Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

“Autoinflammatory psoriasis”—genetics and biology of pustular psoriasis

Abstract

Psoriasis is a chronic inflammatory skin condition that has a fairly wide range of clinical presentations. Plaque psoriasis, which is the most common manifestation of psoriasis, is located on one end of the spectrum, dominated by adaptive immune responses, whereas the rarer pustular psoriasis lies on the opposite end, dominated by innate and autoinflammatory immune responses. In recent years, genetic studies have identified six genetic variants that predispose to pustular psoriasis, and these have highlighted the role of IL-36 cytokines as central to pustular psoriasis pathogenesis. In this review, we discuss the presentation and clinical subtypes of pustular psoriasis, contribution of genetic predisposing variants, critical role of the IL-36 family of cytokines in disease pathophysiology, and treatment perspectives for pustular psoriasis. We further outline the application of appropriate mouse models for the study of pustular psoriasis and address the outstanding questions and issues related to our understanding of the mechanisms involved in pustular psoriasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sarac, G., Koca, T. T. & Baglan, T. A brief summary of clinical types of psoriasis. North Clin. Istanb. 3, 79–82 (2016).

    PubMed  PubMed Central  Google Scholar 

  2. Rendon, A. & Schakel, K. Psoriasis pathogenesis and treatment. Int. J. Mol. Sci. 20, 1475 (2019).

    CAS  PubMed Central  Google Scholar 

  3. Nestle, F. O., Kaplan, D. H. & Barker, J. Psoriasis. N. Engl. J. Med. 361, 496–509 (2009).

    CAS  PubMed  Google Scholar 

  4. Gudjonsson, J. E. & Elder, J. T. Psoriasis: epidemiology. Clin. Dermatol. 25, 535–546 (2007).

    PubMed  Google Scholar 

  5. Gooderham, M. J., Van Voorhees, A. S. & Lebwohl, M. G. An update on generalized pustular psoriasis. Expert Rev. Clin. Immunol. 15, 907–919 (2019).

    CAS  PubMed  Google Scholar 

  6. Bissonnette, R. et al. Palmoplantar pustular psoriasis (PPPP) is characterized by activation of the IL-17A pathway. J. Dermatol. Sci. 85, 20–26 (2017).

    CAS  PubMed  Google Scholar 

  7. Twelves, S. et al. Clinical and genetic differences between pustular psoriasis subtypes. J. Allergy Clin. Immunol. 143, 1021–1026 (2019).

    PubMed  PubMed Central  Google Scholar 

  8. Bangale-Daflapurkar, S. & Danve, A. Pustular psoriasis of pregnancy successfully treated with cyclosporine. Am. J. Ther. 23, e1250–e1252 (2016).

    PubMed  Google Scholar 

  9. Owczarczyk-Saczonek, A., Znajewska-Pander, A., Owczarek, W., Maciejewska-Radomska, A. & Placek, W. Clinicopathologic retrospective analysis of annular pustular psoriasis. Acta Dermatovenerol. Alp. Pannonica Adriat. 27, 215–219 (2018).

    PubMed  Google Scholar 

  10. Huang, Y. W. & Tsai, T. F. Juvenile-onset pustular psoriasis: case series and literature review. Br. J. Dermatol. 182, 816–817 (2020).

    PubMed  Google Scholar 

  11. Sanchez, N. P., Perry, H. O., Muller, S. A. & Winkelmann, R. K. Subcorneal pustular dermatosis and pustular psoriasis. A clinicopathologic correlation. Arch. Dermatol. 119, 715–721 (1983).

    CAS  PubMed  Google Scholar 

  12. Zhu, T., Jin, H., Shu, D., Li, F. & Wu, C. Association of IL36RN mutations with clinical features, therapeutic response to acitretin, and frequency of recurrence in patients with generalized pustular psoriasis. Eur. J. Dermatol. 28, 217–224 (2018).

    CAS  PubMed  Google Scholar 

  13. Choon, S. E. et al. Clinical profile, morbidity, and outcome of adult-onset generalized pustular psoriasis: analysis of 102 cases seen in a tertiary hospital in Johor, Malaysia. Int J. Dermatol. 53, 676–684 (2014).

    PubMed  Google Scholar 

  14. Navarini, A. A. et al. European consensus statement on phenotypes of pustular psoriasis. J. Eur. Acad. Dermatol. Venereol. 31, 1792–1799 (2017).

    CAS  PubMed  Google Scholar 

  15. Johnston, A. et al. IL-1 and IL-36 are dominant cytokines in generalized pustular psoriasis. J. Allergy Clin. Immunol. 140, 109–120 (2017).

    CAS  PubMed  Google Scholar 

  16. Liang, Y., Sarkar, M. K., Tsoi, L. C. & Gudjonsson, J. E. Psoriasis: a mixed autoimmune and autoinflammatory disease. Curr. Opin. Immunol. 49, 1–8 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Griffiths, C. E. & Barker, J. N. Pathogenesis and clinical features of psoriasis. Lancet 370, 263–271 (2007).

    CAS  PubMed  Google Scholar 

  18. Li, M. et al. Prevalent and rare mutations in IL-36RN gene in Chinese patients with generalized pustular psoriasis and psoriasis vulgaris. J. Invest. Dermatol. 133, 2637–2639 (2013).

    CAS  PubMed  Google Scholar 

  19. Lohr, S. et al. Association analysis of psoriasis vulgaris and psoriatic arthritis with loss-of-function mutations in IL36RN in German patients. Br. J. Dermatol. 175, 639–641 (2016).

    CAS  PubMed  Google Scholar 

  20. Asumalahti, K. et al. Genetic analysis of PSORS1 distinguishes guttate psoriasis and palmoplantar pustulosis. J. Invest. Dermatol. 120, 627–632 (2003).

    CAS  PubMed  Google Scholar 

  21. Borges-Costa, J. et al. Clinical and laboratory features in acute generalized pustular psoriasis: a retrospective study of 34 patients. Am. J. Clin. Dermatol. 12, 271–276 (2011).

    PubMed  Google Scholar 

  22. Griffiths, C., Barker, J., Chalmers, R., Bleiker, T. & Creamer, D. Rook’s Textbook of Dermatology (John Wiley & Sons, Incorporated, Hoboken, 2016).

    Google Scholar 

  23. Feldmeyer, L., Heidemeyer, K. & Yawalkar, N. Acute generalized exanthematous pustulosis: pathogenesis, genetic background, clinical variants and therapy. Int. J. Mol. Sci. 17, 1214 (2016).

    PubMed Central  Google Scholar 

  24. Baker, H. & Ryan, T. J. Generalized pustular psoriasis. A clinical and epidemiological study of 104 cases. Br. J. Dermatol. 80, 771–793 (1968).

    CAS  PubMed  Google Scholar 

  25. Ryan, T. J. & Baker, H. The prognosis of generalized pustular psoriasis. Br. J. Dermatol. 85, 407–411 (1971).

    CAS  PubMed  Google Scholar 

  26. Zelickson, B. D. & Muller, S. A. Generalized pustular psoriasis. A review of 63 cases. Arch. Dermatol. 127, 1339–1345 (1991).

    CAS  PubMed  Google Scholar 

  27. Armstrong, A. W. Psoriasis. JAMA Dermatol. 153, 956 (2017).

    PubMed  Google Scholar 

  28. Jin, H. et al. Clinical features and course of generalized pustular psoriasis in Korea. J. Dermatol. 42, 674–678 (2015).

    PubMed  Google Scholar 

  29. Larsabal M. et al. GENIPSO: a French prospective study assessing instantaneous prevalence, clinical features and impact on quality of life of genital psoriasis among patients consulting for psoriasis. Br. J. Dermatol. 180, 647–656 (2019).

    CAS  PubMed  Google Scholar 

  30. Yan, D., Afifi, L., Jeon, C., Cordoro, K. M. & Liao, W. A cross-sectional study of the distribution of psoriasis subtypes in different ethno-racial groups. Dermatol. Online J. 24, 4 (2018).

    Google Scholar 

  31. Ohkawara, A. et al. Generalized pustular psoriasis in Japan: two distinct groups formed by differences in symptoms and genetic background. Acta Derm. Venereol. 76, 68–71 (1996).

    CAS  PubMed  Google Scholar 

  32. Augey, F., Renaudier, P. & Nicolas, J. F. Generalized pustular psoriasis (Zumbusch): a French epidemiological survey. Eur. J. Dermatol. 16, 669–673 (2006).

    PubMed  Google Scholar 

  33. Kharawala, S., Golembesky, A. K., Bohn, R. L. & Esser, D. The clinical, humanistic, and economic burden of generalized pustular psoriasis: a structured review. Expert Rev. Clin. Immunol. 16, 239–252 (2020).

    CAS  PubMed  Google Scholar 

  34. Trattner, H. et al. Quality of life and comorbidities in palmoplantar pustulosis—a cross-sectional study on 102 patients. J. Eur. Acad. Dermatol. Venereol. 31, 1681–1685 (2017).

    CAS  PubMed  Google Scholar 

  35. Kozlowska, D. et al. Serum sphingolipid level in psoriatic patients with obesity. Postepy Dermatol. Alergol. 36, 714–721 (2019).

    PubMed  PubMed Central  Google Scholar 

  36. Goolam Mahyoodeen, N., Crowther, N. J., Snyman, T., Pillay, L. & Tikly, M. High burden of the metabolic syndrome and its component disorders in South Africans with psoriasis. Int J. Dermatol. 58, 557–562 (2019).

    PubMed  Google Scholar 

  37. Namiki, K. et al. Thyroid dysfunction in patients with psoriasis: higher prevalence of thyroid dysfunction in patients with generalized pustular psoriasis. J. Dermatol. 47, 133–139 (2020).

    CAS  PubMed  Google Scholar 

  38. Xu, W., Li, C. & Zhang, W. The coexistence of SAPHO syndrome and rheumatoid arthritis: a case report. Medicine 96, e5724 (2017).

    PubMed  PubMed Central  Google Scholar 

  39. Rozin, A. P. & Nahir, A. M. Is SAPHO syndrome a target for antibiotic therapy? Clin. Rheumatol. 26, 817–820 (2007).

    CAS  PubMed  Google Scholar 

  40. Ozturk, G. et al. Generalized pustular eruptions due to terbinafine. Cutan. Ocul. Toxicol. 31, 81–84 (2012).

    CAS  PubMed  Google Scholar 

  41. Gammoudi, R. et al. Acute generalized exanthematous pustulosis induced by oxacillin confirmed by patch testing. Contact Dermat. 79, 108–110 (2018).

    Google Scholar 

  42. Webster, G. F. Pustular drug reactions. Clin. Dermatol. 11, 541–543 (1993).

    CAS  PubMed  Google Scholar 

  43. Saeki, H. et al. Juvenile pustular psoriasis associated with steroid withdrawal syndrome due to topical corticosteroid. J. Dermatol. 35, 601–603 (2008).

    PubMed  Google Scholar 

  44. Vasconcellos, J. B. et al. Paradoxical psoriasis after the use of anti-TNF in a patient with rheumatoid arthritis. Bras. Dermatol. 91, 137–139 (2016).

    Google Scholar 

  45. Jiyad, Z., Moriarty, B., Creamer, D. & Higgins, E. Generalized pustular psoriasis associated with Epstein-Barr virus. Clin. Exp. Dermatol. 40, 146–148 (2015).

    CAS  PubMed  Google Scholar 

  46. Yoneda, K., Matsuoka-Shirahige, Y., Demitsu, T. & Kubota, Y. Pustular psoriasis precipitated by cytomegalovirus infection. Br. J. Dermatol. 167, 1186–1189 (2012).

    CAS  PubMed  Google Scholar 

  47. Pouessel, G. et al. Childhood pustular psoriasis associated with Panton-Valentine leukocidin-producing Staphylococcus aureus. Pediatr. Dermatol. 24, 401–404 (2007).

    PubMed  Google Scholar 

  48. Miot, H. A., Miot, L. D., Lopes, P. S., Haddad, G. R. & Marques, S. A. Association between palmoplantar pustulosis and cigarette smoking in Brazil: a case-control study. J. Eur. Acad. Dermatol. Venereol. 23, 1173–1177 (2009).

    CAS  PubMed  Google Scholar 

  49. Wilsmann-Theis, D. et al. Palmoplantar pustulosis—a cross-sectional analysis in Germany. Dermatol. Online J. 23 (2017).

  50. Michaelsson, G., Gustafsson, K. & Hagforsen, E. The psoriasis variant palmoplantar pustulosis can be improved after cessation of smoking. J. Am. Acad. Dermatol. 54, 737–738 (2006).

    PubMed  Google Scholar 

  51. Onoufriadis, A. et al. Mutations in IL36RN/IL1F5 are associated with the severe episodic inflammatory skin disease known as generalized pustular psoriasis. Am. J. Hum. Genet. 89, 432–437 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Boutet, M. A. et al. Distinct expression of interleukin (IL)-36alpha, beta and gamma, their antagonist IL-36Ra and IL-38 in psoriasis, rheumatoid arthritis and Crohn’s disease. Clin. Exp. Immunol. 184, 159–173 (2016).

    CAS  PubMed  Google Scholar 

  53. Aksentijevich, I. et al. An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist. N. Engl. J. Med. 360, 2426–2437 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Bachelez, H. et al. Inhibition of the interleukin-36 pathway for the treatment of generalized pustular psoriasis. N. Engl. J. Med. 380, 981–983 (2019).

    PubMed  Google Scholar 

  55. McDermott, M. F. et al. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 97, 133–144 (1999).

    CAS  PubMed  Google Scholar 

  56. Brydges, S. & Kastner, D. L. The systemic autoinflammatory diseases: inborn errors of the innate immune system. Curr. Top. Microbiol. Immunol. 305, 127–160 (2006).

    CAS  PubMed  Google Scholar 

  57. Jesus, A. A. et al. A novel mutation of IL1RN in the deficiency of interleukin-1 receptor antagonist syndrome: description of two unrelated cases from Brazil. Arthritis Rheumatol. 63, 4007–4017 (2011).

    CAS  Google Scholar 

  58. Minkis, K. et al. Interleukin 1 receptor antagonist deficiency presenting as infantile pustulosis mimicking infantile pustular psoriasis. Arch. Dermatol. 148, 747–752 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Marrakchi, S. et al. Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. N. Engl. J. Med. 365, 620–628 (2011).

    CAS  PubMed  Google Scholar 

  60. Tauber, M. et al. IL36RN mutations affect protein expression and function: a basis for genotype-phenotype correlation in pustular diseases. J. Invest. Dermatol. 136, 1811–1819 (2016).

    CAS  PubMed  Google Scholar 

  61. Setta-Kaffetzi, N. et al. Rare pathogenic variants in IL36RN underlie a spectrum of psoriasis-associated pustular phenotypes. J. Invest. Dermatol. 133, 1366–1369 (2013).

    CAS  PubMed  Google Scholar 

  62. Mossner, R. et al. Palmoplantar pustular psoriasis is associated with missense variants in CARD14, but not with loss-of-function mutations in IL36RN in European patients. J. Invest. Dermatol. 135, 2538–2541 (2015).

    PubMed  Google Scholar 

  63. Takahashi, T., Fujimoto, N., Kabuto, M., Nakanishi, T. & Tanaka, T. Mutation analysis of IL36RN gene in Japanese patients with palmoplantar pustulosis. J. Dermatol. 44, 80–83 (2017).

    CAS  PubMed  Google Scholar 

  64. Xiaoling, Y., Dan, S. & Hongzhong, J. Lack of association between mutation in IL36RN and palmoplantar pustular psoriasis in Chinese patients. Bras. Dermatol 94, 658–663 (2019).

    Google Scholar 

  65. Capon, F. IL36RN mutations in generalized pustular psoriasis: just the tip of the iceberg? J. Invest. Dermatol. 133, 2503–2504 (2013).

    CAS  PubMed  Google Scholar 

  66. Traks, T. et al. Polymorphisms in IL36G gene are associated with plaque psoriasis. BMC Med. Genet. 20, 10 (2019).

    PubMed  PubMed Central  Google Scholar 

  67. Jordan, C. T. et al. PSORS2 is due to mutations in CARD14. Am. J. Hum. Genet. 90, 784–795 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Tomfohrde, J. et al. Gene for familial psoriasis susceptibility mapped to the distal end of human chromosome 17q. Science 264, 1141–1145 (1994).

    CAS  PubMed  Google Scholar 

  69. Blonska, M. & Lin, X. CARMA1-mediated NF-kappaB and JNK activation in lymphocytes. Immunol. Rev. 228, 199–211 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Howes, A. et al. Psoriasis mutations disrupt CARD14 autoinhibition promoting BCL10-MALT1-dependent NF-kappaB activation. Biochem J. 473, 1759–1768 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Jordan, C. T. et al. Rare and common variants in CARD14, encoding an epidermal regulator of NF-kappaB, in psoriasis. Am. J. Hum. Genet. 90, 796–808 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang, M. et al. Gain-of-function mutation of Card14 leads to spontaneous psoriasis-like skin inflammation through enhanced keratinocyte response to IL-17A. Immunity 49, 66–79 (2018).

    CAS  PubMed  Google Scholar 

  73. Fu, F. et al. Rare CARD14 missense variants associated with palmoplantar pustulosis (PPP) in the Chinese Han population. Eur. J. Dermatol. 29, 99–100 (2019).

    PubMed  Google Scholar 

  74. Tsoi, L. C. et al. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat. Genet. 44, 1341–1348 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Setta-Kaffetzi, N. et al. AP1S3 mutations are associated with pustular psoriasis and impaired toll-like receptor 3 trafficking. Am. J. Hum. Genet. 94, 790–797 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Robinson, M. S. Adaptable adaptors for coated vesicles. Trends Cell Biol. 14, 167–174 (2004).

    CAS  PubMed  Google Scholar 

  77. Alexopoulou, L., Holt, A. C., Medzhitov, R. & Flavell, R. A. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413, 732–738 (2001).

    CAS  PubMed  Google Scholar 

  78. Mahil, S. K. et al. AP1S3 mutations cause skin autoinflammation by disrupting keratinocyte autophagy and up-regulating IL-36 production. J. Invest. Dermatol. 136, 2251–2259 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Frey, S. et al. Rare loss-of-function mutation in SERPINA3 in generalized pustular psoriasis. J. Invest. Dermatol. 140, 1451–1455 (2020).

    CAS  PubMed  Google Scholar 

  80. Beatty, K., Bieth, J. & Travis, J. Kinetics of association of serine proteinases with native and oxidized alpha-1-proteinase inhibitor and alpha-1-antichymotrypsin. J. Biol. Chem. 255, 3931–3934 (1980).

    CAS  PubMed  Google Scholar 

  81. Henry, C. M. et al. Neutrophil-derived proteases escalate inflammation through activation of IL-36 family cytokines. Cell Rep. 14, 708–722 (2016).

    CAS  PubMed  Google Scholar 

  82. Zhang, Z. & Xu, J. H. Investigation of psoriasis susceptibility loci in psoriatic arthritis and a generalized pustular psoriasis cohort. J. Investig. Dermatol. Symp. Proc. 19, S83–S85 (2018).

    PubMed  Google Scholar 

  83. Heyninck, K., Kreike, M. M. & Beyaert, R. Structure-function analysis of the A20-binding inhibitor of NF-kappa B activation, ABIN-1. FEBS Lett. 536, 135–140 (2003).

    CAS  PubMed  Google Scholar 

  84. Han, J. W. et al. Tumor necrosis factor-alpha induced protein 3 interacting protein 1 gene polymorphisms and pustular psoriasis in Chinese Han population. Chin. Med. J. 129, 1519–1524 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Nograles, K. E. et al. Th17 cytokines interleukin (IL)-17 and IL-22 modulate distinct inflammatory and keratinocyte-response pathways. Br. J. Dermatol. 159, 1092–1102 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Huffmeier, U., Watzold, M., Mohr, J., Schon, M. P. & Mossner, R. Successful therapy with anakinra in a patient with generalized pustular psoriasis carrying IL36RN mutations. Br. J. Dermatol. 170, 202–204 (2014).

    CAS  PubMed  Google Scholar 

  87. Towne, J. E. et al. Interleukin-36 (IL-36) ligands require processing for full agonist (IL-36alpha, IL-36beta, and IL-36gamma) or antagonist (IL-36Ra) activity. J. Biol. Chem. 286, 42594–42602 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Debets, R. et al. Two novel IL-1 family members, IL-1 delta and IL-1 epsilon, function as an antagonist and agonist of NF-kappa B activation through the orphan IL-1 receptor-related protein 2. J. Immunol. 167, 1440–1446 (2001).

    CAS  PubMed  Google Scholar 

  89. He, Y., Hara, H. & Nunez, G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem. Sci. 41, 1012–1021 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Johnston, A. et al. IL-1F5, -F6, -F8, and -F9: a novel IL-1 family signaling system that is active in psoriasis and promotes keratinocyte antimicrobial peptide expression. J. Immunol. 186, 2613–2622 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Ainscough, J. S. et al. Cathepsin S is the major activator of the psoriasis-associated proinflammatory cytokine IL-36gamma. Proc. Natl Acad. Sci. USA 114, E2748–E2757 (2017).

    CAS  PubMed  Google Scholar 

  92. Clancy, D. M., Henry, C. M., Sullivan, G. P. & Martin, S. J. Neutrophil extracellular traps can serve as platforms for processing and activation of IL-1 family cytokines. FEBS J. 284, 1712–1725 (2017).

    CAS  PubMed  Google Scholar 

  93. Liang, Y. et al. Six-transmembrane epithelial antigens of the prostate comprise a novel inflammatory nexus in patients with pustular skin disorders. J. Allergy Clin. Immunol. 139, 1217–1227 (2017).

    CAS  PubMed  Google Scholar 

  94. Vigne, S. et al. IL-36R ligands are potent regulators of dendritic and T cells. Blood 118, 5813–5823 (2011).

    CAS  PubMed  Google Scholar 

  95. Mutamba, S., Allison, A., Mahida, Y., Barrow, P. & Foster, N. Expression of IL-1Rrp2 by human myelomonocytic cells is unique to DCs and facilitates DC maturation by IL-1F8 and IL-1F9. Eur. J. Immunol. 42, 607–617 (2012).

    CAS  PubMed  Google Scholar 

  96. Arakawa, A. et al. Unopposed IL-36 activity promotes clonal CD4(+) T-cell responses with IL-17A production in generalized pustular psoriasis. J. Invest. Dermatol. 138, 1338–1347 (2018).

    CAS  PubMed  Google Scholar 

  97. Benoit, S., Toksoy, A., Brocker, E. B., Gillitzer, R. & Goebeler, M. Treatment of recalcitrant pustular psoriasis with infliximab: effective reduction of chemokine expression. Br. J. Dermatol. 150, 1009–1012 (2004).

    CAS  PubMed  Google Scholar 

  98. Imafuku, S. et al. Efficacy and safety of secukinumab in patients with generalized pustular psoriasis: a 52-week analysis from phase III open-label multicenter Japanese study. J. Dermatol. 43, 1011–1017 (2016).

    CAS  PubMed  Google Scholar 

  99. Blumberg, H. et al. Opposing activities of two novel members of the IL-1 ligand family regulate skin inflammation. J. Exp. Med. 204, 2603–2614 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Carrier, Y. et al. Inter-regulation of Th17 cytokines and the IL-36 cytokines in vitro and in vivo: implications in psoriasis pathogenesis. J. Invest. Dermatol. 131, 2428–2437 (2011).

    CAS  PubMed  Google Scholar 

  101. Robinson, A. et al. Treatment of pustular psoriasis: from the Medical Board of the National Psoriasis Foundation. J. Am. Acad. Dermatol. 67, 279–288 (2012).

    CAS  PubMed  Google Scholar 

  102. Torii, H., Nakagawa, H. & Japanese Infliximab Study Investigators. Long-term study of infliximab in Japanese patients with plaque psoriasis, psoriatic arthritis, pustular psoriasis and psoriatic erythroderma. J. Dermatol. 38, 321–334 (2011).

    CAS  PubMed  Google Scholar 

  103. Kimura, U. et al. Generalized pustular psoriasis-like eruptions induced after the first use of adalimumab in the treatment of psoriatic arthritis. J. Dermatol. 39, 286–287 (2012).

    PubMed  Google Scholar 

  104. Wendling, D. et al. Onset or exacerbation of cutaneous psoriasis during TNFalpha antagonist therapy. Jt. Bone Spine 75, 315–318 (2008).

    Google Scholar 

  105. Arakawa, A., Ruzicka, T. & Prinz, J. C. Therapeutic efficacy of interleukin 12/interleukin 23 blockade in generalized pustular psoriasis regardless of IL36RN mutation status. JAMA Dermatol. 152, 825–828 (2016).

    PubMed  Google Scholar 

  106. Bissonnette, R. et al. Increased expression of IL-17A and limited involvement of IL-23 in patients with palmo-plantar (PP) pustular psoriasis or PP pustulosis; results from a randomised controlled trial. J. Eur. Acad. Dermatol. Venereol. 28, 1298–1305 (2014).

    CAS  PubMed  Google Scholar 

  107. Husson, B. et al. Efficacy and safety of TNF blockers and of ustekinumab in palmoplantar pustulosis and in acrodermatitis continua of Hallopeau. J. Eur. Acad. Dermatol. Venereol. https://doi.org/10.1111/jdv.16265 (2020).

  108. Mrowietz, U. et al. Secukinumab for moderate-to-severe palmoplantar pustular psoriasis: results of the 2PRECISE study. J. Am. Acad. Dermatol. 80, 1344–1352 (2019).

    CAS  PubMed  Google Scholar 

  109. Mansouri, B., Richards, L. & Menter, A. Treatment of two patients with generalized pustular psoriasis with the interleukin-1beta inhibitor gevokizumab. Br. J. Dermatol. 173, 239–241 (2015).

    CAS  PubMed  Google Scholar 

  110. Skendros, P. et al. Successful response in a case of severe pustular psoriasis after interleukin-1beta inhibition. Br. J. Dermatol. 176, 212–215 (2017).

    CAS  PubMed  Google Scholar 

  111. Mansouri, B., Kivelevitch, D., Campa, M. & Menter, A. Palmoplantar pustular psoriasis unresponsive to the interleukin-1beta antagonist canakinumab. Clin. Exp. Dermatol. 41, 324–326 (2016).

    CAS  PubMed  Google Scholar 

  112. Gudjonsson, J. E., Johnston, A., Dyson, M., Valdimarsson, H. & Elder, J. T. Mouse models of psoriasis. J. Invest. Dermatol. 127, 1292–1308 (2007).

    CAS  PubMed  Google Scholar 

  113. Campbell, J. J. et al. Efficacy of chemokine receptor inhibition in treating IL-36alpha-induced psoriasiform inflammation. J. Immunol. 202, 1687–1692 (2019).

    CAS  PubMed  Google Scholar 

  114. Foster, A. M. et al. IL-36 promotes myeloid cell infiltration, activation, and inflammatory activity in skin. J. Immunol. 192, 6053–6061 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Hawkes, J. E., Gudjonsson, J. E. & Ward, N. L. The snowballing literature on imiquimod-induced skin inflammation in mice: a critical appraisal. J. Invest. Dermatol. 137, 546–549 (2017).

    CAS  PubMed  Google Scholar 

  116. Alvarez, P. & Jensen, L. E. Imiquimod treatment causes systemic disease in mice resembling generalized pustular psoriasis in an IL-1 and IL-36 dependent manner. Mediators Inflamm. 2016, 6756138 (2016).

    PubMed  PubMed Central  Google Scholar 

  117. Shao, S. et al. Neutrophil extracellular traps promote inflammatory responses in psoriasis via activating epidermal TLR4/IL-36R crosstalk. Front. Immunol. 10, 746 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Sundberg, J. P. et al. Gain of function p.E138A alteration in Card14 leads to psoriasiform skin inflammation and implicates genetic modifiers in disease severity. Exp. Mol. Pathol. 110, 104286 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Swindell, W. R. et al. RNA-Seq Analysis of IL-1B and IL-36 responses in epidermal keratinocytes identifies a shared MyD88-dependent gene signature. Front. Immunol. 9, 80 (2018).

    PubMed  PubMed Central  Google Scholar 

  120. Trivedi, M. K., Vaughn, A. R. & Murase, J. E. Pustular psoriasis of pregnancy: current perspectives. Int J. Women’s Health 10, 109–115 (2018).

    CAS  Google Scholar 

  121. Ross, M. G., Tucker, D. C. & Hayashi, R. H. Impetigo herpetiformis as a cause of postpartum fever. Obstet. Gynecol. 64, 49S–51S (1984).

    CAS  PubMed  Google Scholar 

  122. Yamashita, T. et al. An effective and promising treatment with adalimumab for impetigo herpetiformis with postpartum flare-up. Int J. Dermatol. 58, 350–353 (2019).

    PubMed  Google Scholar 

  123. Tay, Y. K. & Tham, S. N. The profile and outcome of pustular psoriasis in Singapore: a report of 28 cases. Int J. Dermatol. 36, 266–271 (1997).

    CAS  PubMed  Google Scholar 

  124. Xiao, T., Li, B., He, C. D. & Chen, H. D. Juvenile generalized pustular psoriasis. J. Dermatol. 34, 573–576 (2007).

    PubMed  Google Scholar 

  125. Wang, Q., Liu, W. & Zhang, L. Clinical features of von Zumbusch type of generalized pustular psoriasis in children: a retrospective study of 26 patients in southwestern China. Bras. Dermatol. 92, 319–322 (2017).

    Google Scholar 

  126. de Oliveira, S. T., Maragno, L., Arnone, M., Fonseca Takahashi, M. D. & Romiti, R. Generalized pustular psoriasis in childhood. Pediatr. Dermatol. 27, 349–354 (2010).

    PubMed  Google Scholar 

  127. Korber, A. et al. Mutations in IL36RN in patients with generalized pustular psoriasis. J. Invest. Dermatol. 133, 2634–2637 (2013).

    PubMed  Google Scholar 

  128. Sugiura, K. et al. A novel IL36RN/IL1F5 homozygous nonsense mutation, p.Arg10X, in a Japanese patient with adult-onset generalized pustular psoriasis. Br. J. Dermatol. 167, 699–701 (2012).

    CAS  PubMed  Google Scholar 

  129. Farooq, M. et al. Mutation analysis of the IL36RN gene in 14 Japanese patients with generalized pustular psoriasis. Hum. Mutat. 34, 176–183 (2013).

    CAS  PubMed  Google Scholar 

  130. Li, M. et al. IL36RN gene mutations are not associated with sporadic generalized pustular psoriasis in Chinese patients. Br. J. Dermatol. 168, 452–455 (2013).

    CAS  PubMed  Google Scholar 

  131. Hussain, S. et al. IL36RN mutations define a severe autoinflammatory phenotype of generalized pustular psoriasis. J. Allergy Clin. Immunol. 135, 1067–1070. e1069 (2015).

    CAS  PubMed  Google Scholar 

  132. Ammar, M. et al. CARD14 alterations in Tunisian patients with psoriasis and further characterization in European cohorts. Br. J. Dermatol. 174, 330–337 (2016).

    CAS  PubMed  Google Scholar 

  133. Mossner, R. et al. The genetic basis for most patients with pustular skin disease remains elusive. Br. J. Dermatol. 178, 740–748 (2018).

    CAS  PubMed  Google Scholar 

  134. Sugiura, K., Muto, M. & Akiyama, M. CARD14 c.526G>C (p.Asp176His) is a significant risk factor for generalized pustular psoriasis with psoriasis vulgaris in the Japanese cohort. J. Invest. Dermatol. 134, 1755–1757 (2014).

    CAS  PubMed  Google Scholar 

  135. Tobita, R. et al. A novel CARD14 variant, homozygous c.526G>C (p.Asp176His), in an adolescent Japanese patient with palmoplantar pustulosis. Clin. Exp. Dermatol. 44, 694–696 (2019).

    CAS  PubMed  Google Scholar 

  136. Qin, P. et al. Variant analysis of CARD14 in a Chinese Han population with psoriasis vulgaris and generalized pustular psoriasis. J. Invest. Dermatol. 134, 2994–2996 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Tauber, M. et al. Partial clinical response to anakinra in severe palmoplantar pustular psoriasis. Br. J. Dermatol. 171, 646–649 (2014).

    CAS  PubMed  Google Scholar 

  138. ClinicalTrialNCT03886246. A 5-year study to test BI 655130 in patients with generalized pustular psoriasis who took part in previous studies with BI 655130. Clinical Trial. https://clinicaltrials.gov/ct2/show/NCT03886246 (2019).

  139. ClinicalTrialNCT03135548. Initial dosing of BI 655130 in palmoplantar pustulosis patients. Clinical Trial. https://clinicaltrials.gov/ct2/show/NCT03135548 (2019).

  140. ClinicalTrialNCT03619902. A study to evaluate the efficacy and safety of ANB019 in subjects with generalized pustular psoriasis (GPP). Clinical Trial. https://clinicaltrials.gov/ct2/show/NCT03619902 (2019).

  141. ClinicalTrialNCT03633396. A study to evaluate the efficacy and safety of ANB019 in subjects with palmoplantar pustulosis (PPP). Clinical Trial. https://clinicaltrials.gov/ct2/show/NCT03633396 (2019).

Download references

Acknowledgements

This work was supported by the Babcock Endowment Fund (L.C.T. and J.E.G.), the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under award numbers R01-AR060802 (J.E.G.), P30-AR075043 (J.E.G.), and K01-AR072129 (L.C.T.), and the National Institute of Allergy and Infectious Diseases under award number R01-AR069071 (J.E.G.), the A. Alfred Taubman Medical Research Institute (J.E.G. and J.M.K.), the National Psoriasis Foundation (J.E.G, N.L.W., J.M.K., E.M., and L.C.T.), and the Parfait Emerging Scholar Award (J.M.K.). L.C.T. is supported by the Dermatology Foundation, the Arthritis National Research Foundation, and the National Psoriasis Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann E. Gudjonsson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uppala, R., Tsoi, L.C., Harms, P.W. et al. “Autoinflammatory psoriasis”—genetics and biology of pustular psoriasis. Cell Mol Immunol 18, 307–317 (2021). https://doi.org/10.1038/s41423-020-0519-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-020-0519-3

Keywords

This article is cited by

Search

Quick links