of the incidence, prevalence, costs, and activity and work limitations of amputation, osteoarthritis, rheumatoid arthritis, back pain, multiple sclerosis, spinal cord injury, stroke, and traumatic brain injury in the United States: a 2019 update. Arch. Phys. Med. Rehabil. 102, 115–131 (2021).

    Article  PubMed  Google Scholar 

  2. Allen, K. D., Thoma, L. M. & Golightly, Y. M. Epidemiology of osteoarthritis. Osteoarthr. Cartil. 30, 184–195 (2022).

    Article  CAS  Google Scholar 

  3. Hartvigsen, J. et al. What low back pain is and why we need to pay attention. Lancet 391, 2356–2367 (2018).

    Article  PubMed  Google Scholar 

  4. Institute for Health Metrics and Evaluation (IHME). Low back pain — level 3 cause. https://www.healthdata.org/results/gbd_summaries/2019/low-back-pain-level-3-cause (IHME, University of Washington, 2020).

  5. Manchikanti, L. & Singh, V. Review of chronic low back pain of facet joint origin. Pain Physician 5, 83–101 (2002).

    Article  PubMed  Google Scholar 

  6. Luoma, K. et al. Low back pain in relation to lumbar disc degeneration. Spine 25, 487–492 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Perolat, R. et al. Facet joint syndrome: from diagnosis to interventional management. Insights Imaging 9, 773–789 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  8. Yamashita, K. et al. Accurate diagnosis of low back pain in adult elite athletes. J. Med. Invest. 66, 252–257 (2019).

    Article  PubMed  Google Scholar 

  9. Rahyussalim, A. J., Zufar, M. L. L. & Kurniawati, T. Significance of the association between disc degeneration changes on imaging and low back pain: a review article. Asian Spine J. 14, 245–257 (2020).

    Article  PubMed  Google Scholar 

  10. Paholpak, P. et al. Do modic changes, disc degeneration, translation and angular motion affect facet osteoarthritis of the lumbar spine. Eur. J. Radiol. 98, 193–199 (2018).

    Article  PubMed  Google Scholar 

  11. Kirkaldy-Willis, W. H. & Farfan, H. F. Instability of the lumbar spine. Clin. Orthop. Relat. Res. 165, 110–123 (1982).

    Article  Google Scholar 

  12. Eubanks, J. D., Lee, M. J., Cassinelli, E. & Ahn, N. U. Does lumbar facet arthrosis precede disc degeneration? A postmortem study. Clin. Orthop. Relat. Res. 464, 184–189 (2007).

    Article  PubMed  Google Scholar 

  13. Kushchayev, S. V. et al. ABCs of the degenerative spine. Insights Imaging 9, 253–274 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  14. Li, J., Muehleman, C., Abe, Y. & Masuda, K. Prevalence of facet joint degeneration in association with intervertebral joint degeneration in a sample of organ donors. J. Orthop. Res. 29, 1267–1274 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  15. Suri, P. et al. Does lumbar spinal degeneration begin with the anterior structures? A study of the observed epidemiology in a community-based population. BMC Musculoskelet. Disord. 12, 202 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  16. Nelson, A. E., Smith, M. W., Golightly, Y. M. & Jordan, J. M. “Generalized osteoarthritis”: a systematic review. Semin. Arthritis Rheum. 43, 713–720 (2014).

    Article  PubMed  Google Scholar 

  17. Goode, A. P. et al. Lumbar spine radiographic features and demographic, clinical, and radiographic knee, hip, and hand osteoarthritis. Arthritis Care Res. 64, 1536–1544 (2012).

    Article  Google Scholar 

  18. Perruccio, A. V. et al. The impact of multijoint symptoms on patient-reported disability following surgery for lumbar spine osteoarthritis. Spine J. 21, 80–89 (2021).

    Article  PubMed  Google Scholar 

  19. Grignon, B. & Roland, J. Can the human intervertebral disc be compared to a diarthrodial joint? Surg. Radiol. Anat. 22, 101–105 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Gellhorn, A. C., Katz, J. N. & Suri, P. Osteoarthritis of the spine: the facet joints. Nat. Rev. Rheumatol. 9, 216–224 (2013).

    Article  PubMed  Google Scholar 

  21. Lane, N. E. et al. OARSI-FDA initiative: defining the disease state of osteoarthritis. Osteoarthr. Cartil. 19, 478–482 (2011).

    Article  CAS  Google Scholar 

  22. Badley, E. M., Millstone, D. B. & Perruccio, A. V. Back pain and co-occurring conditions: findings from a nationally representative sample. Spine 43, E935–e941 (2018).

    Article  PubMed  Google Scholar 

  23. Slater, M., Perruccio, A. V. & Badley, E. M. Musculoskeletal comorbidities in cardiovascular disease, diabetes and respiratory disease: the impact on activity limitations; a representative population-based study. BMC Public Health 11, 77 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  24. Swain, S., Sarmanova, A., Coupland, C., Doherty, M. & Zhang, W. Comorbidities in osteoarthritis: a systematic review and meta-analysis of observational studies. Arthritis Care Res. 72, 991–1000 (2020).

    Article  CAS  Google Scholar 

  25. Constantino de Campos, G. et al. Osteoarthritis, mobility-related comorbidities and mortality: an overview of meta-analyses. Ther. Adv. Musculoskelet. Dis. 12, 1759720x20981219 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  26. Roseen, E. J. et al. Association of back pain with mortality: a systematic review and meta-analysis of cohort studies. J. Gen. Intern. Med. 36, 3148–3158 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  27. Rustenburg, C. M. E. et al. Osteoarthritis and intervertebral disc degeneration: quite different, quite similar. JOR Spine 1, e1033 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  28. Collins, D. H. The Pathology of Articular and Spinal Disease 74–115 (Edward Arnold & Co, 1949).

  29. Oegema, T. R. Jr. & Bradford, D. S. The inter-relationship of facet joint osteoarthritis and degenerative disc disease. Br. J. Rheumatol. 30 (Suppl. 1), 16–20 (1991).

    PubMed  Google Scholar 

  30. Fujiwara, A. et al. The relationship between disc degeneration, facet joint osteoarthritis, and stability of the degenerative lumbar spine. J. Spinal Disord. 13, 444–450 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Adams, M. A. & Roughley, P. J. What is intervertebral disc degeneration, and what causes it? Spine 31, 2151–2161 (2006).

    Article  PubMed  Google Scholar 

  32. de Luca, K. et al. Consensus for statements regarding a definition for spinal osteoarthritis for use in research and clinical practice: a Delphi study. Arthritis Care Res. https://doi.org/10.1002/acr.24829 (2021).

    Article  Google Scholar 

  33. Bogduk, N. Clinical and Radiological Anatomy of the Lumbar Spine 5th edn (Churchill Livingstone Elsevier, 2012).

  34. Huang, Y. C., Urban, J. P. & Luk, K. D. Intervertebral disc regeneration: do nutrients lead the way. Nat. Rev. Rheumatol. 10, 561–566 (2014).

    Article  PubMed  Google Scholar 

  35. Rivera Tapia, E. D., Meakin, J. R. & Holsgrove, T. P. In-vitro models of disc degeneration — a review of methods and clinical relevance. J. Biomech. 142, 111260 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Fearing, B. V., Hernandez, P. A., Setton, L. A. & Chahine, N. O. Mechanotransduction and cell biomechanics of the intervertebral disc. JOR Spine https://doi.org/10.1002/jsp2.1026 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  37. Wong, J. et al. Nutrient supply and nucleus pulposus cell function: effects of the transport properties of the cartilage endplate and potential implications for intradiscal biologic therapy. Osteoarthr. Cartil. 27, 956–964 (2019).

    Article  CAS  Google Scholar 

  38. Tomaszewski, K. A., Saganiak, K., Gładysz, T. & Walocha, J. A. The biology behind the human intervertebral disc and its endplates. Folia Morphol. 74, 157–168 (2015).

    Article  CAS  Google Scholar 

  39. Kapetanakis, S. & Gkantsinikoudis, N. Anatomy of lumbar facet joint: a comprehensive review. Folia Morphol. 80, 799–805 (2021).

    Article  CAS  Google Scholar 

  40. Almeer, G. et al. Anatomy and pathology of facet joint. J. Orthop. 22, 109–117 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Ko, H.-Y. in Management and Rehabilitation of Spinal Cord Injuries (ed. Hyun-Yoon Ko) 101–114 (Springer Nature Singapore, 2022).

  42. Monemdjou, R., Fahmi, H. & Kapoor, M. Synovium in the pathophysiology of osteoarthritis. Therapy 7, 661–668 (2010).

    Article  Google Scholar 

  43. Mathiessen, A. & Conaghan, P. G. Synovitis in osteoarthritis: current understanding with therapeutic implications. Arthritis Res. Ther. 19, 18 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  44. Haubruck, P., Pinto, M. M., Moradi, B., Little, C. B. & Gentek, R. Monocytes, macrophages, and their potential niches in synovial joints — therapeutic targets in post-traumatic osteoarthritis? Front. Immunol. 12, 763702 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Roughley, P. J. & Mort, J. S. The role of aggrecan in normal and osteoarthritic cartilage. J. Exp. Orthop. 1, 8 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  46. Sophia Fox, A. J., Bedi, A. & Rodeo, S. A. The basic science of articular cartilage: structure, composition, and function. Sports Health 1, 461–468 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  47. Akkiraju, H. & Nohe, A. Role of chondrocytes in cartilage formation, progression of osteoarthritis and cartilage regeneration. J. Dev. Biol. 3, 177–192 (2015).

    Article  PubMed  Google Scholar 

  48. Eschweiler, J. et al. The biomechanics of cartilage — an overview. Life 11, 302 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Das Gupta, S., Workman, J., Finnilä, M. A. J., Saarakkala, S. & Thambyah, A. Subchondral bone plate thickness is associated with micromechanical and microstructural changes in the bovine patella osteochondral junction with different levels of cartilage degeneration. J. Mech. Behav. Biomed. Mater. 129, 105158 (2022).

    Article  PubMed  Google Scholar 

  50. Fournier, D. E., Kiser, P. K., Shoemaker, J. K., Battié, M. C. & Séguin, C. A. Vascularization of the human intervertebral disc: a scoping review. JOR Spine 3, e1123 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  51. Adams, M. A., McNally, D. S. & Dolan, P. ‘Stress’ distributions inside intervertebral discs. The effects of age and degeneration. J. Bone Jt. Surg. Br. 78, 965–972 (1996).

    Article  CAS  Google Scholar 

  52. Neidlinger-Wilke, C. et al. Mechanical loading of the intervertebral disc: from the macroscopic to the cellular level. Eur. Spine J. 23 (Suppl. 3), 333–343 (2014).

    Article  Google Scholar 

  53. Wang, Y. et al. Hydrostatic pressure modulates intervertebral disc cell survival and extracellular matrix homeostasis via regulating hippo-YAP/TAZ pathway. Stem Cell Int. 2021, 5626487 (2021).

    Google Scholar 

  54. Inoue, N., Orías, A. A. E. & Segami, K. Biomechanics of the lumbar facet joint. Spine Surg. Relat. Res. 4, 1–7 (2020).

    Article  PubMed  Google Scholar 

  55. Tamer, T. M. Hyaluronan and synovial joint: function, distribution and healing. Interdiscip. Toxicol. 6, 111–125 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  56. Kirnaz, S. et al. Pathomechanism and biomechanics of degenerative disc disease: features of healthy and degenerated discs. Int. J. Spine Surg. 15, 10–25 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  57. Kalichman, L. & Hunter, D. J. Lumbar facet joint osteoarthritis: a review. Semin. Arthritis Rheum. 37, 69–80 (2007).

    Article  PubMed  Google Scholar 

  58. Sebro, R., O’Brien, L., Torriani, M. & Bredella, M. A. Assessment of trunk muscle density using CT and its association with degenerative disc and facet joint disease of the lumbar spine. Skelet. Radiol. 45, 1221–1226 (2016).

    Article  Google Scholar 

  59. Noonan, A. M. & Brown, S. H. M. Paraspinal muscle pathophysiology associated with low back pain and spine degenerative disorders. JOR Spine 4, e1171 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Elder, B. D. & Athanasiou, K. A. Hydrostatic pressure in articular cartilage tissue engineering: from chondrocytes to tissue regeneration. Tissue Eng. Part B Rev. 15, 43–53 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Ateshian, G. A. The role of interstitial fluid pressurization in articular cartilage lubrication. J. Biomech. 42, 1163–1176 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  62. Lambrechts, M. J. et al. Lumbar spine intervertebral disc desiccation is associated with medical comorbidities linked to systemic inflammation. Arch. Orthop. Trauma. Surg. https://doi.org/10.1007/s00402-021-04194-3 (2021).

    Article  PubMed  Google Scholar 

  63. Videman, T. et al. Associations of 25 structural, degradative, and inflammatory candidate genes with lumbar disc desiccation, bulging, and height narrowing. Arthritis Rheum. 60, 470–481 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Ashberg, L. et al. The hip-spine connection: how to differentiate hip conditions from spine pathology. Orthopedics 44, e699–e706 (2021).

    Article  PubMed  Google Scholar 

  65. Oshima, Y. et al. Knee-hip-spine syndrome: improvement in preoperative abnormal posture following total knee arthroplasty. Adv. Orthopedics 2019, 8484938 (2019).

    Article  Google Scholar 

  66. Hassett, G., Hart, D. J., Doyle, D. V., March, L. & Spector, T. D. The relation between progressive osteoarthritis of the knee and long term progression of osteoarthritis of the hand, hip, and lumbar spine. Ann. Rheum. Dis. 65, 623–628 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Jentzsch, T. et al. Increased pelvic incidence may lead to arthritis and sagittal orientation of the facet joints at the lower lumbar spine. BMC Med. Imaging 13, 34 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  68. Roussouly, P. & Pinheiro-Franco, J. L. Biomechanical analysis of the spino-pelvic organization and adaptation in pathology. Eur. Spine J. 20 (Suppl. 5), 609–618 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  69. Toy, J. O., Tinley, J. C., Eubanks, J. D., Qureshi, S. A. & Ahn, N. U. Correlation of sacropelvic geometry with disc degeneration in spondylolytic cadaver specimens. Spine 37, E10–E15 (2012).

    Article  PubMed  Google Scholar 

  70. Cacciola, G. et al. High values of pelvic incidence: a possible risk factor for zigoapophyseal facet arthrosis in young. J. Orthop. 15, 333–336 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  71. Chen, S. Q. et al. Different spinal subtypes with varying characteristics of lumbar disc degeneration at specific level with age: a study based on an asymptomatic population. J. Orthopaed. Surg. Res. 15, 3 (2020).

    Article  Google Scholar 

  72. Cooke, T. D. Static knee alignment and its association with radiographic knee osteoarthritis. Osteoarthr. Cartil. 15, 844–845 (2007).

    Article  CAS  Google Scholar 

  73. Bashkuev, M., Reitmaier, S. & Schmidt, H. Relationship between intervertebral disc and facet joint degeneration: a probabilistic finite element model study. J. Biomech. 102, 109518 (2020).

    Article  PubMed  Google Scholar 

  74. Liu, L. et al. Molecular imaging of collagen destruction of the spine. ACS Nano 15, 19138–19149 (2021).

    Article  CAS  PubMed  Google Scholar 

  75. Fields, A. J., Ballatori, A., Liebenberg, E. C. & Lotz, J. C. Contribution of the endplates to disc degeneration. Curr. Mol. Biol. Rep. 4, 151–160 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  76. Hassan, C. R., Lee, W., Komatsu, D. E. & Qin, Y. X. Evaluation of nucleus pulposus fluid velocity and pressure alteration induced by cartilage endplate sclerosis using a poro-elastic finite element analysis. Biomech. Modeling Mechanobiol. 20, 281–291 (2021).

    Article  Google Scholar 

  77. Mapp, P. I. & Walsh, D. A. Mechanisms and targets of angiogenesis and nerve growth in osteoarthritis. Nat. Rev. Rheumatol. 8, 390–398 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Madry, H., van Dijk, C. N. & Mueller-Gerbl, M. The basic science of the subchondral bone. Knee Surg. Sports Traumatol. Arthrosc. 18, 419–433 (2010).

    Article  PubMed  Google Scholar 

  79. Ni, R., Guo, X. E., Yan, C. & Wen, C. Hemodynamic stress shapes subchondral bone in osteoarthritis: an emerging hypothesis. J. Orthop. Transl. 32, 85–90 (2022).

    Google Scholar 

  80. Burr, D. B. & Gallant, M. A. Bone remodelling in osteoarthritis. Nat. Rev. Rheumatol. 8, 665–673 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Donell, S. Subchondral bone remodelling in osteoarthritis. EFORT Open Rev. 4, 221–229 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  82. Rutges, J. P. H. J. et al. Micro-CT quantification of subchondral endplate changes in intervertebral disc degeneration. Osteoarthr. Cartil. 19, 89–95 (2011).

    Article  CAS  Google Scholar 

  83. Fields, A. J., Liebenberg, E. C. & Lotz, J. C. Innervation of pathologies in the lumbar vertebral end plate and intervertebral disc. Spine J. 14, 513–521 (2014).

    Article  PubMed  Google Scholar 

  84. Torkki, M. et al. Osteoclast activators are elevated in intervertebral disks with Modic changes among patients operated for herniated nucleus pulposus. Eur. Spine J. 25, 207–216 (2016).

    Article  PubMed  Google Scholar 

  85. Pérez-Lozano, M. L. et al. Gremlin-1 and BMP-4 overexpressed in osteoarthritis drive an osteochondral-remodeling program in osteoblasts and hypertrophic chondrocytes. Int. J. Mol. Sci. https://doi.org/10.3390/ijms23042084 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  86. Chou, C. H. et al. Synovial cell cross-talk with cartilage plays a major role in the pathogenesis of osteoarthritis. Sci. Rep. 10, 10868 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Gilbert, S. J., Bonnet, C. S. & Blain, E. J. Mechanical cues: bidirectional reciprocity in the extracellular matrix drives mechano-signalling in articular cartilage. Int. J. Mol. Sci. https://doi.org/10.3390/ijms222413595 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  88. Veras, M. A., McCann, M. R., Tenn, N. A. & Séguin, C. A. Transcriptional profiling of the murine intervertebral disc and age-associated changes in the nucleus pulposus. Connect. Tissue Res. 61, 63–81 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. McCann, M. R. & Séguin, C. A. Notochord cells in intervertebral disc development and degeneration. J. Dev. Biol. https://doi.org/10.3390/jdb4010003 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  90. Sivakamasundari, V. & Lufkin, T. Bridging the gap: understanding embryonic intervertebral disc development. Cell Dev. Biol. 1, 103 (2012).

    PubMed Central  PubMed  Google Scholar 

  91. Séguin, C. A., Chan, D., Dahia, C. L. & Gazit, Z. Latest advances in intervertebral disc development and progenitor cells. JOR Spine 1, e1030 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  92. Torre, O. M., Mroz, V., Bartelstein, M. K., Huang, A. H. & Iatridis, J. C. Annulus fibrosus cell phenotypes in homeostasis and injury: implications for regenerative strategies. Ann. N. Y. Acad. Sci. 1442, 61–78 (2019).

    Article  PubMed  Google Scholar 

  93. Ding, F., Shao, Z.-W. & Xiong, L.-M. Cell death in intervertebral disc degeneration. Apoptosis 18, 777–785 (2013).

    Article  PubMed  Google Scholar 

  94. Hwang, H. S. & Kim, H. A. Chondrocyte apoptosis in the pathogenesis of osteoarthritis. Int. J. Mol. Sci. 16, 26035–26054 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Nakamura, A. et al. Identification of microRNA-181a-5p and microRNA-4454 as mediators of facet cartilage degeneration. JCI Insight 1, e86820 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  96. Wang, Y. et al. The role of IL-1β and TNF-α in intervertebral disc degeneration. Biomed. Pharmacother. 131, 110660 (2020).

    Article  CAS  PubMed  Google Scholar 

  97. Estrada McDermott, J. et al. Role of innate immunity in initiation and progression of osteoarthritis, with emphasis on horses. Animals https://doi.org/10.3390/ani11113247 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  98. Nakazawa, K. R. et al. Accumulation and localization of macrophage phenotypes with human intervertebral disc degeneration. Spine J. 18, 343–356 (2018).

    Article  PubMed  Google Scholar 

  99. Murray, P. J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Fahy, N. et al. Human osteoarthritic synovium impacts chondrogenic differentiation of mesenchymal stem cells via macrophage polarisation state. Osteoarthr. Cartil. 22, 1167–1175 (2014).

    Article  CAS  Google Scholar 

  101. Liu, B., Zhang, M., Zhao, J., Zheng, M. & Yang, H. Imbalance of M1/M2 macrophages is linked to severity level of knee osteoarthritis. Exp. Ther. Med. 16, 5009–5014 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Tsuneyoshi, Y. et al. Functional folate receptor beta-expressing macrophages in osteoarthritis synovium and their M1/M2 expression profiles. Scand. J. Rheumatol. 41, 132–140 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Wu, C. L. et al. Conditional macrophage depletion increases inflammation and does not inhibit the development of osteoarthritis in obese macrophage fas-induced apoptosis-transgenic mice. Arthritis Rheumatol. 69, 1772–1783 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Kawakubo, A. et al. Investigation of resident and recruited macrophages following disc injury in mice. J. Orthopaed. Res. 38, 1703–1709 (2020).

    Article  CAS  Google Scholar 

  105. Miyagi, M. et al. Macrophage-derived inflammatory cytokines regulate growth factors and pain-related molecules in mice with intervertebral disc injury. J. Orthopaed. Res. https://doi.org/10.1002/jor.23888 (2018).

    Article  Google Scholar 

  106. Yamagishi, A., Nakajima, H., Kokubo, Y., Yamamoto, Y. & Matsumine, A. Polarization of infiltrating macrophages in the outer annulus fibrosus layer associated with the process of intervertebral disc degeneration and neural ingrowth in the human cervical spine. Spine J. https://doi.org/10.1016/j.spinee.2021.12.005 (2021).

    Article  PubMed  Google Scholar 

  107. Laskin, D. L., Sunil, V. R., Gardner, C. R. & Laskin, J. D. Macrophages and tissue injury: agents of defense or destruction. Annu. Rev. Pharmacol. Toxicol. 51, 267–288 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Culemann, S. et al. Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature 572, 670–675 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Mobasheri, A. et al. Recent advances in understanding the phenotypes of osteoarthritis. F1000Research https://doi.org/10.12688/f1000research.20575.1 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  110. Knobloch, T. J., Madhavan, S., Nam, J., Agarwal, S. Jr. & Agarwal, S. Regulation of chondrocytic gene expression by biomechanical signals. Crit. Rev. Eukaryot. Gene Expr. 18, 139–150 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Bleuel, J., Zaucke, F., Brüggemann, G. P. & Niehoff, A. Effects of cyclic tensile strain on chondrocyte metabolism: a systematic review. PLoS One 10, e0119816 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  112. Belavý, D. L. et al. Running exercise strengthens the intervertebral disc. Sci. Rep. 7, 45975 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  113. Fransen, M. et al. Exercise for osteoarthritis of the knee: a Cochrane systematic review. Br. J. Sports Med. 49, 1554 (2015).

    Article  PubMed  Google Scholar 

  114. Li, Z. et al. Moderate-intensity exercise alleviates pyroptosis by promoting autophagy in osteoarthritis via the P2X7/AMPK/mTOR axis. Cell Death Discov. 7, 346 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Vo, N. V. et al. Expression and regulation of metalloproteinases and their inhibitors in intervertebral disc aging and degeneration. Spine J. 13, 331–341 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  116. Tetlow, L. C., Adlam, D. J. & Woolley, D. E. Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: associations with degenerative changes. Arthritis Rheum. 44, 585–594 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Ohnishi, T., Novais, E. J. & Risbud, M. V. Alterations in ECM signature underscore multiple sub-phenotypes of intervertebral disc degeneration. Matrix Biol. 6-7, 100036 (2020).

    Article  Google Scholar 

  118. Maldonado, M. & Nam, J. The role of changes in extracellular matrix of cartilage in the presence of inflammation on the pathology of osteoarthritis. Biomed. Res. Int. 2013, 284873 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  119. Schuster, R., Rockel, J. S., Kapoor, M. & Hinz, B. The inflammatory speech of fibroblasts. Immunol. Rev. 302, 126–146 (2021).

    Article  CAS  PubMed  Google Scholar 

  120. Wynn, T. A. & Barron, L. Macrophages: master regulators of inflammation and fibrosis. Semin. Liver Dis. 30, 245–257 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Hou, Y., Shi, G., Guo, Y. & Shi, J. Epigenetic modulation of macrophage polarization prevents lumbar disc degeneration. Aging 12, 6558–6569 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  122. Chen, S. et al. TGF-β signaling in intervertebral disc health and disease. Osteoarthr. Cartil. 27, 1109–1117 (2019).

    Article  CAS  Google Scholar 

  123. Wu, C. L., Harasymowicz, N. S., Klimak, M. A., Collins, K. H. & Guilak, F. The role of macrophages in osteoarthritis and cartilage repair. Osteoarthr. Cartil. 28, 544–554 (2020).

    Article  Google Scholar 

  124. Rim, Y. A. & Ju, J. H. The role of fibrosis in osteoarthritis progression. Life https://doi.org/10.3390/life11010003 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  125. Maglaviceanu, A., Wu, B. & Kapoor, M. Fibroblast-like synoviocytes: role in synovial fibrosis associated with osteoarthritis. Wound Repair Regen. 29, 642–649 (2021).

    Article  PubMed  Google Scholar 

  126. Yee, A. et al. Fibrotic-like changes in degenerate human intervertebral discs revealed by quantitative proteomic analysis. Osteoarthr. Cartil. 24, 503–513 (2016).

    Article  CAS  Google Scholar 

  127. Au, T. Y. K. et al. Transformation of resident notochord-descendent nucleus pulposus cells in mouse injury-induced fibrotic intervertebral discs. Aging Cell 19, e13254 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  128. Lotz, M. K. & Caramés, B. Autophagy and cartilage homeostasis mechanisms in joint health, aging and OA. Nat. Rev. Rheumatol. 7, 579–587 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  129. Rockel, J. S. & Kapoor, M. Autophagy: controlling cell fate in rheumatic diseases. Nat. Rev. Rheumatol. 12, 517–531 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Madhu, V., Guntur, A. R. & Risbud, M. V. Role of autophagy in intervertebral disc and cartilage function: implications in health and disease. Matrix Biol. 100-101, 207–220 (2021).

    Article  CAS  PubMed  Google Scholar 

  131. Kritschil, R., Scott, M., Sowa, G. & Vo, N. Role of autophagy in intervertebral disc degeneration. J. Cell Physiol. 237, 1266–1284 (2022).

    Article  CAS  PubMed  Google Scholar 

  132. Zhang, Y. et al. Cartilage-specific deletion of mTOR upregulates autophagy and protects mice from osteoarthritis. Ann. Rheum. Dis. 74, 1432–1440 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. Vasheghani, F. et al. PPARγ deficiency results in severe, accelerated osteoarthritis associated with aberrant mTOR signalling in the articular cartilage. Ann. Rheum. Dis. 74, 569–578 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Kakiuchi, Y. et al. Pharmacological inhibition of mTORC1 but not mTORC2 protects against human disc cellular apoptosis, senescence, and extracellular matrix catabolism through Akt and autophagy induction. Osteoarthr. Cartil. 27, 965–976 (2019).

    Article  CAS  Google Scholar 

  135. Feng, C. et al. ROS: Crucial intermediators in the pathogenesis of intervertebral disc degeneration. Oxid. Med. Cell. Longev. 2017, 5601593 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  136. Liu, Q., Tan, Z., Xie, C., Ling, L. & Hu, H. Oxidative stress as a critical factor might involve in intervertebral disc degeneration via regulating NOXs/FOXOs. J. Orthopaed. Sci. https://doi.org/10.1016/j.jos.2021.09.010 (2021).

    Article  Google Scholar 

  137. Tudorachi, N. B. et al. The implication of reactive oxygen species and antioxidants in knee osteoarthritis. Antioxidants https://doi.org/10.3390/antiox10060985 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  138. Nasto, L. A. et al. Mitochondrial-derived reactive oxygen species (ROS) play a causal role in aging-related intervertebral disc degeneration. J. Orthopaed. Res. 31, 1150–1157 (2013).

    Article  CAS  Google Scholar 

  139. Koike, M. et al. Mechanical overloading causes mitochondrial superoxide and SOD2 imbalance in chondrocytes resulting in cartilage degeneration. Sci. Rep. 5, 11722 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  140. Fernández-Moreno, M., Rego-Pérez, I. & Blanco, F. J. Is osteoarthritis a mitochondrial disease? What is the evidence. Curr. Opin. Rheumatol. 34, 46–53 (2022).

    Article  PubMed  Google Scholar 

  141. Molinos, M. et al. Inflammation in intervertebral disc degeneration and regeneration. J. R. Soc. Interface 12, 20141191 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  142. Lyu, F.-J. et al. Painful intervertebral disc degeneration and inflammation: from laboratory evidence to clinical interventions. Bone Res. 9, 7 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  143. Sokolove, J. & Lepus, C. M. Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Ther. Adv. Musculoskelet. Dis. 5, 77–94 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  144. Berenbaum, F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthritis Cartilage 21, 16–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  145. Scanzello, C. R. Role of low-grade inflammation in osteoarthritis. Curr. Opin. Rheumatol. 29, 79–85 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  146. Woodell-May, J. E. & Sommerfeld, S. D. Role of inflammation and the immune system in the progression of osteoarthritis. J. Orthopaed. Res. Soc. 38, 253–257 (2020).

    Article  Google Scholar 

  147. Sanchez-Lopez, E., Coras, R., Torres, A., Lane, N. E. & Guma, M. Synovial inflammation in osteoarthritis progression. Nat. Rev. Rheumatol. 18, 258–275 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  148. Shi, C. et al. MiR-202-3p regulates interleukin-1β-induced expression of matrix metalloproteinase 1 in human nucleus pulposus. Gene 687, 156–165 (2019).

    Article  CAS  PubMed  Google Scholar 

  149. Séguin, C. A., Pilliar, R. M., Roughley, P. J. & Kandel, R. A. Tumor necrosis factorα modulates matrix production and catabolism in nucleus pulposus tissue. Spine 30, 1940–1948 (2005).

    Article  PubMed  Google Scholar 

  150. Xue, J., Wang, J., Liu, Q. & Luo, A. Tumor necrosis factor-α induces ADAMTS-4 expression in human osteoarthritis chondrocytes. Mol. Med. Rep. 8, 1755–1760 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Le Maitre, C. L., Hoyland, J. A. & Freemont, A. J. Catabolic cytokine expression in degenerate and herniated human intervertebral discs: IL-1β and TNFα expression profile. Arthritis Res. Ther. 9, R77 (2007).

    Article  PubMed Central  PubMed  Google Scholar 

  152. Chen, Y. et al. Macrophages in osteoarthritis: pathophysiology and therapeutics. Am. J. Transl. Res. 12, 261–268 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Miller, R. E., Scanzello, C. R. & Malfait, A.-M. An emerging role for Toll-like receptors at the neuroimmune interface in osteoarthritis. Semin. Immunopathol. 41, 583–594 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  154. Klawitter, M. et al. Expression and regulation of toll-like receptors (TLRs) in human intervertebral disc cells. Eur. Spine J. 23, 1878–1891 (2014).

    Article  PubMed  Google Scholar 

  155. Sakalyte, R. et al. The expression of inflammasomes NLRP1 and NLRP3, toll-like receptors, and vitamin D receptor in synovial fibroblasts from patients with different types of knee arthritis. Front. Immunol. https://doi.org/10.3389/fimmu.2021.767512 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  156. Krock, E. et al. Toll-like receptor activation induces degeneration of human intervertebral discs. Sci. Rep. 7, 17184 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  157. Barreto, G., Manninen, M. & K, K. E. Osteoarthritis and toll-like receptors: when innate immunity meets chondrocyte apoptosis. Biology https://doi.org/10.3390/biology9040065 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  158. Wang, L. et al. Dioscin attenuates interleukin 1β (IL-1β)-induced catabolism and apoptosis via modulating the Toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling in human nucleus pulposus cells. Med. Sci. Monit. 26, e923386 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  159. van Lent, P. L. et al. Crucial role of synovial lining macrophages in the promotion of transforming growth factor beta-mediated osteophyte formation. Arthritis Rheum. 50, 103–111 (2004).

    Article  PubMed  Google Scholar 

  160. Zhen, G. & Cao, X. Targeting TGFβ signaling in subchondral bone and articular cartilage homeostasis. Trends Pharmacol. Sci. 35, 227–236 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  161. Bian, Q. et al. Excessive activation of TGFβ by spinal instability causes vertebral endplate sclerosis. Sci. Rep. 6, 27093 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  162. Thielen, N. et al. Osteoarthritis-related inflammation blocks TGF-β‘s protective effect on chondrocyte hypertrophy via (de)phosphorylation of the SMAD2/3 linker region. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22158124 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  163. Yokozeki, Y. et al. TGF-β regulates nerve growth factor expression in a mouse intervertebral disc injury model. BMC Musculoskelet. Disord. 22, 634 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  164. Francisco, V. et al. A new immunometabolic perspective of intervertebral disc degeneration. Nat. Rev. Rheumatol. 18, 47–60 (2022).

    Article  CAS  PubMed  Google Scholar 

  165. Risbud, M. V. & Shapiro, I. M. Role of cytokines in intervertebral disc degeneration: pain and disc content. Nat. Rev. Rheumatol. 10, 44–56 (2014).

    Article  CAS  PubMed  Google Scholar 

  166. Conde, J. et al. Adipokines and osteoarthritis: novel molecules involved in the pathogenesis and progression of disease. Arthritis 2011, 203901 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  167. Ruiz-Fernández, C. et al. Molecular relationships among obesity, inflammation and intervertebral disc degeneration: are adipokines the common link? Int. J. Mol. Sci. https://doi.org/10.3390/ijms20082030 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  168. Lai, Q. et al. Expression of adiponectin in the subchondral bone of lumbar facet joints with different degrees of degeneration. BMC Musculoskelet. Disord. 18, 427 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  169. Zhao, C. W. et al. An update on the emerging role of resistin on the pathogenesis of osteoarthritis. Mediators Inflamm. 2019, 1532164 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  170. Yan, M., Zhang, J., Yang, H. & Sun, Y. The role of leptin in osteoarthritis. Medicine 97, e0257 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  171. Hui, W. et al. Leptin produced by joint white adipose tissue induces cartilage degradation via upregulation and activation of matrix metalloproteinases. Ann. Rheum. Dis. 71, 455 (2012).

    Article  CAS  PubMed  Google Scholar 

  172. Francisco, V. et al. Biomechanics, obesity, and osteoarthritis. The role of adipokines: when the levee breaks. J. Orthopaed. Res. 36, 594–604 (2018).

    CAS  Google Scholar 

  173. Piva, S. R. et al. Links between osteoarthritis and diabetes: implications for management from a physical activity perspective. Clin. Geriatr. Med. 31, 67–87 (2015).

    Article  PubMed  Google Scholar 

  174. Laiguillon, M. C. et al. Characterization of diabetic osteoarthritic cartilage and role of high glucose environment on chondrocyte activation: toward pathophysiological delineation of diabetes mellitus-related osteoarthritis. Osteoarthr. Cartil. 23, 1513–1522 (2015).

    Article  Google Scholar 

  175. Mobasheri, A., Matta, C., Zákány, R. & Musumeci, G. Chondrosenescence: definition, hallmarks and potential role in the pathogenesis of osteoarthritis. Maturitas 80, 237–244 (2015).

    Article  CAS  PubMed  Google Scholar 

  176. Endisha, H., Rockel, J., Jurisica, I. & Kapoor, M. The complex landscape of microRNAs in articular cartilage: biology, pathology, and therapeutic targets. JCI Insight https://doi.org/10.1172/jci.insight.121630 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  177. Zhao, L. et al. Extensive mechanical tension promotes annulus fibrosus cell senescence through suppressing cellular autophagy. Biosci. Rep. https://doi.org/10.1042/bsr20190163 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  178. Zhang, Y. et al. Cell senescence: a nonnegligible cell state under survival stress in pathology of intervertebral disc degeneration. Oxid. Med. Cell. Longev. 2020, 9503562 (2020).

    PubMed Central  PubMed  Google Scholar 

  179. Zhang, X.-X. et al. Aging, cell senescence, the pathogenesis and targeted therapies of osteoarthritis. Front. Pharmacol. https://doi.org/10.3389/fphar.2021.728100 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  180. Zhang, J. et al. Interaction between C/EBPβ and RUNX2 promotes apoptosis of chondrocytes during human lumbar facet joint degeneration. J. Mol. Histol. 51, 401–410 (2020).

    Article  CAS  PubMed  Google Scholar 

  181. Jiang, J. et al. Knockdown of TRAF6 inhibits chondrocytes apoptosis and inflammation by suppressing the NF-κB pathway in lumbar facet joint osteoarthritis. Mol. Cell Biochem. 476, 1929–1938 (2021).

    Article  CAS  PubMed  Google Scholar 

  182. Cazzanelli, P. & Wuertz-Kozak, K. MicroRNAs in intervertebral disc degeneration, apoptosis, inflammation, and mechanobiology. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21103601 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  183. Malemud, C. J. MicroRNAs and osteoarthritis. Cells https://doi.org/10.3390/cells7080092 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  184. Ding, Y., Wang, L., Zhao, Q., Wu, Z. & Kong, L. MicroRNA-93 inhibits chondrocyte apoptosis and inflammation in osteoarthritis by targeting the TLR4/NF-κB signaling pathway. Int. J. Mol. Med. 43, 779–790 (2019).

    CAS  PubMed  Google Scholar 

  185. Xin, J. et al. Treatment of intervertebral disc degeneration. Orthopaed. Surg. 14, 1271–1280 (2022).

    Article  Google Scholar 

  186. Civinini, R. et al. Growth factors in the treatment of early osteoarthritis. Clin. Cases Miner. Bone Metab. 10, 26–29 (2013).

    PubMed Central  PubMed  Google Scholar 

  187. Conaghan, P. G., Cook, A. D., Hamilton, J. A. & Tak, P. P. Therapeutic options for targeting inflammatory osteoarthritis pain. Nat. Rev. Rheumatol. 15, 355–363 (2019).

    Article  PubMed  Google Scholar 

  188. Mohd Isa, I. L. et al. Intervertebral disc degeneration: biomaterials and tissue engineering strategies toward precision medicine. Adv. Healthc. Mater. 11, e2102530 (2022).

    Article  PubMed  Google Scholar 

  189. Urban, J. P. G. & Fairbank, J. C. T. Current perspectives on the role of biomechanical loading and genetics in development of disc degeneration and low back pain; a narrative review. J. Biomech. 102, 109573 (2020).

    Article  PubMed  Google Scholar 

  190. Dório, M. & Deveza, L. A. Phenotypes in osteoarthritis: why do we need them and where are we at? Clin. Geriatr. Med. 38, 273–286 (2022).

    Article  PubMed  Google Scholar 

  191. Arendt-Nielsen, L. et al. Assessment and manifestation of central sensitisation across different chronic pain conditions. Eur. J. Pain. 22, 216–241 (2018).

    Article  CAS  PubMed  Google Scholar 

  192. van Spil, W. E. et al. A consensus-based framework for conducting and reporting osteoarthritis phenotype research. Arthritis Res. Ther. 22, 54 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  193. Pattappa, G. et al. Diversity of intervertebral disc cells: phenotype and function. J. Anat. 221, 480–496 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  194. Haschtmann, D., Stoyanov, J. V., Gedet, P. & Ferguson, S. J. Vertebral endplate trauma induces disc cell apoptosis and promotes organ degeneration in vitro. Eur. Spine J. 17, 289–299 (2008).

    Article  PubMed  Google Scholar 

  195. Vo, N. V. et al. Molecular mechanisms of biological aging in intervertebral discs. J. Orthopaed. Res. 34, 1289–1306 (2016).

    Article  Google Scholar 

  196. Ospelt, C. Synovial fibroblasts in 2017. RMD Open 3, e000471 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  197. Ryu, J. H. et al. Hypoxia-inducible factor-2α regulates Fas-mediated chondrocyte apoptosis during osteoarthritic cartilage destruction. Cell Death Differ. 19, 440–450 (2012).

    Article  CAS  PubMed  Google Scholar 

  198. Nakawaki, M. et al. Changes in nerve growth factor expression and macrophage phenotype following intervertebral disc injury in mice. J. Orthopaed. Res. 37, 1798–1804 (2019).

    Article  CAS  Google Scholar 

  199. Wang, D., Chai, X. Q., Hu, S. S. & Pan, F. Joint synovial macrophages as a potential target for intra-articular treatment of osteoarthritis-related pain. Osteoarthr. Cartil. https://doi.org/10.1016/j.joca.2021.11.014 (2021).

    Article  Google Scholar 

  200. Hsueh, M. F., Zhang, X., Wellman, S. S., Bolognesi, M. P. & Kraus, V. B. Synergistic roles of macrophages and neutrophils in osteoarthritis progression. Arthritis Rheumatol. 73, 89–99 (2021).

    Article  CAS  PubMed  Google Scholar 

  201. Kaneva, M. K. Neutrophil elastase and its inhibitors-overlooked players in osteoarthritis. FEBS J. 289, 113–116 (2022).

    Article  CAS  PubMed  Google Scholar 

  202. Wang, G. et al. Neutrophil elastase induces chondrocyte apoptosis and facilitates the occurrence of osteoarthritis via caspase signaling pathway. Front. Pharmacol. 12, 666162 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  203. Chatham, W. W. et al. Degradation of human articular cartilage by neutrophils in synovial fluid. Arthritis Rheum. 36, 51–58 (1993).

    Article  CAS  PubMed  Google Scholar 

  204. Muley, M. M., Krustev, E., Reid, A. R. & McDougall, J. J. Prophylactic inhibition of neutrophil elastase prevents the development of chronic neuropathic pain in osteoarthritic mice. J. Neuroinflammation 14, 168 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  205. Yuan, Y. et al. Association between chronic inflammation and latent infection of Propionibacterium acnes in non-pyogenic degenerated intervertebral discs: a pilot study. Eur. Spine J. 27, 2506–2517 (2018).

    Article  PubMed  Google Scholar 

  206. Rajasekaran, S. et al. Novel biomarkers of health and degeneration in human intervertebral discs: in-depth proteomic analysis of collagen framework of fetal, healthy, scoliotic, degenerate, and herniated discs. Asian Spine J. https://doi.org/10.31616/asj.2021.0535 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  207. Gorth, D. J., Shapiro, I. M. & Risbud, M. V. Transgenic mice overexpressing human TNF-α experience early onset spontaneous intervertebral disc herniation in the absence of overt degeneration. Cell Death Dis. 10, 7 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  208. Ma, X., Su, J., Wang, B. & Jin, X. Identification of characteristic genes in whole blood of intervertebral disc degeneration patients by weighted gene coexpression network analysis (WGCNA). Comput. Math. Meth. Med. 2022, 6609901 (2022).

    Google Scholar 

  209. Liu, W. et al. Single-cell profiles of age-related osteoarthritis uncover underlying heterogeneity associated with disease progression. Front. Mol. Biosci. 8, 748360 (2021).

    Article  CAS  PubMed  Google Scholar 

  210. Zhu, W. et al. Alterations in peripheral T cell and B cell subsets in patients with osteoarthritis. Clin. Rheumatol. 39, 523–532 (2020).

    Article  PubMed  Google Scholar 

  211. Collins Kelsey, H. et al. Adipose tissue is a critical regulator of osteoarthritis. Proc. Natl Acad. Sci. USA 118, e2021096118 (2021).

    Article  PubMed  Google Scholar 

  212. Ching, K., Houard, X., Berenbaum, F. & Wen, C. Hypertension meets osteoarthritis - revisiting the vascular aetiology hypothesis. Nat. Rev. Rheumatol. 17, 533–549 (2021).

    Article  PubMed  Google Scholar 

  213. Hu, Y., Chen, X., Wang, S., Jing, Y. & Su, J. Subchondral bone microenvironment in osteoarthritis and pain. Bone Res. 9, 20 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  214. Kim, J. S. et al. Characterization of degenerative human facet joints and facet joint capsular tissues. Osteoarthr. Cartil. 23, 2242–2251 (2015).

    Article  Google Scholar 

  215. Zhang, S. et al. The role of structure and function changes of sensory nervous system in intervertebral disc-related low back pain. Osteoarthr. Cartil. 29, 17–27 (2021).

    Article  CAS  Google Scholar 

  216. Zhang, Y. et al. Single-cell RNA-seq analysis identifies unique chondrocyte subsets and reveals involvement of ferroptosis in human intervertebral disc degeneration. Osteoarthr. Cartil. 29, 1324–1334 (2021).

    Article  CAS  Google Scholar 

  217. Lotz, J. C., Fields, A. J. & Liebenberg, E. C. The role of the vertebral end plate in low back pain. Glob. Spine J. 3, 153–164 (2013).

    Article  CAS  Google Scholar 

  218. Miyagi, M. et al. ISSLS Prize winner: increased innervation and sensory nervous system plasticity in a mouse model of low back pain due to intervertebral disc degeneration. Spine 39, 1345–1354 (2014).

    Article  PubMed  Google Scholar 

  219. Groh, A. M. R., Fournier, D. E., Battié, M. C. & Séguin, C. A. Innervation of the human intervertebral disc: a scoping review. Pain Med. 22, 1281–1304 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  220. Miller, R. J., Malfait, A. M. & Miller, R. E. The innate immune response as a mediator of osteoarthritis pain. Osteoarthr. Cartil. 28, 562–571 (2020).

    Article  CAS  Google Scholar 

  221. Luo, L. et al. Injectable cartilage matrix hydrogel loaded with cartilage endplate stem cells engineered to release exosomes for non-invasive treatment of intervertebral disc degeneration. Bioact. Mater. 15, 29–43 (2022).

    Article  CAS  PubMed  Google Scholar 

  222. Yang, L., Li, Z. & Ouyang, Y. Taurine attenuates ER stress-associated apoptosis and catabolism in nucleus pulposus cells. Mol. Med. Rep. https://doi.org/10.3892/mmr.2022.12688 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  223. Xu, D. et al. MMP-1 overexpression induced by IL-1β: possible mechanism for inflammation in degenerative lumbar facet joint. J. Orthopaed. Sci. 18, 1012–1019 (2013).

    Article  CAS  Google Scholar 

  224. Shang, P., Liu, Y. & Jia, J. Paeonol inhibits inflammatory response and protects chondrocytes by upregulating sirtuin 1. Can. J. Physiol. Pharmacol. 100, 283–290 (2022).

    Article  CAS  PubMed  Google Scholar 

  225. Zhang, H., Zheng, W., Li, D. & Zheng, J. MiR-379-5p Promotes chondrocyte proliferation via inhibition of PI3K/Akt pathway by targeting YBX1 in osteoarthritis. Cartilage 13, 19476035221074024 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  226. Xu, K., Gao, Y., Yang, L., Liu, Y. & Wang, C. Magnolin exhibits anti-inflammatory effects on chondrocytes via the NF-κB pathway for attenuating anterior cruciate ligament transection-induced osteoarthritis. Connect. Tissue Res. 62, 475–484 (2021).

    Article  CAS  PubMed  Google Scholar 

  227. Wang, A. et al. Shikonin, a promising therapeutic drug for osteoarthritis that acts via autophagy activation. Int. Immunopharmacol. 106, 108563 (2022).

    Article  CAS  PubMed  Google Scholar 

  228. Liu, C. & Chen, Y. Ketorolac tromethamine alleviates IL-1β-induced chondrocyte injury by inhibiting COX-2 expression. Exp. Ther. Med. 23, 337 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  229. Kalichman, L. & Hunter, D. J. The genetics of intervertebral disc degeneration. Associated genes. Joint Bone Spine 75, 388–396 (2008).

    Article  CAS  PubMed  Google Scholar 

  230. Zhu, M. et al. lncRNA LINC00284 promotes nucleus pulposus cell proliferation and ECM synthesis via regulation of the miR-205-3p/Wnt/β-catenin axis. Mol. Med. Rep. https://doi.org/10.3892/mmr.2022.12695 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  231. Zheng, H. L. et al. Increased expression of prolyl endopeptidase induced by oxidative stress in nucleus pulposus cells aggravates intervertebral disc degeneration. Oxid. Med. Cell. Longev. 2022, 9731800 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  232. Song, J. et al. Exosome-transported circRNA_0000253 competitively adsorbs microRNA-141-5p and increases IDD. Mol. Ther. Nucleic Acids 21, 1087–1099 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  233. Jing, W. & Liu, W. HOXC13-AS Induced extracellular matrix loss via targeting miR-497-5p/ADAMTS5 in intervertebral disc. Front. Mol. Biosci. 8, 643997 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  234. Du, X. F. et al. Role of the miR-133a-5p/FBXO6 axis in the regulation of intervertebral disc degeneration. J. Orthop. Transl. 29, 123–133 (2021).

    Google Scholar 

  235. Zhang, T. W. et al. Decorin inhibits nucleus pulposus apoptosis by matrix-induced autophagy via the mTOR pathway. J. Orthopaed. Res. 39, 1777–1788 (2021).

    Article  CAS  Google Scholar 

  236. Nabavizadeh, S. S. et al. Attenuation of osteoarthritis progression through intra-articular injection of a combination of synovial membrane-derived MSCs (SMMSCs), platelet-rich plasma (PRP) and conditioned medium (secretome). J. Orthopaed. Surg. Res. 17, 102 (2022).

    Article  Google Scholar 

  237. Wang, Z., Rao, Z., Wang, X., Jiang, C. & Yang, Y. circPhc3 sponging microRNA-93-3p is involved in the regulation of chondrocyte function by mechanical instability in osteoarthritis. Int. J. Mol. Med. https://doi.org/10.3892/ijmm.2021.5061 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  238. Feng, M. et al. Circ_0020093 ameliorates IL-1β-induced apoptosis and extracellular matrix degradation of human chondrocytes by upregulating SPRY1 via targeting miR-23b. Mol. Cell. Biochem. 476, 3623–3633 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  239. Li, M., Peng, Z., Wang, X. & Wang, Y. Monoamine oxidase A attenuates chondrocyte loss and extracellular matrix degradation in osteoarthritis by inducing autophagy. Int. Immunopharmacol. 109, 108772 (2022).

    Article  CAS  PubMed  Google Scholar 

  240. Bai, X. et al. Cyanidin attenuates the apoptosis of rat nucleus pulposus cells and the degeneration of intervertebral disc via the JAK2/STAT3 signal pathway in vitro and in vivo. Pharm. Biol. 60, 427–436 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  241. Chen, D. & Jiang, X. Exosomes-derived miR-125-5p from cartilage endplate stem cells regulates autophagy and ECM metabolism in nucleus pulposus by targeting SUV38H1. Exp. Cell Res. 414, 113066 (2022).

    Article  CAS  PubMed  Google Scholar 

  242. Ma, H. et al. MFG-E8 alleviates intervertebral disc degeneration by suppressing pyroptosis and extracellular matrix degradation in nucleus pulposus cells via Nrf2/TXNIP/NLRP3 axis. Cell Death Discov. 8, 209 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  243. Liu, J., Yu, P., Dai, F., Jiang, H. & Ma, Z. Tetrandrine reduces oxidative stress, apoptosis, and extracellular matrix degradation and improves intervertebral disc degeneration by inducing autophagy. Bioengineered 13, 3944–3957 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  244. Yang, S. & Liao, W. Hydroxysafflor yellow A attenuates oxidative stress injury-induced apoptosis in the nucleus pulposus cell line and regulates extracellular matrix balance via CA XII. Exp. Ther. Med. 23, 182 (2022).

    Article  CAS  PubMed  Google Scholar 

  245. Shao, M., Lv, D., Zhou, K., Sun, H. & Wang, Z. Senkyunolide A inhibits the progression of osteoarthritis by inhibiting the NLRP3 signalling pathway. Pharm. Biol. 60, 535–542 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  246. Liu, Y., Li, Q., Gao, Z., Lei, F. & Gao, X. Circ-SPG11 knockdown hampers IL-1β-induced osteoarthritis progression via targeting miR-337-3p/ADAMTS5. J. Orthopaed. Surg. Res. 16, 392 (2021).

    Article  CAS  Google Scholar 

  247. Lin, Z. et al. Echinacoside upregulates Sirt1 to suppress endoplasmic reticulum stress and inhibit extracellular matrix degradation in vitro and ameliorates osteoarthritis in vivo. Oxid. Med. Cell. Longev. 2021, 3137066 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  248. Lv, S. et al. Quercetin mediates TSC2-RHEB-mTOR pathway to regulate chondrocytes autophagy in knee osteoarthritis. Gene 820, 146209 (2022).

    Article  CAS  PubMed  Google Scholar 

  249. Endisha, H. et al. MicroRNA-34a-5p promotes joint destruction during osteoarthritis. Arthritis Rheumatol. 73, 426–439 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  250. Zhang, M., Mou, L., Liu, S., Sun, F. & Gong, M. Circ_0001103 alleviates IL-1β-induced chondrocyte cell injuries by upregulating SIRT1 via targeting miR-375. Clin. Immunol. 227, 108718 (2021).

    Article  CAS  PubMed  Google Scholar 

  251. Chen, S. et al. Grem1 accelerates nucleus pulposus cell apoptosis and intervertebral disc degeneration by inhibiting TGF-β-mediated Smad2/3 phosphorylation. Exp. Mol. Med. https://doi.org/10.1038/s12276-022-00753-9 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  252. Zhang, Y., Liu, C., Li, Y. & Xu, H. Mechanism of the mitogen-activated protein kinases/mammalian target of rapamycin pathway in the process of cartilage endplate stem cell degeneration induced by tension load. Glob. Spine J. https://doi.org/10.1177/21925682221085226 (2022).

    Article  Google Scholar 

  253. Guo, Y. et al. Is there any relationship between plasma IL-6 and TNF-α levels and lumbar disc degeneration? A retrospective single-center study. Dis. Markers 2022, 6842130 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  254. Li, X. et al. MicroRNA-10a-3p improves cartilage degeneration by regulating CH25H-CYP7B1-RORα mediated cholesterol metabolism in knee osteoarthritis rats. Front. Pharmacol. 12, 690181 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  255. Sugimoto, K. et al. Angiopoietin-like protein 2 induces synovial inflammation in the facet joint leading to degenerative changes via interleukin-6 secretion. Asian Spine J. 13, 368–376 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  256. Dong, X. Y., Yin, J. X., Zhang, H. & Liao, Y. High glucose stimulating ECM remodeling and an inflammatory phenotype in the IPFP via upregulation of MFAP5 expression. Biochem. Biophys. Res. Commun. 601, 93–100 (2022).

    Article  CAS  PubMed  Google Scholar 

  257. Mei, X., Tong, J., Zhu, W. & Zhu, Y. lncRNA-NR024118 overexpression reverses LPS-induced inflammatory injury and apoptosis via NF-κB/Nrf2 signaling in ATDC5 chondrocytes. Mol. Med. Rep. 20, 3867–3873 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  258. Lan, T., Shen, Z., Hu, Z. & Yan, B. Vitamin D/VDR in the pathogenesis of intervertebral disc degeneration: Does autophagy play a role. Biomed. Pharmacother. 148, 112739 (2022).

    Article  CAS  PubMed  Google Scholar 

  259. Li, H.-M., Liu, Y., Zhang, R.-J., Ding, J.-Y. & Shen, C.-L. Vitamin D receptor gene polymorphisms and osteoarthritis: a meta-analysis. Rheumatology 60, 538–548 (2020).

    Article  Google Scholar 

  260. Yurube, T. et al. Involvement of autophagy in rat tail static compression-induced intervertebral disc degeneration and notochordal cell disappearance. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22115648 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  261. Gong, C. Y. & Zhang, H. H. Autophagy as a potential therapeutic target in intervertebral disc degeneration. Life Sci. 273, 119266 (2021).

    Article  CAS  PubMed  Google Scholar 

  262. Sun, K. et al. The PI3K/AKT/mTOR signaling pathway in osteoarthritis: a narrative review. Osteoarthr. Cartil. 28, 400–409 (2020).

    Article  CAS  Google Scholar 

  263. Li, Z. et al. CsA attenuates compression-induced nucleus pulposus mesenchymal stem cells apoptosis via alleviating mitochondrial dysfunction and oxidative stress. Life Sci. 205, 26–37 (2018).

    Article  CAS  PubMed  Google Scholar 

  264. Patel, S., Mishra, N. P., Chouhan, D. K., Nahar, U. & Dhillon, M. S. Chondroprotective effects of multiple PRP injections in osteoarthritis by apoptosis regulation and increased aggrecan synthesis- Immunohistochemistry based Guinea pig study. J. Clin. Orthop. Trauma 25, 101762 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  265. Zhang, L., Sui, C., Zhang, Y., Wang, G. & Yin, Z. Knockdown of hsa_circ_0134111 alleviates the symptom of osteoarthritis via sponging microRNA-224-5p. Cell Cycle 20, 1052–1066 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  266. Pan, D. et al. RIP2 knockdown inhibits cartilage degradation and oxidative stress in IL-1β-treated chondrocytes via regulating TRAF3 and inhibiting p38 MAPK pathway. Clin. Immunol. 232, 108868 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of R.R. and N.F. is supported by a J. Bernard Gosevitz Chair. The work of M.K. is supported in part by a Tier 1 Canada Research Chair in the mechanisms of joint degeneration and a Tony and Shari Fell Platinum Chair in Arthritis Research. The work of A.V.P. is supported by an award from Arthritis Society Canada (STAR-20-0000000012).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Raja Rampersaud.

Ethics declarations

Competing interests

R.R. and M.K. declare a US patent No US10888577B2: PCT international patent WO2017143430A1, entitled “MiRNA biomarkers for cartilage degeneration”. M.K. declares that he filed a US Provisional Patent Application no. 63/033,463, entitled “Circulating MicroRNAs in Early Knee Osteoarthritis and Uses Thereof”. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks D. Sakai and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Adipokines

A class of cytokines produced by the adipose tissue.

Apoptosis

Programmed death of a cell.

Autophagy

A process by which cells break down and recycle intracellular components.

Notochord

An embryonic rod-like structure that functions as a precursor to the spine.

Osteophytes

Bony projections resulting from increased bone remodelling activity.

Pelvic incidence

A fixed, innate angle between the sacrum and pelvis that typically dictates the sagittal curvature of the mobile spine.

Sclerotome

The embryonic tissue that gives rise to the skeleton.

Senescence

The loss of proliferative potential in a cell.

Syndetome

An embryonic compartment that serves as a precursor that gives rise to the axial tendons.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fine, N., Lively, S., Séguin, C.A. et al. Intervertebral disc degeneration and osteoarthritis: a common molecular disease spectrum. Nat Rev Rheumatol 19, 136–152 (2023). https://doi.org/10.1038/s41584-022-00888-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-022-00888-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing