Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A new immunometabolic perspective of intervertebral disc degeneration

Abstract

Intervertebral disc (IVD) degeneration is a common finding on spine imaging that increases in prevalence with age. IVD degeneration is a frequent cause of low back pain, which is a leading cause of disability. The process of IVD degeneration consists of gradual structural change accompanied by severe alterations in metabolic homeostasis. IVD degeneration, like osteoarthritis, is a common comorbidity in patients with obesity and type 2 diabetes mellitus, two metabolic syndrome pathological conditions in which adipokines are important promoters of low-grade inflammation, extracellular matrix degradation and fibrosis. Impairment in white adipose tissue function, due to the abnormal fat accumulation in obesity, is characterized by increased production of specific pro-inflammatory proteins such as adipokines by white adipose tissue and of cytokines such as TNF by immune cells of the stromal compartment. Investigations into the immunometabolic alterations in obesity and type 2 diabetes mellitus and their interconnections with IVD degeneration provide insights into how adipokines might affect the pathogenesis of IVD degeneration and impair IVD function and repair. Toll-like receptor-mediated signalling has also been implicated as a promoter of the inflammatory response in the metabolic alterations associated with IVD and is thus thought to have a role in IVD degeneration. Pathological starvation, obesity and adipokine dysregulation can result in immunometabolic alterations, which could be targeted for the development of new therapeutics.

Key points

  • Intervertebral disc (IVD) degeneration is a common comorbidity in patients with obesity and those with type 2 diabetes mellitus.

  • Dysregulation of obesity-associated pro-inflammatory adipokines and high concentrations of circulating lipids promote a chronic state of low-grade inflammation and extracellular matrix degradation in the IVD.

  • Insulin resistance, hyperglycaemia, adipokines, advanced glycation end products and microvascular alterations negatively affect the IVD metabolic environment in type 2 diabetes mellitus.

  • Premature senescence, increased cellular apoptosis and altered autophagic mechanisms perpetuate a catabolic environment in the IVD.

  • Therapeutic strategies aimed at counteracting dysregulated pro-inflammatory adipokine production could be effective for the treatment of IVD degeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Diabesity, low-grade inflammation and IVD degeneration.
Fig. 2: Adipokines involved in low-grade inflammation and metabolic responses in IVD degeneration.

Similar content being viewed by others

References

  1. James, S. L. et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1789–1858 (2018).

    Article  Google Scholar 

  2. Jin, Z. et al. Incidence trend of five common musculoskeletal disorders from 1990 to 2017 at the global, regional and national level: results from the global burden of disease study 2017. Ann. Rheum. Dis. 79, 1014–1022 (2020).

    Article  PubMed  Google Scholar 

  3. Ehrlich, G. E. Low back pain. Bull. World Health Organ. 81, 671–676 (2003).

    PubMed  PubMed Central  Google Scholar 

  4. Hartvigsen, J. et al. What low back pain is and why we need to pay attention. Lancet 391, 2356–2367 (2018).

    Article  PubMed  Google Scholar 

  5. Vlaeyen, J. W. S. et al. Low back pain. Nat. Rev. Dis. Prim. 4, 52 (2018).

    Article  PubMed  Google Scholar 

  6. Cheung, K. M. C. et al. Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine 34, 934–940 (2009).

    Article  PubMed  Google Scholar 

  7. Livshits, G. et al. Lumbar disc degeneration and genetic factors are the main risk factors for low back pain in women: the UK Twin Spine Study. Ann. Rheum. Dis. 70, 1740–1745 (2011).

    Article  PubMed  Google Scholar 

  8. Takatalo, J. et al. Does lumbar disc degeneration on magnetic resonance imaging associate with low back symptom severity in young Finnish adults? Spine 36, 2180–2189 (2011).

    Article  PubMed  Google Scholar 

  9. Brinjikji, W. et al. Systematic literature review of imaging features of spinal degeneration in asymptomatic populations. Am. J. Neuroradiol. 36, 811–816 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gallucci, M., Puglielli, E., Splendiani, A., Pistoia, F. & Spacca, G. Degenerative disorders of the spine. Eur. Radiol. 15, 591–598 (2005).

    Article  PubMed  Google Scholar 

  11. Kushchayev, S. V. et al. ABCs of the degenerative spine. Insights Imaging 9, 253–274 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Buckwalter, J. A. Aging and degeneration of the human intervertebral disc. Spine 20, 1307–1314 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Dudli, S. et al. ISSLS Prize in Basic Science 2017: intervertebral disc/bone marrow cross-talk with Modic changes. Eur. Spine J. 26, 1362–1373 (2017).

    Article  PubMed  Google Scholar 

  14. Dudli, S., Fields, A. J., Samartzis, D., Karppinen, J. & Lotz, J. C. Pathobiology of Modic changes. Eur. Spine J. 25, 3723–3734 (2016).

    Article  PubMed  Google Scholar 

  15. Anderson, D. G. & Tannoury, C. Molecular pathogenic factors in symptomatic disc degeneration. Spine J. 5, S260–S266 (2005).

    Article  Google Scholar 

  16. Silagi, E. S. et al. The role of HIF proteins in maintaining the metabolic health of the intervertebral disc. Nat. Rev. Rheumatol. 17, 426–439 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Kadow, T., Sowa, G., Vo, N. & Kang, J. D. Molecular basis of intervertebral disc degeneration and herniations: what are the important translational questions? Clin. Orthop. Relat. Res. 473, 1903–1912 (2015).

    Article  PubMed  Google Scholar 

  18. Rajasekaran, S. et al. Human intervertebral discs harbour a unique microbiome and dysbiosis determines health and disease. Eur. Spine J. 29, 1621–1640 (2020).

    Article  PubMed  Google Scholar 

  19. Scanzello, C. R. Role of low-grade inflammation in osteoarthritis. Curr. Opin. Rheumatol. 29, 79–85 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Robinson, W. H. et al. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 12, 580–592 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Berenbaum, F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthritis Cartilage 21, 16–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Courties, A., Sellam, J. & Berenbaum, F. Metabolic syndrome-associated osteoarthritis. Curr. Opin. Rheumatol. 29, 214–222 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Courties, A. & Sellam, J. Osteoarthritis and type 2 diabetes mellitus: what are the links? Diabetes Res. Clin. Pract. 122, 198–206 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Francisco, V. et al. Adipokines: linking metabolic syndrome, the immune system, and arthritic diseases. Biochem. Pharmacol. 165, 196–206 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Sharma, A. The role of adipokines in intervertebral disc degeneration. Med. Sci. 6, 34 (2018).

    Google Scholar 

  26. Ruiz-Fernández, C. et al. Molecular relationships among obesity, inflammation and intervertebral disc degeneration: are adipokines the common link? Int. J. Mol. Sci. 20, 2030 (2019).

    Article  PubMed Central  Google Scholar 

  27. Rustenburg, C. M. E. et al. Osteoarthritis and intervertebral disc degeneration: quite different, quite similar. JOR Spine 1, e1033 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Czech, M. P. Insulin action and resistance in obesity and type 2 diabetes. Nat. Med. 11, 804–814 (2017).

    Article  Google Scholar 

  29. Astrup, A. & Finer, N. Redefining type 2 diabetes: “diabesity” or “obesity dependent diabetes mellitus”? Obes. Rev. 1, 57–59 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Toplak, H. et al. “Diabesity” — obesity and type 2 diabetes (Update 2019). Wien. Klin. Wochenschr. 131, 71–76 (2019).

    Article  PubMed  Google Scholar 

  31. Aamir, K., Khan, H. U., Sethi, G., Hossain, M. A. & Arya, A. Wnt signaling mediates TLR pathway and promote unrestrained adipogenesis and metaflammation: therapeutic targets for obesity and type 2 diabetes. Pharmacol. Res. 152, 104602 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Samartzis, D., Karppinen, J., Chan, D., Luk, K. D. K. & Cheung, K. M. C. The association of lumbar intervertebral disc degeneration on magnetic resonance imaging with body mass index in overweight and obese adults: a population-based study. Arthritis Rheum. 64, 1488–1496 (2012).

    Article  PubMed  Google Scholar 

  33. Elgaeva, E. E. et al. ISSLS Prize in Clinical Science 2020. Examining causal effects of body mass index on back pain: a Mendelian randomization study. Eur. Spine J. 29, 686–691 (2020).

    Article  PubMed  Google Scholar 

  34. Grunhagen, T., Shirazi-Adl, A., Fairbank, J. C. T. & Urban, J. P. G. Intervertebral disk nutrition: a review of factors influencing concentrations of nutrients and metabolites. Orthop. Clin. North. Am. 42, 465–477 (2011).

    Article  PubMed  Google Scholar 

  35. Shi, J. et al. Increased lactic acid content associated with extracellular matrix depletion in a porcine disc degeneration induced by superficial annular lesion. BMC Musculoskelet. Disord. 20, 551 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Guehring, T. et al. Notochordal intervertebral disc cells: sensitivity to nutrient deprivation. Arthritis Rheum. 60, 1026–1034 (2009).

    Article  PubMed  Google Scholar 

  37. Zhao, Y. et al. Body mass index and polycystic ovary syndrome: a 2-sample bidirectional mendelian randomization study. J. Clin. Endocrinol. Metab. 105, dgaa125 (2020).

    Article  PubMed  Google Scholar 

  38. Urban, J. P. G. & Roberts, S. Degeneration of the intervertebral disc. Arthritis Res. Ther. 5, 120–130 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yin, X. et al. Effects of glucose deprivation on ATP and proteoglycan production of intervertebral disc cells under hypoxia. Sci. Rep. 10, 8899 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wills, C. R., Foata, B., González Ballester, M., Karppinen, J. & Noailly, J. Theoretical explorations generate new hypotheses about the role of the cartilage endplate in early intervertebral disk degeneration. Front. Physiol. 9, 1210 (2018).

    Article  Google Scholar 

  41. Rade, M. et al. Vertebral endplate defect as initiating factor in intervertebral disc degeneration. Spine 43, 412–419 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Määttä, J. H. et al. Strong association between vertebral endplate defect and Modic change in the general population. Sci. Rep. 8, 16630 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Alpantaki, K., Kampouroglou, A., Koutserimpas, C., Effraimidis, G. & Hadjipavlou, A. Diabetes mellitus as a risk factor for intervertebral disc degeneration: a critical review. Eur. Spine J. 28, 2129–2144 (2019).

    Article  PubMed  Google Scholar 

  44. Cannata, F. et al. Osteoarthritis and type 2 diabetes: from pathogenetic factors to therapeutic intervention. Diabetes Metab. Res. Rev. 36, e3254 (2020).

    Article  PubMed  Google Scholar 

  45. Takatalo, J. et al. Association of abdominal obesity with lumbar disc degeneration — a magnetic resonance imaging study. PLoS One 8, e56244 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee, S. Y., Kim, W., Lee, S. U. & Choi, K. H. Relationship between obesity and lumbar spine degeneration: a cross-sectional study from the Fifth Korean National Health and Nutrition Examination Survey, 2010-2012. Metab. Syndr. Relat. Disord. 17, 60–66 (2019).

    Article  PubMed  Google Scholar 

  47. Xu, X., Li, X. & Wu, W. Association between overweight or obesity and lumbar disk diseases a meta-analysis. J. Spinal Disord. Tech. 28, 370–376 (2015).

    Article  PubMed  Google Scholar 

  48. Liuke, M. et al. Disc degeneration of the lumbar spine in relation to overweight. Int. J. Obes. 29, 903–908 (2005).

    Article  CAS  Google Scholar 

  49. Chen, J. et al. Fat mass and obesity-associated (FTO) gene polymorphisms are associated with risk of intervertebral disc degeneration in Chinese Han population: a case control study. Med. Sci. Monit. 24, 5598–5609 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu, Z., Yang, Y. & Qiu, G. Association study between the polymorphisms of the fat mass- and obesity-associated gene with the risk of intervertebral disc degeneration in the Han Chinese population. Genet. Test. Mol. Biomark. 17, 756–762 (2013).

    Article  CAS  Google Scholar 

  51. Dario, A. B. et al. The relationship between obesity, low back pain, and lumbar disc degeneration when genetics and the environment are considered: a systematic review of twin studies. Spine J. 15, 1106–1117 (2015).

    Article  PubMed  Google Scholar 

  52. Okada, E. et al. Aging of the cervical spine in healthy volunteers: a 10-year longitudinal magnetic resonance imaging study. Spine 34, 706–712 (2009).

    Article  PubMed  Google Scholar 

  53. Francisco, V. et al. Obesity, fat mass and immune system: role for leptin. Front. Physiol. 9, 640 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Scheja, L. & Heeren, J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat. Rev. Endocrinol. 15, 507–524 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Gruber, H. E., Ingram, J. A., Hoelscher, G. L. & Hanley, E. N. Leptin expression by annulus cells in the human intervertebral disc. Spine J. 7, 437–443 (2007).

    Article  PubMed  Google Scholar 

  56. Zhao, C. Q., Liu, D., Li, H., Jiang, L. S. & Dai, L. Y. Expression of leptin and its functional receptor on disc cells: contribution to cell proliferation. Spine 33, 858–864 (2008).

    Article  Google Scholar 

  57. Li, Z. et al. Leptin induces cyclin d1 expression and proliferation of human nucleus pulposus cells via JAK/STAT, PI3K/Akt and MEK/ERK Pathways. PLoS One 7, e53176 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Koerner, J. D. et al. Differential gene expression in anterior and posterior annulus fibrosus. Spine 39, 1917–1923 (2014).

    Article  PubMed  Google Scholar 

  59. Li, Z. et al. The role of leptin on the organization and expression of cytoskeleton elements in nucleus pulposus cells. J. Orthop. Res. 31, 847–857 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li, Z. et al. Leptin activates RhoA/ROCK pathway to induce cytoskeleton remodeling in nucleus pulposus cells. Int. J. Mol. Sci. 15, 1176–1188 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Segar, A. H., Fairbank, J. C. T. & Urban, J. Leptin and the intervertebral disc: a biochemical link exists between obesity, intervertebral disc degeneration and low back pain — an in vitro study in a bovine model. Eur. Spine J. 28, 214–223 (2019).

    Article  PubMed  Google Scholar 

  62. Miao, D. & Zhang, L. Leptin modulates the expression of catabolic genes in rat nucleus pulposus cells through the mitogen-activated protein kinase and Janus kinase 2/signal transducer and activator of transcription 3 pathways. Mol. Med. Rep. 12, 1761–1768 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li, Z. et al. Leptin downregulates aggrecan through the p38-ADAMST pathway in human nucleus pulposus cells. PLoS One 9, e109595 (2014).

  64. Han, Y. C. et al. Leptin regulates disc cartilage endplate degeneration and ossification through activation of the MAPK-ERK signalling pathway in vivo and in vitro. J. Cell. Mol. Med. 22, 2098–2109 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ding, W. et al. Leptin induces terminal differentiation of rat annulus fibrosus cells via activation of MAPK signaling. Anat. Rec. 296, 1806–1812 (2013).

    Article  CAS  Google Scholar 

  66. Sun, C., Wang, Z., Tian, J.-W. & Wang, Y.-H. Leptin-induced inflammation by activating IL-6 expression contributes to the fibrosis and hypertrophy of ligamentum flavum in lumbar spinal canal stenosis. Biosci. Rep. 38, 20171214 (2018).

    Article  Google Scholar 

  67. Liu, M. & Liu, F. Regulation of adiponectin multimerization, signaling and function. Best. Pract. Res. Clin. Endocrinol. Metab. 28, 25–31 (2014).

    Article  PubMed  Google Scholar 

  68. Yuan, X. et al. The key role of canonical Wnt/β-catenin signaling in cartilage chondrocytes. Curr. Drug Targets 17, 475–484 (2015).

    Article  Google Scholar 

  69. Rodríguez-Carrio, J. et al. Non-esterified fatty acids profiling in rheumatoid arthritis: associations with clinical features and Th1 response. PLoS One 11, e0159573 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Khabour, O. F., Abu-Rumeh, L., Al-Jarrah, M., Jamous, M. & Alhashimi, F. Association of adiponectin protein and ADIPOQ gene variants with lumbar disc degeneration. Exp. Ther. Med. 8, 1340–1344 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yuan, B. et al. Adiponectin downregulates TNF-α expression in degenerated intervertebral discs. Spine 43, E381–E389 (2018).

    Article  PubMed  Google Scholar 

  72. Terashima, Y. et al. Expression of adiponectin receptors in human and rat intervertebral disc cells and changes in receptor expression during disc degeneration using a rat tail temporary static compression model. J. Orthop. Surg. Res. 11, 1–9 (2016).

    Article  Google Scholar 

  73. Steppan, C. M. et al. The hormone resistin links obesity to diabetes. Nature 409, 307–312 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Tarkowski, A., Bjersing, J., Shestakov, A. & Bokarewa, M. I. Resistin competes with lipopolysaccharide for binding to toll-like receptor 4. J. Cell. Mol. Med. 14, 1419–1431 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Francisco, V. et al. Biomechanics, obesity, and osteoarthritis. The role of adipokines: when the levee breaks. J. Orthop. Res. 36, 594–604 (2017).

    PubMed  Google Scholar 

  76. Li, Z. et al. Resistin promotes CCL4 expression through toll-like receptor-4 and activation of the p38-MAPK and NF-κB signaling pathways: implications for intervertebral disc degeneration. Osteoarthritis Cartilage 25, 341–350 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Liu, C. et al. Resistin promotes intervertebral disc degeneration by upregulation of ADAMTS-5 through p38 MAPK signaling pathway. Spine 41, 1414–1420 (2016).

    Article  PubMed  Google Scholar 

  78. Shi, C. et al. Nicotinamide phosphoribosyltransferase inhibitor APO866 prevents IL-1β-induced human nucleus pulposus cell degeneration via autophagy. Cell. Physiol. Biochem. 49, 2463–2482 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Abella, V. et al. The potential of lipocalin-2/NGAL as biomarker for inflammatory and metabolic diseases. Biomarkers 20, 565–571 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kao, T.-H. et al. Nerve growth factor increases MMP9 activity in annulus fibrosus cells by upregulating lipocalin 2 expression. Eur. Spine J. 24, 1959–1968 (2015).

    Article  PubMed  Google Scholar 

  81. Kao, T.-H., Peng, Y.-J., Tsou, H.-K., Salter, D. M. & Lee, H.-S. Nerve growth factor promotes expression of novel genes in intervertebral disc cells that regulate tissue degradation. J. Neurosurg. Spine 21, 653–661 (2014).

    Article  PubMed  Google Scholar 

  82. Francisco, V. et al. Adipokines and inflammation: is it a question of weight? Br. J. Pharmacol. 175, 1569–1579 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Liu, C. J. & Bosch, X. Progranulin: a growth factor, a novel TNFR ligand and a drug target. Pharmacol. Ther. 133, 124–132 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Wang, S. et al. Progranulin is positively associated with intervertebral disc degeneration by interaction with IL-10 and IL-17 through TNF pathways. Inflammation 41, 1852–1863 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Naphade, S. B. et al. Progranulin expression is upregulated after spinal contusion in mice. Acta Neuropathol. 119, 123–133 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Zhao, Y.-P. et al. Progranulin knockout accelerates intervertebral disc degeneration in aging mice. Sci. Rep. 5, 9102 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ding, H. et al. Progranulin derived engineered protein Atsttrin suppresses TNF-a-mediated inflammation in intervertebral disc degenerative disease. Oncotarget 8, 109692–109702 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Lorenzi, T. et al. Ghrelin: a metabolic signal affecting the reproductive system. Cytokine Growth Factor. Rev. 20, 137–152 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Colldén, G., Tschöp, M. H. & Müller, T. D. Therapeutic potential of targeting the ghrelin pathway. Int. J. Mol. Sci. 18, 798 (2017).

    Article  PubMed Central  Google Scholar 

  90. Pereira, J. A. D. S., Silva, F. C. D. & De Moraes-Vieira, P. M. M. The impact of ghrelin in metabolic diseases: an immune perspective. J. Diabetes Res. 2017, 4527980 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Li, W. et al. Ghrelin protects against nucleus pulposus degeneration through inhibition of NF-κB signaling pathway and activation of Akt signaling pathway. Oncotarget 8, 91887–91901 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Teraguchi, M. et al. Progression, incidence, and risk factors for intervertebral disc degeneration in a longitudinal population-based cohort: the Wakayama Spine Study. Osteoarthritis Cartilage 25, 1122–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Liu, X., Pan, F., Ba, Z., Wang, S. & Wu, D. The potential effect of type 2 diabetes mellitus on lumbar disc degeneration: a retrospective single-center study. J. Orthop. Surg. Res. 13, 52 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Fabiane, S. M., Ward, K. J., Iatridis, J. C. & Williams, F. M. K. Does type 2 diabetes mellitus promote intervertebral disc degeneration? Eur. Spine J. 25, 2716–2720 (2016).

    Article  PubMed  Google Scholar 

  95. Hangai, M. et al. Factors associated with lumbar intervertebral disc degeneration in the elderly. Spine J. 8, 732–740 (2008).

    Article  PubMed  Google Scholar 

  96. Videman, T. et al. Disc degeneration and bone density in monozygotic twins discordant for insulin-dependent diabetes mellitus. J. Orthop. Res. 18, 768–772 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Fields, A. J. et al. Alterations in intervertebral disc composition, matrix homeostasis and biomechanical behavior in the UCD-T2DM rat model of type 2 diabetes. J. Orthop. Res. 33, 738–746 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Huang, Y. C., Urban, J. P. G. & Luk, K. D. K. Intervertebral disc regeneration: do nutrients lead the way? Nat. Rev. Rheumatol. 10, 561–566 (2014).

    Article  PubMed  Google Scholar 

  99. Thrailkill, K. M. Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am. J. Physiol. Endocrinol. Metab. 289, E735–E745 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Xu, H. M., Hu, F., Wang, X. Y. & Tong, S. L. Relationship between apoptosis of endplate microvasculature and degeneration of the intervertebral disk. World Neurosurg. 125, e392–e397 (2019).

    Article  PubMed  Google Scholar 

  101. Chen, S., Liao, M., Li, J., Peng, H. & Xiong, M. The correlation between microvessel pathological changes of the endplate and degeneration of the intervertebral disc in diabetic rats. Exp. Ther. Med. 5, 711–717 (2013).

    Article  PubMed  Google Scholar 

  102. Jiang, L. et al. Apoptosis, senescence, and autophagy in rat nucleus pulposus cells: implications for diabetic intervertebral disc degeneration. J. Orthop. Res. 31, 692–702 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Liu, Y. et al. The effect of high glucose on the biological characteristics of nucleus pulposus-derived mesenchymal stem cells. Cell Biochem. Funct. 38, 130–140 (2020).

    Article  CAS  PubMed  Google Scholar 

  104. Jiang, Z. et al. High glucose-induced excessive reactive oxygen species promote apoptosis through mitochondrial damage in rat cartilage endplate cells. J. Orthop. Res. 36, 2476–2483 (2018).

    Article  CAS  PubMed  Google Scholar 

  105. Hou, G. et al. N-cadherin attenuates high glucose-induced nucleus pulposus cell senescence through regulation of the ROS/NF-κB pathway. Cell. Physiol. Biochem. 47, 257–265 (2018).

    Article  CAS  PubMed  Google Scholar 

  106. Kong, J. G., Park, J. B., Lee, D. & Park, E. Y. Effect of high glucose on stress-induced senescence of nucleus pulposus cells of adult rats. Asian Spine J. 9, 155–161 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Park, J.-B., Kong, J.-G., Lee, D. & Park, E.-Y. Stressed-induced senescence of adult rat nucleus pulposus cells effect of high glucose on stress-induced senescence of nucleus pulposus cells of adult rats. Asian Spine J. 9, 155–161 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Cheng, X., Ni, B., Zhang, F., Hu, Y. & Zhao, J. High glucose-induced oxidative stress mediates apoptosis and extracellular matrix metabolic imbalances possibly via p38 MAPK activation in rat nucleus pulposus cells. J. Diabetes Res. 2016, 3765173 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Svenja, I. J. et al. Chronic ingestion of advanced glycation end products induces degenerative spinal changes and hypertrophy in aging pre-diabetic mice. PLoS One 10, e0116625 (2015).

    Article  Google Scholar 

  110. Li, X. et al. Intervertebral disc degeneration in mice with type II diabetes induced by leptin receptor deficiency. BMC Musculoskelet. Disord. 21, 77 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Natelson, D. M. et al. Leptin signaling and the intervertebral disc: sex dependent effects of leptin receptor deficiency and Western diet on the spine in a type 2 diabetes mouse model. PLoS One 15, e0227527 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Katsiki, N., Mikhailidis, D. P. & Banach, M. Leptin, cardiovascular diseases and type 2 diabetes mellitus. Acta Pharmacol. Sin. 39, 1176–1188 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Achari, A. E. & Jain, S. K. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int. J. Mol. Sci. 18, 1321 (2017).

    Article  PubMed Central  Google Scholar 

  114. Eckel, R. H. et al. Obesity and type 2 diabetes: what can be unified and what needs to be individualized? J. Clin. Endocrinol. Metab. 96, 1654–1663 (2011).

  115. Jaganathan, R., Ravindran, R. & Dhanasekaran, S. Emerging role of adipocytokines in Type 2 diabetes as mediators of insulin resistance and cardiovascular disease. Can. J. Diabetes 42, 446–456.e1 (2018).

    Article  PubMed  Google Scholar 

  116. El Husseny, M. W. A. et al. Adipokines: potential therapeutic targets for vascular dysfunction in type II diabetes mellitus and obesity. J. Diabetes Res. 2017, 8095926 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Tang, G. et al. Latent infection of low-virulence anaerobic bacteria in degenerated lumbar intervertebral discs. BMC Musculoskelet. Disord. 19, 445 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Albert, H. B. et al. Does nuclear tissue infected with bacteria following disc herniations lead to Modic changes in the adjacent vertebrae? Eur. Spine J. 22, 690–696 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Fisher, T. J. & Osti, O. L. Do bacteria play an important role in the pathogenesis of low back pain? ANZ J. Surg. 85, 808–814 (2015).

    Article  PubMed  Google Scholar 

  120. Albert, H. B. Antibiotic treatment in patients with chronic low back pain and vertebral bone edema (Modic type 1 changes): a double-blind randomized clinical controlled trial of efficacy. Eur. Spine J. 22, 697–707 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Urquhart, D. M. et al. Could low grade bacterial infection contribute to low back pain? A systematic review. BMC Med. 13, 13 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Khalil, J. G., Gandhi, S. D., Park, D. K. & Fischgrund, J. S. Cutibacterium acnes in spine pathology: pathophysiology, diagnosis, and management. J. Am. Acad. Orthop. Surg. 27, e633–e640 (2019).

    Article  PubMed  Google Scholar 

  123. Bråten, L. C. H. et al. Efficacy of antibiotic treatment in patients with chronic low back pain and Modic changes (the AIM study): double blind, randomised, placebo controlled, multicentre trial. BMJ 367, l5654 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Gorth, D. J., Shapiro, I. M. & Risbud, M. V. Discovery of the drivers of inflammation induced chronic low back pain: from bacteria to diabetes. Discov. Med. 20, 177–184 (2015).

    PubMed  PubMed Central  Google Scholar 

  125. MV, R. & IM, S. Role of cytokines in intervertebral disc degeneration: pain and disc content. Nat. Rev. Rheumatol. 10, 44–56 (2014).

    Article  Google Scholar 

  126. Krock, E. et al. Painful, degenerating intervertebral discs up-regulate neurite sprouting and CGRP through nociceptive factors. J. Cell. Mol. Med. 18, 1213–1225 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Alkhatib, B. et al. Acute mechanical injury of the human intervertebral disc: link to degeneration and pain. Eur. Cell Mater. 28, 98–111 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Binch, A. L. et al. Expression and regulation of neurotrophic and angiogenic factors during human intervertebral disc degeneration. Arthritis Res. Ther. 16, 416 (2014).

    Article  PubMed  Google Scholar 

  129. Gómez, R., Villalvilla, A., Largo, R., Gualillo, O. & Herrero-Beaumont, G. TLR4 signalling in osteoarthritis-finding targets for candidate DMOADs. Nat. Rev. Rheumatol. 11, 159–170 (2015).

    Article  PubMed  Google Scholar 

  130. Yu, L., Wang, L. & Chen, S. Endogenous toll-like receptor ligands and their biological significance. J. Cell. Mol. Med. 14, 2592–2603 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kawasaki, T. & Kawai, T. Toll-like receptor signaling pathways. Front. Immunol. 5, 461 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Mobasheri, A. et al. The role of metabolism in the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 13, 302–311 (2017).

    Article  CAS  PubMed  Google Scholar 

  133. Schieker, M. et al. Effects of interleukin-1β inhibition on incident hip and knee replacement: exploratory analyses from a randomized, double-blind, placebo-controlled trial. Ann. Intern. Med. 173, 509–515 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Tarkowski, A., Bokarewa, M., Nagaev, I., Dahlberg, L. & Smith, U. Proinflammatory properties resistin, an adipokine with potent. J. Immunol. Ref. 174, 5789–5795 (2005).

    Article  Google Scholar 

  135. Franco-Trepat, E. et al. Visfatin connection: present and future in osteoarthritis and osteoporosis. J. Clin. Med. 8, 1178 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  136. Wei, J., Hettinghouse, A. & Liu, C. The role of progranulin in arthritis. Ann. N. Y. Acad. Sci. 1383, 5–20 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. Otero, M. et al. Chronic inflammation modulates ghrelin levels in humans and rats. Rheumatology 43, 306–310 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Francisco, V. et al. Levels of the novel endogenous antagonist of ghrelin receptor, liver-enriched antimicrobial peptide-2, in patients with rheumatoid arthritis. Nutrients 12, 1006 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  139. Gerwick, L., Corley-Smith, G. & Bayne, C. J. Gene transcript changes in individual rainbow trout livers following an inflammatory stimulus. Fish. Shellfish. Immunol. 22, 157–171 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Escoté, X. et al. Role of omentin, vaspin, cardiotrophin-1, TWEAK and NOV/CCN3 in obesity and diabetes development. Int. J. Mol. Sci. 18, 1770 (2017).

    Article  PubMed Central  Google Scholar 

  141. Kuba, K., Sato, T., Imai, Y. & Yamaguchi, T. Apelin and Elabela/Toddler; double ligands for APJ/Apelin receptor in heart development, physiology, and pathology. Peptides 111, 62–70 (2019).

    Article  CAS  PubMed  Google Scholar 

  142. Helfer, G. & Wu, Q. F. Chemerin: a multifaceted adipokine involved in metabolic disorders. J. Endocrinol. 238, R79–R94 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Sakai, D. & Andersson, G. B. J. Stem cell therapy for intervertebral disc regeneration: obstacles and solutions. Nat. Rev. Rheumatol. 11, 243–256 (2015).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

O.G. and F.L. are Staff Personnel (I3SNS Stable Researcher) of Xunta de Galicia (Servizo Galego de Saude (SERGAS)) through a research-staff contract (Instituto de Salud Carlos III (ISCIII) /SERGAS). V.F. is a “Sara Borrell” Researcher funded by ISCIII and Fondo Europeo de Desarrollo Regional (FEDER) (CD16/00111) and Miguel Servet Programme (CP21/00025) funded by ISCIII. O.G. and M.A.G.G. are members of the RETICS Programme, RD16/0012/0014 (RIER: Red de Investigación en Inflamación y Enfermedades Reumáticas) and RICORS Programme, RD21/0002/0025 via ISCIII and FEDER. F.L. is a member of Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV). The work of O.G. and J.P. (PI17/00409 and PI20/00902), and F.L. (PI18/00821 and CB16/11/00226) is funded by ISCIII and FEDER. O.G. is a beneficiary of a project funded by the Research Executive Agency of the European Union in the framework of MSCA-RISE Action of the H2020 Programme (project number 734899). O.G. is the beneficiary of a grant funded by Xunta de Galicia, Consellería de Educación, Universidade e Formación Profesional and Consellería de Economía, Emprego e Industria (GAIN) (GPC IN607B2019/10). A.M. has received funding from the European Union’s Framework 7 programme (EU FP7; HEALTH.2012.2.4.5-2, project number 305815, the Innovative Medicines Initiative Joint Undertaking (grant agreement No. 115770, resources of which are composed of financial contribution from the EU FP7 (FP7/2007-2013) and the European Federation of Pharmaceutical Industries and Associations (EFPIA) companies’ in-kind contribution). A.M. acknowledges funding from the European Commission through a Marie Curie Intra-European Fellowship for Career Development grant (project number 625746; acronym: CHONDRION; FP7-PEOPLE-2013-IEF) and financial support from the European Structural and Social Funds (ES Struktūrinės Paramos) through the Research Council of Lithuania (Lietuvos Mokslo Taryba) according to the activity “Improvement of researchers’ qualification by implementing world-class R&D projects” of Measure No. 09.3.3-LMT-K-712 (grant application code: 09.3.3-LMT-K-712-01-0157, agreement No. DOTSUT-215) and the new funding programme “Attracting Foreign Researchers for Research Implementation (2018-2022)”.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussions of the content and contributed to writing, reviewing and/or editing the manuscript before submission.

Corresponding author

Correspondence to Oreste Gualillo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Rheumatology thanks J. Lotz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Adipokines

Cytokines derived from adipose tissue that have pleiotropic functions in energy metabolism, immunity and inflammation; most adipokines are augmented in obesity and contribute to the associated low-grade inflammatory state.

Adiposity

The quality or state of accumulating abnormal amounts of fat in the body, especially in the visceral compartment. Adiposity is associated with several secondary diseases, such as type 2 diabetes mellitus, hypertension, cardiovascular diseases, fatty liver and musculoskeletal diseases such as osteoarthritis and intervertebral disc degeneration.

Notochordal cells

Cells of mesodermal origin that form the notochord, a rod-like structure that is the principal longitudinal structural element of chordates and of the early embryo of vertebrates.

Bony endplate

A thin layer of porous bone, containing vessels, that is localized between the vertebral bone and cartilaginous endplate.

Modic changes

Degenerative bone marrow changes seen in the vertebrae on MRI, with type 1 changes appearing as fibrovascular changes (mainly oedema and inflammation) in subchondral bone marrow, type 2 changes representing the conversion of yellow bone marrow to fat and type 3 changes appearing as highly mineralized, sclerotic bone.

Spinal motion segments

Functional spinal units that represent the focus of biomechanical functioning of the spine, consisting of two adjacent vertebrae, the intervertebral disc and all adjoining ligaments.

Cyclin D1

A protein that regulates cell-cycle progression through the G1 to S phase transition.

Ligamentum flavum

One of a series of ligaments of yellow elastic tissue connecting the laminae of adjoining vertebrae from the axis to the sacrum, forming the posterior wall of the spinal canal.

Metabolic syndrome

A condition characterized by three or more metabolic risk factors (including abdominal obesity, hypertension, dyslipidaemia and insulin resistance) and that is linked to an increased risk of the development of type 2 diabetes mellitus and cardiovascular disease.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Francisco, V., Pino, J., González-Gay, M.Á. et al. A new immunometabolic perspective of intervertebral disc degeneration. Nat Rev Rheumatol 18, 47–60 (2022). https://doi.org/10.1038/s41584-021-00713-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-021-00713-z

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research