Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Psoriatic arthritis from a mechanistic perspective

Abstract

Psoriatic arthritis (PsA) is part of a group of closely related clinical phenotypes (‘psoriatic disease’) that is defined by shared molecular pathogenesis resulting in excessive, prolonged inflammation in the various tissues affected, such as the skin, the entheses or the joints. Psoriatic disease comprises a set of specific drivers that promote an aberrant immune response and the consequent development of chronic disease that necessitates therapeutic intervention. These drivers include genetic, biomechanical, metabolic and microbial factors that facilitate a robust and continuous mobilization, trafficking and homing of immune cells into the target tissues. The role of genetic variants involved in the immune response, the contribution of mechanical factors triggering an exaggerated inflammatory response (mechanoinflammation), the impact of adipose tissue and altered lipid metabolism and the influence of intestinal dysbiosis in the disease process are discussed. Furthermore, the role of key cytokines, such as IL-23, IL-17 and TNF, in orchestrating the various phases of the inflammatory disease process and as therapeutic targets in PsA is reviewed. Finally, the nature and the mechanisms of inflammatory tissue responses inherent to PsA are summarized.

Key points

  • Genetic associations with psoriatic arthritis (PsA), which involve both HLA and non-HLA genes, partially overlap with those observed in psoriatic skin disease.

  • Microbial dysbiosis and alteration of microbiota-produced metabolic factors precede the onset of PsA and are associated with changes in epithelial barrier function, precipitating inflammation in PsA.

  • Metabolic changes related to PsA are linked to obesity and changes in free fatty acid levels, and cardiovascular risk is increased in PsA owing to inflammation and metabolic alterations.

  • Mechanoinflammation is pathognomonic for psoriatic skin as well as musculoskeletal disease, and leads to enthesitis and bony spur formation at entheseal sites.

  • Inducer, enhancer and effector cytokines, such as IL-23, IL-17 and TNF, respectively, orchestrate the inflammatory disease process in PsA and are the main therapeutic targets.

  • Structural changes in PsA include the formation of enthesophytes, triggered by periosteal responses, and bone erosions, resulting from chronic synovitis and osteoclast activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Drivers, manifestations and consequences of PsA.
Fig. 2: Mechanistic model of PsA.
Fig. 3: Mechanoinflammation affecting tendons in PsA.
Fig. 4: Structural changes in the context of PsA.

Similar content being viewed by others

References

  1. Lubrano, E., Scriffignano, S. & Perrotta, F. M. Psoriatic arthritis, psoriatic disease, or psoriatic syndrome? J. Rheumatol. 46, 1428–1430 (2019).

    Article  PubMed  Google Scholar 

  2. Scarpa, R. Psoriatic syndrome or psoriatic disease? J. Rheumatol. 47, 941 (2020).

    Article  PubMed  Google Scholar 

  3. Leung, Y. Y. et al. The GRAPPA-OMERACT Working Group: 4 prioritized domains for completing the core outcome measurement set for psoriatic arthritis 2019 Updates. J. Rheumatol. Suppl. 96, 46–49 (2020).

    Article  PubMed  Google Scholar 

  4. Taylor, W. et al. Classification criteria for psoriatic arthritis: development of new criteria from a large international study. Arthritis Rheum. 54, 2665–2673 (2006).

    Article  PubMed  Google Scholar 

  5. Moll, J. M. & Wright, V. Familial occurrence of psoriatic arthritis. Ann. Rheum. Dis. 32, 181–201 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Solmaz, D. et al. Impact of having family history of psoriasis or psoriatic arthritis on psoriatic disease. Arthritis Care Res. 72, 63–68 (2020).

    Article  Google Scholar 

  7. Lonnberg, A. S. et al. Genetic factors explain variation in the age at onset of psoriasis: a population-based twin study. Acta Derm. Venereol. 96, 35–38 (2016).

    Article  PubMed  CAS  Google Scholar 

  8. Swanbeck, G., Inerot, A., Martinsson, T. & Wahlström, J. A population genetic study of psoriasis. Acta Derm. Venereol. Suppl. 186, 7–8 (1994).

    CAS  Google Scholar 

  9. Myers, A., Kay, L. J., Lynch, S. A. & Walker, D. J. Recurrence risk for psoriasis and psoriatic arthritis within sibships. Rheumatology 44, 773–776 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Pedersen, O. B., Svendsen, A. J., Ejstrup, L., Skytthe, A. & Junker, P. On the heritability of psoriatic arthritis. Disease concordance among monozygotic and dizygotic twins. Ann. Rheum. Dis. 67, 1417–1421 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Chandran, V. et al. Familial aggregation of psoriatic arthritis. Ann. Rheum. Dis. 68, 664–667 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Yang, J., Zeng, J., Goddard, M. E., Wray, N. R. & Visscher, P. M. Concepts, estimation and interpretation of SNP-based heritability. Nat. Genet. 49, 1304–1310 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Li, Q. et al. Quantifying differences in heritability among psoriatic arthritis (PsA), cutaneous psoriasis (PsC) and psoriasis vulgaris (PsV). Sci. Rep. 10, 4925 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Husted, J. A. et al. Cardiovascular and other comorbidities in patients with psoriatic arthritis: a comparison with patients with psoriasis. Arthritis Care Res. 63, 1729–1735 (2011).

    Article  Google Scholar 

  15. Nair, R. P. et al. Sequence and haplotype analysis supports HLA-C as the psoriasis susceptibility 1 gene. Am. J. Hum. Genet. 78, 827–851 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Winchester, R. et al. HLA associations reveal genetic heterogeneity in psoriatic arthritis and in the psoriasis phenotype. Arthritis Rheum. 64, 1134–1144 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Eder, L. et al. Differential human leucocyte allele association between psoriasis and psoriatic arthritis: a family-based association study. Ann. Rheum. Dis. 71, 1361–1365 (2012).

    Article  PubMed  Google Scholar 

  18. Winchester R., & Rahman P. in Oxford Textbook of Psoriatic Arthritis (ed Gladman D. & FitzGerald O.) 57–67 (Oxford University Press, 2019).

  19. Haroon, M., Winchester, R., Giles, J. T., Heffernan, E. & FitzGerald, O. Certain class I HLA alleles and haplotypes implicated in susceptibility play a role in determining specific features of the psoriatic arthritis phenotype. Ann. Rheum. Dis. 75, 155–162 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. FitzGerald, O., Haroon, M., Giles, J. T. & Winchester, R. Concepts of pathogenesis in psoriatic arthritis: genotype determines clinical phenotype. Arthritis Res. Ther. 17, 115 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Gladman, D. D., Farewell, V. T. & Nadeau, C. Clinical indicators of progression in psoriatic arthritis: multivariate relative risk model. J. Rheumatol. 22, 675–679 (1995).

    CAS  PubMed  Google Scholar 

  22. Chandran, V. et al. Human leukocyte antigen alleles and susceptibility to psoriatic arthritis. Hum. Immunol. 74, 1333–1338 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Okada, Y. et al. Fine mapping major histocompatibility complex associations in psoriasis and its clinical subtypes. Am. J. Hum. Genet. 95, 162–172 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bowes, J. et al. PTPN22 is associated with susceptibility to psoriatic arthritis but not psoriasis: evidence for a further PsA-specific risk locus. Ann. Rheum. Dis. 74, 1882–1885 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Pencava, F. et al. Single-cell sequencing reveals clonal expansions of pro-inflammatory synovial CD8 T cells expressing tissue-homing receptors in psoriatic arthritis. Nat. Commun. 11, 4767 (2020).

    Article  CAS  Google Scholar 

  26. Steel, K. J. A. et al. Polyfunctional, proinflammatory, tissue-resident memory phenotype and function of synovial interleukin-17A+CD8+ T cells in psoriatic arthritis. Arthritis Rheumatol. 72, 435–447 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tomfohrde, J. et al. Gene for familial psoriasis susceptibility mapped to the distal end of human chromosome 17q. Science 264, 1141–1145 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Jordan, C. T. et al. PSORS2 is due to mutations in CARD14. Am. J. Hum. Genet. 90, 784–795 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Marrakchi, S. et al. Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. N. Engl. J. Med. 365, 620–628 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Onoufriadis, A. et al. Mutations in IL36RN/IL1F5 are associated with the severe episodic inflammatory skin disease known as generalized pustular psoriasis. Am. J. Hum. Genet. 89, 432–437 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stuart, P. E. et al. Genome-wide association analysis of psoriatic arthritis and cutaneous psoriasis reveals differences in their genetic architecture. Am. J. Hum. Genet. 97, 816–836 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bowes, J. et al. Dense genotyping of immune-related susceptibility loci reveals new insights into the genetics of psoriatic arthritis. Nat. Commun. 6, 6046 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Ellinghaus, E. et al. Genome-wide association study identifies a psoriasis susceptibility locus at TRAF3IP2. Nat. Genet. 42, 991–995 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rahmati, S., Tsoi, L., O’Rielly, D. D., Chandran, V. & Rahman, P. Complexities in genetics of psoriatic arthritis. Curr. Rheumatol. Rep. 22, 10 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Patrick, M. T. et al. Genetic signature to provide robust risk assessment of psoriatic arthritis development in psoriasis patients. Nat. Commun. 9, 4178 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Kurilshikov, A. et al. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat. Genet. 53, 156–165 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Asquith, M. et al. Intestinal metabolites are profoundly altered in the context of HLA-B27 expression and functionally modulate disease in a rat model of spondyloarthritis. Arthritis Rheumatol. 69, 1984–1995 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gill, T. et al. Novel inter-omic analysis reveals relationships between diverse gut microbiota and host immune dysregulation in HLA-B27-induced experimental spondyloarthritis. Arthritis Rheumatol. 71, 1849–1857 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yin, J. et al. Shotgun metagenomics reveals an enrichment of potentially cross-reactive bacterial epitopes in ankylosing spondylitis patients, as well as the effects of TNFi therapy upon microbiome composition. Ann. Rheum. Dis. 79, 132–140 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Manasson, J. et al. Gut microbiota perturbations in reactive arthritis and postinfectious spondyloarthritis. Arthritis Rheumatol. 70, 242–254 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kishikawa, T. et al. Metagenome-wide association study of gut microbiome revealed novel aetiology of rheumatoid arthritis in the Japanese population. Ann. Rheum. Dis. 79, 103–111 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Scher, J. et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife 2, e01202 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Clemente, J. C., Manasson, J. & Scher, J. U. The role of the gut microbiome in systemic inflammatory disease. BMJ 360, j5145 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kim, D. et al. Optimizing methods and dodging pitfalls in microbiome research. Microbiome 5, 52 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Scher, J. U., Littman, D. R. & Abramson, S. B. Microbiome in inflammatory arthritis and human rheumatic diseases. Arthritis Rheumatol. 68, 35–45 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Abdollahi-Roodsaz, S., Abramson, S. B. & Scher, J. U. The metabolic role of the gut microbiota in health and rheumatic disease: mechanisms and interventions. Nat. Rev. Rheumatol. 12, 446–455 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Aguiar-Pulido, V. et al. Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis. Evol. Bioinform. Online 12, 5–16 (2016).

    PubMed  PubMed Central  Google Scholar 

  48. Siggins, A., Gunnigle, E. & Abram, F. Exploring mixed microbial community functioning: recent advances in metaproteomics. FEMS Microbiol. Ecol. 80, 265–280 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Lin, P. et al. HLA-B27 and human beta2-microglobulin affect the gut microbiota of transgenic rats. PLoS One 9, e105684 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Asquith, M. J. et al. Perturbed mucosal immunity and dysbiosis accompany clinical disease in a rat model of spondyloarthritis. Arthritis Rheumatol. 68, 2151–2162 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Taurog, J. D. et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J. Exp. Med. 180, 2359–2364 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Yoshitomi, H. et al. A role for fungal {beta}-glucans and their receptor Dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice. J. Exp. Med. 201, 949–9608 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Scher, J. U. et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol. 67, 128–139 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Codoñer, F. M. et al. Gut microbial composition in patients with psoriasis. Sci. Rep. 8, 3812 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Shapiro, J. et al. Psoriatic patients have a distinct structural and functional fecal microbiota compared with controls. J. Dermatol. 46, 595–603 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Chen, Y. J. et al. Intestinal microbiota profiling and predicted metabolic dysregulation in psoriasis patients. Exp. Dermatol. 27, 1336–1343 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Ciccia, F. et al. Overexpression of interleukin-23, but not interleukin-17, as an immunologic signature of subclinical intestinal inflammation in ankylosing spondylitis. Arthritis Rheum. 60, 955–965 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Kenna, T. J. et al. Enrichment of circulating interleukin-17-secreting interleukin-23 receptor-positive γ/δ T cells in patients with active ankylosing spondylitis. Arthritis Rheum. 64, 1420–1429 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Gracey, E. et al. IL-7 primes IL-17 in mucosal-associated invariant T (MAIT) cells, which contribute to the Th17-axis in ankylosing spondylitis. Ann. Rheum. Dis. 75, 2124–2132 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Soare, A. et al. Homeostasis of innate lymphoid cells is imbalanced in psoriatic arthritis. J. Immunol. 200, 1249–1254 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Zanvit, P. et al. Antibiotics in neonatal life increase murine susceptibility to experimental psoriasis. Nat. Commun. 6, 8424 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Stehlikova, Z. et al. Crucial role of microbiota in experimental psoriasis revealed by a gnotobiotic mouse model front microbiol. Front Microbiol. 10, 236 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chang, H. W. et al. Alteration of the cutaneous microbiome in psoriasis and potential role in Th17 polarization. Microbiome 6, 154 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Langan, E. A. et al. Combined culture and metagenomic analyses reveal significant shifts in the composition of the cutaneous microbiome in psoriasis. Br. J. Dermatol. 181, 1254–1264 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Loesche, M. A. et al. Longitudinal study of the psoriasis-associated skin microbiome during therapy with ustekinumab in a randomized phase 3b clinical trial. J. Invest. Dermatol. 138, 1973–1981 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. Grice, E. A. et al. Topographical and temporal diversity of the human skin microbiome. Science 324, 1190–1192 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Uberoi, A. et al. Commensal microbiota regulates skin barrier function and repair via signaling through the aryl hydrocarbon receptor. Cell Host Microbe 29, 1235–1248 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Meisel, J. S. et al. Commensal microbiota modulate gene expression in the skin. Microbiome 6, 20 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Naik, S. et al. Compartmentalized control of skin immunity by resident commensals. Science 337, 1115–1119 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bouslimani, A. et al. Molecular cartography of the human skin surface in 3D. Proc. Natl Acad. Sci. USA 112, E2120–E2129 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fyhrquist, N. et al. Microbe-host interplay in atopic dermatitis and psoriasis. Nat. Commun. 10, 4703 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Chen, L. et al. Microbiota metabolite butyrate differentially regulates Th1 and Th17 cells’ differentiation and function in induction of colitis. Inflamm. Bowel Dis. 25, 1450–1461 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Rosser, E. C. et al. Microbiota-derived metabolites suppress arthritis by amplifying aryl-hydrocarbon receptor activation in regulatory B cells. Cell Metab. 31, 837–851 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kim, D. S. et al. Attenuation of rheumatoid inflammation by sodium butyrate through reciprocal targeting of HDAC2 in osteoclasts and HDAC8 in T cells. Front. Immunol. 9, 1525 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Lucas, S. et al. Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nat. Commun. 9, 1–10 (2018).

    Article  CAS  Google Scholar 

  77. Dürholz, K. et al. Dietary short-term fiber interventions in arthritis patients increase systemic SCFA levels and regulate inflammation. Nutrients 12, 3207 (2020).

    Article  PubMed Central  CAS  Google Scholar 

  78. Fardina Malik, J. M. et al. in American College of Rheumatology 2018 ACR/ARHP Annual Meeting Abstract Number 2058 (Wiley, 2018).

  79. Dupire, G., Droitcourt, C., Hughes, C. & Le Cleach, L. Antistreptococcal interventions for guttate and chronic plaque psoriasis. Cochrane Database Syst. Rev. 3, CD011571 (2019).

    PubMed  Google Scholar 

  80. Vijayashankar, M. & Raghunath, N. Pustular psoriasis responding to probiotics — a new insight. Our Dermatol. Online 3, 326 (2012).

    Article  Google Scholar 

  81. Alesa, D. I. et al. The role of gut microbiome in the pathogenesis of psoriasis and the therapeutic effects of probiotics. J. Fam. Med. Prim. Care 8, 3496–3503 (2019).

    Article  Google Scholar 

  82. Grinnell, M., Ogdie, A., Wipfler, K. & Michaud, K. Probiotic use and psoriatic arthritis disease activity. ACR Open. Rheumatol. 2, 330–334 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Saxena, V. N. & Dogra, J. Long-term use of penicillin for the treatment of chronic plaque psoriasis. Eur. J. Dermatol. 15, 359–362 (2005).

    CAS  PubMed  Google Scholar 

  84. Kragsnaes, M. S. et al. Efficacy and safety of faecal microbiota transplantation in patients with psoriatic arthritis: protocol for a 6-month, double-blind, randomised, placebo-controlled trial. BMJ Open 8, e019231 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kragsnaes, M. S. et al. Safety and efficacy of faecal microbiota transplantation for active peripheral psoriatic arthritis: an exploratory randomised placebo-controlled trial. Ann. Rheum. Dis. 80, 1158–1167 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. McGonagle, D. G., Bridgewood, C. & Marzo-Ortega, H. Correspondence on ‘Safety and efficacy of faecal microbiota transplantation for active peripheral psoriatic arthritis: an exploratory randomised placebo-controlled trial. Ann. Rheum. Dis. https://doi.org/10.1136/annrheumdis-2021-220910 (2021).

    Article  PubMed  Google Scholar 

  87. Scher, J. U., Nayak, R. R., Ubeda, C., Turnbaugh, P. J. & Abramson, S. B. Pharmacomicrobiomics in inflammatory arthritis: gut microbiome as modulator of therapeutic response. Nat. Rev. Rheumatol. 16, 282–292 (2020).

    Article  PubMed  Google Scholar 

  88. Rizkallah, M. R., Saad, R. & Aziz, R. K. The Human Microbiome Project, personalized medicine and the birth of pharmacomicrobiomics. Curr. Pharmacogenomics Person. Med. 8, 182–193 (2010).

    Article  CAS  Google Scholar 

  89. Peppercorn, M. A. & Goldman, P. The role of intestinal bacteria in the metabolism of salicylazosulfapyridine. J. Pharmacol. Exp. Ther. 181, 555–562 (1972).

    CAS  PubMed  Google Scholar 

  90. Zaharko, D. S., Bruckner, H. & Oliverio, V. T. Antibiotics alter methotrexate metabolism and excretion. Science 166, 887–888 (1969).

    Article  CAS  PubMed  Google Scholar 

  91. Valerino, D. M., Johns, D. G., Zaharko, D. S. & Oliverio, V. T. Studies of the metabolism of methotrexate by intestinal flora. I. Identification and study of biological properties of the metabolite 4-amino-4-deoxy-N 10-methylpteroic acid. Biochem. Pharmacol. 21, 821–831 (1972).

    Article  CAS  PubMed  Google Scholar 

  92. Artacho, A. et al. The pre-treatment gut microbiome is associated with lack of response to methotrexate in new onset rheumatoid arthritis. Arthritis Rheumatol. 73, 931–942 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Nayak, R. R. et al. Methotrexate impacts conserved pathways in diverse human gut bacteria leading to decreased host immune activation. Cell Host Microbe 29, 362–377 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bazin, T. et al. Microbiota composition may predict anti-TNF alpha response in spondyloarthritis patients: an exploratory study. Sci. Rep. 8, 5446 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Manasson, J. et al. IL-17 inhibition in spondyloarthritis associates with subclinical gut microbiome perturbations and a distinctive IL-25-driven intestinal inflammation. Arthritis Rheumatol. 72, 645–657 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yeh, N. L., Hsu, C. Y., Tsai, T. F. & Chiu, H. Y. Gut microbiome in psoriasis is perturbed differently during secukinumab and ustekinumab therapy and associated with response to treatment. Clin. Drug Investig. 39, 1195–1203 (2019).

    Article  CAS  PubMed  Google Scholar 

  97. Hegde, P. et al. Mucosal-associated invariant T cells area profibrogenic immune cell population in the liver. Nat. Commun. 9, 2146 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Setty, A. R., Curhan, G. & Choi, H. K. Obesity, waist circumference, weight change, and the risk of psoriasis in women: nurses’ health study II. Arch. Intern. Med. 167, 1670–1675 (2007).

    Article  PubMed  Google Scholar 

  99. Snekvik, I., Nilsen, T. I. L., Romundstad, P. R. & Saunes, M. Metabolic syndrome and risk of incident psoriasis: prospective data from the HUNT Study, Norway. Br. J. Dermatol. 180, 94–99 (2019).

    Article  CAS  PubMed  Google Scholar 

  100. Budu-Aggrey, A. et al. Evidence of a causal relationship between body mass index and psoriasis: a Mendelian randomization study. PLoS Med. 16, e1002739 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Icen, M. et al. Trends in incidence of adult-onset psoriasis over three decades: a population-based study. J. Am. Acad. Dermatol. 60, 394–401 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Alotaibi, H. A. Effects of weight loss on psoriasis: a review of clinical trials. Cureus 10, e3491 (2018).

    PubMed  PubMed Central  Google Scholar 

  103. Klingberg, E. et al. Weight loss improves disease activity in patients with psoriatic arthritis and obesity: an interventional study. Arthritis Res. Ther. 21, 17 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Egeberg, A. et al. Incidence and prognosis of psoriasis and psoriatic arthritis in patients undergoing bariatric surgery. JAMA Surg. 152, 344–349 (2017).

    Article  PubMed  Google Scholar 

  105. Rosen, E. D. & Spiegelman, B. M. What we talk about when we talk about fat. Cell 156, 20–44 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhu, K. J. et al. Leptin levels in patients with psoriasis: a meta-analysis. Clin. Exp. Dermatol. 38, 478–483 (2013).

    Article  PubMed  Google Scholar 

  107. Eder, L. et al. Serum adipokines in patients with psoriatic arthritis and psoriasis alone and their correlation with disease activity. Ann. Rheum. Dis. 72, 1956–1961 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Cheleschi, S., Tenti, S., Bedogni, G. & Fioravanti, A. Circulating Mir-140 and leptin improve the accuracy of the differential diagnosis between psoriatic arthritis and rheumatoid arthritis: a case-control study. Transl. Res. 239, 18–31 (2022).

    Article  CAS  PubMed  Google Scholar 

  109. Caso, F. et al. Pro-inflammatory adipokine profile in psoriatic arthritis: results from a cross- sectional study comparing PsA subset with evident cutaneous involvement and subset “sine psoriasis”. Clin. Rheumatol. 38, 2547–2552 (2019).

    Article  PubMed  Google Scholar 

  110. Toussirot, E. et al. Visceral adiposity in patients with psoriatic arthritis and psoriasis alone and its relationship with metabolic and cardiovascular risk. Rheumatology 60, 2816–2825 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Ferguson, L. D., Siebert, S., McInnes, I. B. & Sattar, N. Cardiometabolic comorbidities in RA and PsA: lessons learned and future directions. Nat. Rev. Rheumatol. 15, 461–474 (2019).

    Article  PubMed  Google Scholar 

  112. Herbert, D. et al. High-fat diet exacerbates early psoriatic skin inflammation independent of obesity: saturated fatty acids as key players. J. Invest. Dermatol. 138, 1999–2009 (2018).

    Article  CAS  PubMed  Google Scholar 

  113. Nakamizo, S. et al. High fat diet exacerbates murine psoriatic dermatitis by increasing the number of IL-17-producing γδ T cells. Sci. Rep. 7, 14076 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Zhang, Y. et al. Epidermal fatty acid binding protein promotes skin inflammation induced by high-fat diet. Immunity 42, 953–964 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Christ, A. et al. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172, 162–175 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Håversen, L., Danielsson, K. N., Fogelstrand, L. & Wiklund, O. Induction of proinflammatory cytokines by long-chain saturated fatty acids in human macrophages. Atherosclerosis 202, 382–393 (2009).

    Article  PubMed  CAS  Google Scholar 

  117. Wen, H. et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 12, 408–415 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kunz, M., Simon, J. C. & Saalbach, A. Psoriasis: obesity and fatty acids. Front. Immunol. 10, 1807 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Olejniczak-Staruch, I. et al. AntiTNF-alpha therapy normalizes levels of lipids and adipokines in psoriatic patients in the real-life settings. Sci. Rep. 11, 9289 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Prasad, M. et al. Cardiorheumatology: cardiac involvement in systemic rheumatic disease. Nat. Rev. Cardiol. 12, 168 (2015).

    Article  PubMed  Google Scholar 

  121. Mehta, N. N. et al. Systemic and vascular inflammation in patients with moderate to severe psoriasis as measured by [18F]-fluorodeoxyglucose positron emission tomography-computed tomography (FDG-PET/CT): a pilot study. Arch. Dermatol. 147, 1031–1039 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. McKellar, G. E., McCarey, D. W., Sattar, N. & McInnes, I. B. Role for TNF in atherosclerosis? Lessons from autoimmune disease. Nat. Rev. Cardiol. 6, 410–417 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Robert, M. & Miossec, P. Effects of Interleukin 17 on the cardiovascular system. Autoimmun. Rev. 16, 984–991 (2017).

    Article  CAS  PubMed  Google Scholar 

  124. Aksentijevich, M., Lateef, S. S., Anzenberg, P., Dey, A. K. & Mehta, N. N. Chronic inflammation, cardiometabolic diseases and effects of treatment: psoriasis as a human model. Trends Cardiovasc. Med. 30, 472–478 (2020).

    Article  CAS  PubMed  Google Scholar 

  125. Ogdie, A. et al. Risk of major cardiovascular events in patients with psoriatic arthritis, psoriasis and rheumatoid arthritis: a population-based cohort study. Ann. Rheum. Dis. 74, 326–332 (2015).

    Article  PubMed  Google Scholar 

  126. Lam, S. H. M. et al. DAPSA, carotid plaque and cardiovascular events in psoriatic arthritis: a longitudinal study. Ann. Rheum. Dis. 79, 1320–1326 (2020).

    Article  CAS  PubMed  Google Scholar 

  127. Egeberg, A. et al. The relationship between duration of psoriasis, vascular inflammation, and cardiovascular events. J. Am. Acad. Dermatol. 77, 650–656.e3 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Polachek, A. et al. Risk of cardiovascular morbidity in patients with psoriatic arthritis: a meta-analysis of observational studies. Arthritis Care Res. 69, 67–74 (2017).

    Article  Google Scholar 

  129. Jamnitski, A. et al. Cardiovascular comorbidities in patients with psoriatic arthritis: a systematic review. Ann. Rheum. Dis. 72, 211–216 (2013).

    Article  PubMed  Google Scholar 

  130. Radner, H. et al. Incidence and prevalence of cardiovascular risk factors among patients with rheumatoid arthritis, psoriasis, or psoriatic arthritis. Arthritis Care Res. 69, 1510–1518 (2017).

    Article  Google Scholar 

  131. Charlton, R. et al. Risk of type 2 diabetes and cardiovascular disease in an incident cohort of people with psoriatic arthritis: a population-based cohort study. Rheumatology 58, 144–148 (2019).

    Article  PubMed  Google Scholar 

  132. Kolliker Frers, R. A. et al. Immune-mediated inflammation promotes subclinical atherosclerosis in recent-onset psoriatic arthritis patients without conventional cardiovascular risk factors. Front. Immunol. 9, 139 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Szentpetery, A. et al. Higher coronary plaque burden in psoriatic arthritis is independent of metabolic syndrome and associated with underlying disease severity. Arthritis Rheumatol. 70, 396–407 (2018).

    Article  PubMed  Google Scholar 

  134. Lerman, J. B. et al. Coronary plaque characterization in psoriasis reveals high-risk features that improve after treatment in a prospective observational study. Circulation 136, 263–276 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Wu, J. J. et al. Anti-inflammatory therapy with tumour necrosis factor inhibitors is associated with reduced risk of major adverse cardiovascular events in psoriasis. J. Eur. Acad. Dermatol. Venereol. 32, 1320–1326 (2018).

    Article  CAS  PubMed  Google Scholar 

  136. Eder, L. et al. Association of tumor necrosis factor inhibitor treatment with reduced indices of subclinical atherosclerosis in patients with psoriatic disease. Arthritis Rheumatol. 70, 408–416 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Elnabawi, Y. A. et al. Coronary artery plaque characteristics and treatment with biologic therapy in severe psoriasis: results from a prospective observational study. Cardiovasc. Res. 115, 721–728 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Koebner, H. Zur aetilologie der psoriasis. Vjschr Dermatol. 3, 559 (1876).

    Google Scholar 

  139. Furue, K. et al. Pathogenic implication of epidermal scratch injury in psoriasis and atopic dermatitis. J. Dermatol. 47, 979–988 (2020).

    Article  CAS  PubMed  Google Scholar 

  140. Miller, R. A. The Koebner phenomenon. Int. J. Dermatol. 21, 192–197 (1982).

    Article  CAS  PubMed  Google Scholar 

  141. Kirschbaum, J. O. Koebner phenomenon following acupuncture. Arch. Dermatol. 106, 767 (1972).

    Article  CAS  PubMed  Google Scholar 

  142. Grodner, C. et al. Tattoo complications in treated and non-treated psoriatic patients. J. Eur. Acad. Dermatol. Venereol. 34, 888–896 (2020).

    Article  CAS  PubMed  Google Scholar 

  143. Belman, S. et al. Psoriasis characteristics for the early detection of psoriatic arthritis. J. Rheumatol. 48, 1559–1565 (2021).

    Article  PubMed  Google Scholar 

  144. Wolf, R. et al. Gene from a psoriasis susceptibility locus primes the skin for inflammation. Sci. Transl. Med. 2, 61ra90 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Raychaudhuri, S. P. et al. Revisiting the Koebner phenomenon: role of NGF and its receptor system in the pathogenesis of psoriasis. Am. J. Pathol. 172, 961–971 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Tortola, L. et al. Psoriasiform dermatitis is driven by IL-36-mediated DC-keratinocyte crosstalk. J. Clin. Invest. 122, 3965–3976 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhang, L. J. et al. Antimicrobial peptide LL37 and MAVS signaling drive interferon-β production by epidermal keratinocytes during skin injury. Immunity 45, 119–130 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Eder, L. et al. The incidence and risk factors for psoriatic arthritis in patients with psoriasis: a prospective cohort study. Arthritis Rheumatol. 68, 915–923 (2016).

    Article  PubMed  Google Scholar 

  149. Thorarensen, S. M. et al. Physical trauma recorded in primary care is associated with the onset of psoriatic arthritis among patients with psoriasis. Ann. Rheum. Dis. 76, 521–525 (2017).

    Article  PubMed  Google Scholar 

  150. Ritchlin, C. T., Colbert, R. A. & Gladmann, D. D. Psoriatic arthritis. N. Engl. J. Med. 376, 957–970 (2017).

    Article  PubMed  Google Scholar 

  151. Millar, N. L. et al. IL-17A mediates inflammatory and tissue remodelling events in early human tendinopathy. Sci. Rep. 6, 27149 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Gracey, E. et al. Tendon and ligament mechanical loading in the pathogenesis of inflammatory arthritis. Nat. Rev. Rheumatol. 16, 193–207 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Otabe, K. et al. Transcription factor Mohawk controls tenogenic differentiation of bone marrow mesenchymal stem cells in vitro and in vivo. J. Orthop. Res. 33, 1–8 (2015).

    Article  CAS  PubMed  Google Scholar 

  154. Yoshimoto, Y. et al. Scleraxis is required for maturation of tissue domains for proper integration of the musculoskeletal system. Sci. Rep. 7, 45010 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Cambré, I. et al. Mechanical strain determines the site-specific localization of inflammation and tissue damage in arthritis. Nat. Commun. 9, 4613 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Cambré, I. et al. Running promotes chronicity of arthritis by local modulation of complement activators and impairing T regulatory feedback loops. Ann. Rheum. Dis. 78, 787–795 (2019).

    Article  PubMed  CAS  Google Scholar 

  157. Jacques, P. et al. Proof of concept: enthesitis and new bone formation in spondyloarthritis are driven by mechanical strain and stromal cells. Ann. Rheum. Dis. 73, 437–445 (2014).

    Article  PubMed  Google Scholar 

  158. Malmberg, A. B. & Yaksh, T. L. Hyperalgesia mediated by spinal glutamate or substance P receptor blocked by spinal cyclooxygenase inhibition. Science 257, 1276–1279 (1992).

    Article  CAS  PubMed  Google Scholar 

  159. Slacedo, R. et al. Angiogenic effects of prostaglandin E2 are mediated by up-regulation of CXCR4 on human microvascular endothelial cells. Blood 102, 1966–1977 (2003).

    Article  CAS  Google Scholar 

  160. Chizzolini, C. et al. Prostaglandin E2 synergistically with interleukin-23 favors human Th17 expansion. Blood 112, 3696–3703 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Schett, G., McInnes, I. B. & Neurath, M. F. Reframing immune-mediated inflammatory diseases through signature cytokine hubs. N. Engl. J. Med. 385, 628–639 (2021).

    Article  CAS  PubMed  Google Scholar 

  162. Deodhar, A. et al. Guselkumab in patients with active psoriatic arthritis who were biologic-naive or had previously received TNFα inhibitor treatment (DISCOVER-1): a double-blind, randomised, placebo-controlled phase 3 trial. Lancet 395, 1115–1125 (2020).

    Article  CAS  PubMed  Google Scholar 

  163. McInnes, I. B. et al. Efficacy and safety of ustekinumab in patients with active psoriatic arthritis: 1 year results of the phase 3, multicentre, double-blind, placebo-controlled PSUMMIT 1 trial. Lancet 382, 780–789 (2013).

    Article  CAS  PubMed  Google Scholar 

  164. Sherlock, J. P. et al. IL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4CD8 entheseal resident T cells. Nat. Med. 18, 1069–1076 (2012).

    Article  CAS  PubMed  Google Scholar 

  165. Nerviani, A. et al. IL-23 skin and joint profiling in psoriatic arthritis: novel perspectives in understanding clinical responses to IL-23 inhibitors. Ann. Rheum. Dis. 80, 591–597 (2021).

    Article  CAS  PubMed  Google Scholar 

  166. Wade, S. M. et al. Association of synovial tissue polyfunctional T-cells with DAPSA in psoriatic arthritis. Ann. Rheum. Dis. 78, 350–354 (2019).

    Article  CAS  PubMed  Google Scholar 

  167. Reinhardt, A. et al. Interleukin-23-dependent γ/δ T cells produce interleukin-17 and accumulate in the enthesis, aortic valve, and ciliary body in mice. Arthritis Rheumatol. 68, 2476–2486 (2016).

    Article  CAS  PubMed  Google Scholar 

  168. Watad, A. et al. Normal human enthesis harbours conventional CD4+ and CD8+ T cells with regulatory features and inducible IL-17A and TNF expression. Ann. Rheum. Dis. 79, 1044–1054 (2020).

    Article  CAS  PubMed  Google Scholar 

  169. Cuthbert, R. J. et al. Group 3 innate lymphoid cells in human enthesis. Arthritis Rheumatol. 69, 1816–1822 (2017).

    Article  CAS  PubMed  Google Scholar 

  170. Raychaudhuri, S. K., Abria, C., Mitra, A. & Raychaudhuri, S. P. Functional significance of MAIT cells in psoriatic arthritis. Cytokine 125, 154855 (2020).

    Article  CAS  PubMed  Google Scholar 

  171. Araujo, E. G. et al. Effects of ustekinumab versus tumor necrosis factor inhibition on enthesitis: results from the enthesial clearance in psoriatic arthritis (ECLIPSA) study. Semin. Arthritis Rheum. 48, 632–637 (2019).

    Article  CAS  PubMed  Google Scholar 

  172. Savage, L. et al. Regression of peripheral subclinical enthesopathy in therapy-naive patients treated with ustekinumab for moderate-to-severe chronic plaque psoriasis: a fifty-two-week, prospective, open-label feasibility study. Arthritis Rheumatol. 71, 626–631 (2019).

    Article  CAS  PubMed  Google Scholar 

  173. Baeten, D. et al. Risankizuma, an IL-23 inhibitor, for ankylosing spondylitis: results of a randomised, double-blind, placebo-controlled, proof-of-concept, dose-finding phase 2 study. Ann. Rheum. Dis. 77, 1295–1302 (2018).

    Article  CAS  PubMed  Google Scholar 

  174. Cuthert, R. J. et al. Evidence that tissue resident human enthesis γδT cells can produce IL-17A independently of IL-23R transcript expression. Ann. Rheum. Dis. 78, 1559–1565 (2019).

    Article  CAS  Google Scholar 

  175. Mease, P. et al. Secukinumab inhibition of interleukin-17A in patients with psoriatic arthritis. N. Engl. J. Med. 373, 1329–1339 (2015).

    Article  CAS  PubMed  Google Scholar 

  176. Mease, P. et al. Ixekizumab, an interleukin-17A specific monoclonal antibody, for the treatment of biologic-naive patients with active psoriatic arthritis: results from the 24-week randomised, double-blind, placebo-controlled and active (adalimumab)-controlled period of the phase III trial SPIRIT-P1. Ann. Rheum. Dis. 76, 79–87 (2017).

    Article  CAS  PubMed  Google Scholar 

  177. Ritchlin, C. T. et al. Bimekizumab in patients with active psoriatic arthritis: results from a 48-week, randomised, double-blind, placebo-controlled, dose-ranging phase 2b trial. Lancet 395, 427–440 (2020).

    Article  CAS  PubMed  Google Scholar 

  178. Lin, A. M. et al. Mast cells and neutrophils release IL-17 through extracellular trap formation in psoriasis. J. Immunol. 187, 490–500 (2011).

    Article  CAS  PubMed  Google Scholar 

  179. Ye, P. et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J. Exp. Med. 194, 519–527 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Paulissen, S. M. J. et al. Synovial fibroblasts directly induce Th17 pathogenicity via the cyclooxygenase/prostaglandin E2 pathway, independent of IL-23. J. Immunol. 191, 1364–1372 (2013).

    Article  CAS  PubMed  Google Scholar 

  181. Richter, F. et al. Interleukin-17 sensitizes joint nociceptors to mechanical stimuli and contributes to arthritic pain through neuronal interleukin-17 receptors in rodents. Arthritis Rheum. 64, 4125–4134 (2012).

    Article  CAS  PubMed  Google Scholar 

  182. McInnes, I. B. et al. Secukinumab provides rapid and sustained pain relief in psoriatic arthritis over 2 years: results from the FUTURE 2 study. Arthritis Res. Ther. 20, 113 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Netea, M. G. et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 20, 375–388 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Van Dervort, A. L. et al. Nitric oxide regulates endotoxin-induced TNF-alpha production by human neutrophils. J. Immunol. 152, 4102–4109 (1994).

    PubMed  Google Scholar 

  185. Antoni, C. et al. Infliximab improves signs and symptoms of psoriatic arthritis: results of the IMPACT 2 trial. Ann. Rheum. Dis. 64, 1150–1157 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Kavanaugh, A. et al. Treatment of psoriatic arthritis in a phase 3 randomised, placebo-controlled trial with apremilast, an oral phosphodiesterase 4 inhibitor. Ann. Rheum. Dis. 73, 1020–1026 (2014).

    Article  CAS  PubMed  Google Scholar 

  187. Mease, P. et al. Tofacitinib or adalimumab versus placebo for psoriatic arthritis. N. Engl. J. Med. 377, 1537–11550 (2017).

    Article  CAS  PubMed  Google Scholar 

  188. McInnes, I. B. et al. Trial of upadacitinib and adalimumab for psoriatic arthritis. N. Engl. J. Med. 384, 1227–1239 (2021).

    Article  CAS  PubMed  Google Scholar 

  189. Fiocco, U. et al. Transcriptional network profile on synovial fluid T cells in psoriatic arthritis. Clin. Rheumatol. 34, 1571–1580 (2015).

    Article  PubMed  Google Scholar 

  190. Fiocco, U. et al. JAK/STAT/PKCδ molecular pathways in synovial fluid T lymphocytes reflect the in vivo T helper-17 expansion in psoriatic arthritis. Immunol. Res. 58, 61–69 (2014).

    Article  CAS  PubMed  Google Scholar 

  191. O’Brien, A. et al. Targeting JAK-STAT signalling alters PsA synovial fibroblast pro-inflammatory and metabolic function. Front. Immunol. 12, 672461 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Costello, P., Bresnihan, B., O’Farrelly, C. & FitzGerald, O. Predominance of CD8+ T lymphocytes in psoriatic arthritis. J. Rheumatol. 26, 1117–1124 (1999).

    CAS  PubMed  Google Scholar 

  193. Diani, M. et al. Increased frequency of activated CD8+ T cell effectors in patients with psoriatic arthritis. Sci. Rep. 9, 10870 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Sokolova, M. V. et al. A set of serum markers detecting systemic inflammation in psoriatic skin, entheseal, and joint disease in the absence of C-reactive protein and its link to clinical disease manifestations. Arthritis Res. Ther. 22, 26 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Yager, N. et al. Ex vivo mass cytometry analysis reveals a profound myeloid proinflammatory signature in psoriatic arthritis synovial fluid. Ann. Rheum. Dis. 80, 1559–1567 (2021).

    Article  CAS  PubMed  Google Scholar 

  196. Haroon, M., Gallagher, P. & FitzGerald, O. Diagnostic delay of more than 6 months contributes to poor radiographic and functional outcome in psoriatic arthritis. Ann. Rheum. Dis. 74, 1045–1050 (2015).

    Article  CAS  PubMed  Google Scholar 

  197. Liphardt, A. M. et al. Similar impact of psoriatic arthritis and rheumatoid arthritis on objective and subjective parameters of hand function. ACR Open Rheumatol. 2, 734–740 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Simon, D. et al. Analysis of periarticular bone changes in patients with cutaneous psoriasis without associated psoriatic arthritis. Ann. Rheum. Dis. 75, 660–666 (2016).

    Article  CAS  PubMed  Google Scholar 

  199. Simon, D. et al. Structural entheseal lesions in patients with psoriasis are associated with an increased risk of progression to psoriatic arthritis. Arthritis Rheumatol. 74, 253–262 (2020).

    Article  Google Scholar 

  200. Simon, D. et al. Simultaneous quantification of bone erosions and enthesiophytes in the joints of patients with psoriasis or psoriatic arthritis — effects of age and disease duration. Arthritis Res. Ther. 20, 203 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Zhang, X. et al. Cyclooxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair. J. Clin. Invest. 109, 1405–1415 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Ono, T. et al. IL-17-producing γδ T cells enhance bone regeneration. Nat. Commun. 7, 10928 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. El-Zayadi, A. A. et al. Interleukin-22 drives the proliferation, migration and osteogenic differentiation of mesenchymal stem cells: a novel cytokine that could contribute to new bone formation in spondyloarthropathies. Rheumatology 56, 488–493 (2017).

    CAS  PubMed  Google Scholar 

  204. Matzelle, M. M. et al. Resolution of inflammation induces osteoblast function and regulates the Wnt signaling pathway. Arthritis Rheum. 64, 1540–1550 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Finzel, S. et al. Inflammatory bone spur formation in psoriatic arthritis is different from bone spur formation in hand osteoarthritis. Arthritis Rheumatol. 66, 2968–2975 (2014).

    Article  PubMed  Google Scholar 

  206. Ritchlin, C. T. et al. Mechanisms of TNF-α- and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis. J. Clin. Invest. 111, 821–831 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Lam, J. et al. TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J. Clin. Invest. 106, 1481–1488 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Adamopoulos, I. E. et al. Interleukin-17A upregulates receptor activator of NF-kappaB on osteoclast precursors. Arthritis Res. Ther. 12, R29 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Uluckan, O. et al. Chronic skin inflammation leads to bone loss by IL-17-mediated inhibition of Wnt signaling in osteoblasts. Sci. Transl. Med. 8, 330ra337 (2016).

    Article  CAS  Google Scholar 

  210. Simon, D. et al. Effect of disease-modifying anti-rheumatic drugs on bone structure and strength in psoriatic arthritis patients. Arthritis Res. Ther. 21, 162 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. DeMarco, G. et al. Combined inhibition of tumor necrosis factor-alpha and interleukin12/23 for long-standing, refractory psoriatic disease: a differential role for cytokine pathways. Rheumatology 57, 2053–2055 (2018).

    Article  Google Scholar 

  212. Zhu, L. J., Zhu, C. Y. & Fan, Y. M. Alcohol consumption and psoriatic risk: a meta-analysis of case-control studies. J. Dermatol. 39, 770–773 (2012).

    Article  PubMed  Google Scholar 

  213. Green, A. et al. Modifiable risk factors and the development of psoriatic arthritis in people with psoriasis. Br. J. Dermatol. 182, 714–720 (2020).

    Article  CAS  PubMed  Google Scholar 

  214. Nguyen, U. S. et al. The smoking paradox in the development of psoriatic arthritis among psoriasis patients — a population-based study. Ann. Rheum. Dis. 77, 119–123 (2018).

    Article  PubMed  Google Scholar 

  215. Gisondi, P. et al. Biological disease-modifying antirheumatic drugs may mitigate the risk of psoriatic arthritis in patients with chronic plaque psoriasis. Ann. Rheum. Dis. 81, 68–73 (2022).

    Article  CAS  PubMed  Google Scholar 

  216. Kampylafka, E. et al. Disease interception with interleukin-17 inhibition in high-risk psoriasis patients with subclinical joint inflammation-data from the prospective IVEPSA study. Arthritis Res. Ther. 21, 178 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Georg Schett.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks O. FitzGerald, H. Al-Mossawi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schett, G., Rahman, P., Ritchlin, C. et al. Psoriatic arthritis from a mechanistic perspective. Nat Rev Rheumatol 18, 311–325 (2022). https://doi.org/10.1038/s41584-022-00776-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-022-00776-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing