Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Why remission is not enough: underlying disease mechanisms in RA that prevent cure

Abstract

Cure is the aspirational aim for the treatment of all diseases, including chronic inflammatory conditions such as rheumatoid arthritis (RA); however, it has only been during the twenty-first century that remission, let alone cure, has been a regularly achievable target in RA. Little research has been carried out on how to cure RA, and the term ‘cure’ still requires definition for this disease. Even now, achieving a cure seems to be a rare occurrence among individuals with RA. Therefore, this Review is aimed at addressing the obstacles to the achievement of cure in RA. The differences between remission and cure in RA are first defined, followed by a discussion of the underlying factors (referred to as drivers) that prevent the achievement of cure in RA by triggering sustained immune activation and effector cytokine production. Such drivers include adaptive immune system activation, mesenchymal tissue priming and so-called ‘remote’ (non-immune and non-articular) factors. Strategies to target these drivers are also presented, with an emphasis on the development of strategies that could complement currently used cytokine inhibition and thereby improve the likelihood of curing RA.

Key points

  • The term cure indicates the principle absence of disease, whereas remission indicates that disease is still present but is adequately controlled by therapy.

  • Although effector cytokines involved in rheumatoid arthritis (RA) are well-defined and can be effectively neutralized by current treatment modalities, cure is still rare.

  • Underlying disease mechanisms (referred to as drivers) are thought to continuously promote effector cytokine production and thereby prevent cure of RA.

  • Aberrant T cell activation related to autoimmunity, microenvironmental changes associated with local mesenchymal cell priming and so-called ‘remote’ factors such as intestinal barrier function all serve as drivers of RA.

  • To attain cure of RA as an ultimate treatment goal, strategies need to be developed to therapeutically tackle drivers of RA and enable a sustained interruption of the disease process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Modular analysis of rheumatoid arthritis disease states.
Fig. 2: Drivers that affect the transition from remission to cure in rheumatoid arthritis.

Similar content being viewed by others

References

  1. Felson, D. T. Defining remission in rheumatoid arthritis. Ann. Rheum. Dis 71 (Suppl. 2), i86–i88 (2012).

    PubMed  PubMed Central  Google Scholar 

  2. McInnes, I. B. & Schett, G. Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet 389, 2328–2337 (2017).

    CAS  PubMed  Google Scholar 

  3. Aga, A. B. et al. Time trends in disease activity, response and remission rates in rheumatoid arthritis during the past decade: results from the NOR-DMARD study 2000-2010. Ann. Rheum. Dis. 74, 381–388 (2015).

    CAS  PubMed  Google Scholar 

  4. Fransen, J., Creemers, M. & Van Riel, P. Remission in rheumatoid arthritis: agreement of the disease activity score (DAS28) with the ARA preliminary remission criteria. Rheumatology 43, 1252–1255 (2004).

    CAS  PubMed  Google Scholar 

  5. Smolen, J. S. et al. A simplified disease activity index for rheumatoid arthritis for use in clinical practice. Rheumatology 42, 244–257 (2003).

    CAS  PubMed  Google Scholar 

  6. Aletaha, D. et al. Remission and active disease in rheumatoid arthritis: defining criteria for disease activity states. Arthritis Rheum. 52, 2625–2636 (2005).

    PubMed  Google Scholar 

  7. Felson, D. T. et al. American College of Rheumatology/European League Against Rheumatism provisional definition of remission in rheumatoid arthritis for clinical trials. Ann. Rheum. Dis. 70, 404–413 (2011).

    PubMed  Google Scholar 

  8. Hughes, C. D. et al. Intensive therapy and remissions in rheumatoid arthritis: a systematic review. BMC Musculoskelet. Disord. 19, 389 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bijlsma, J. W. J. et al. Early rheumatoid arthritis treated with tocilizumab, methotrexate, or their combination (U-Act-Early): a multicentre, randomised, double-blind, double-dummy, strategy trial. Lancet 388, 343–355 (2016).

    CAS  PubMed  Google Scholar 

  10. Schett, G. et al. Tapering biologic and conventional DMARD therapy in rheumatoid arthritis: current evidence and future directions. Ann. Rheum. Dis. 75, 1428–1437 (2016).

    CAS  PubMed  Google Scholar 

  11. Olsen, C. L. et al. Predictors of fatigue in rheumatoid arthritis patients in remission or in a low disease activity state. Arthritis Care Res. 68, 1043–1048 (2016).

    CAS  Google Scholar 

  12. Verstappen, M. DMARD-free remission as novel treatment target in rheumatoid arthritis: a systematic literature review of achievability and sustainability. RMD Open 6, e001220 (2020).

    PubMed  PubMed Central  Google Scholar 

  13. Ajeganova, S. & Huizinga, T. Sustained remission in rheumatoid arthritis: latest evidence and clinical considerations. Ther. Adv. Musculoskelet. Dis. 9, 249–262 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Akdemir, G. et al. Clinical and radiological outcomes of 5-year drug-free remission-steered treatment in patients with early arthritis: IMPROVED study. Ann. Rheum. Dis. 77, 111–118 (2018).

    CAS  PubMed  Google Scholar 

  15. van Gaalen, F. A. et al. Autoantibodies to cyclic citrullinated peptides predict progression to rheumatoid arthritis in patients with undifferentiated arthritis: a prospective cohort study. Arthritis Rheum. 50, 709–715 (2004).

    PubMed  Google Scholar 

  16. Sokolove, J. et al. Autoantibody epitope spreading in the pre-clinical phase predicts progression to rheumatoid arthritis. PLoS One 7, e35296 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Simon, D. et al. Micro-structural bone changes are associated with broad-spectrum autoimmunity and predict the onset of rheumatoid arthritis. Arthritis Rheum. https://doi.org/10.1002/art.41229 (2020).

    Article  Google Scholar 

  18. Figueiredo, C. P. et al. Anti-modified protein antibody response pattern influences the risk for disease relapse in patients with rheumatoid arthritis tapering disease modifying anti-rheumatic drugs. Ann. Rheum. Dis. 76, 399–407 (2017).

    CAS  PubMed  Google Scholar 

  19. Stahl, E. A. et al. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat. Genet. 42, 508–514 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Makrygiannakis, D. et al. Smoking increases peptidylarginine deiminase 2 enzyme expression in human lungs and increases citrullination in BAL cells. Ann. Rheum. Dis. 67, 1488–1492 (2008).

    CAS  PubMed  Google Scholar 

  21. Van den Broek, M. et al. Discontinuation of infliximab and potential predictors of persistent low disease activity in patients with early rheumatoid arthritis and disease activity score-steered therapy: subanalysis of the BeSt study. Ann. Rheum. Dis. 70, 1389–1394 (2011).

    PubMed  Google Scholar 

  22. Tjin, C. C. et al. Synthesis and biological evaluation of an indazole-based selective protein arginine deiminase 4 (PAD4) inhibitor. ACS Med. Chem. Lett. 9, 1013–1018 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Burgoyne, C. H. et al. Abnormal T cell differentiation persists in patients with rheumatoid arthritis in clinical remission and predicts relapse. Ann. Rheum. Dis. 67, 750–757 (2008).

    CAS  PubMed  Google Scholar 

  24. Lawson, C. A. et al. Early rheumatoid arthritis is associated with a deficit in the CD4+ CD25high regulatory T cell population in peripheral blood. Rheumatology 45, 1210–1217 (2006).

    CAS  PubMed  Google Scholar 

  25. van Roon, J. A. et al. Numbers of CD25+Foxp3+ T cells that lack the IL-7 receptor are increased intra-articularly and have impaired suppressive function in RA patients. Rheumatology 49, 2084–2089 (2010).

    PubMed  Google Scholar 

  26. Dominguez-Villar, M. & Hafler, D. A. Regulatory T cells in autoimmune disease. Nat. Immunol. 19, 665–673 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Komatsu, N. et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat. Med. 20, 62–68 (2014).

    CAS  PubMed  Google Scholar 

  28. Nguyen, D. X. et al. Regulatory T cells as a biomarker for response to adalimumab in rheumatoid arthritis. J. Allergy Clin. Immunol. 142, 978–980 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Buckner, J. H. Mechanisms of impaired regulation by CD4+CD25+FOXP3+ regulatory T cells in human autoimmune diseases. Nat. Rev. Immunol. 10, 849–859 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Van Amelsfort, J. M. R. et al. Proinflammatory mediator-induced reversal of CD4+CD25+regulatory T cell-mediated suppression in rheumatoid arthritis. Arthritis Rheum. 56, 732–742 (2007).

    PubMed  Google Scholar 

  31. Flores-Borja, F. et al. Defects in CTLA-4 are associated with abnormal regulatory T cell function in rheumatoid arthritis. Proc. Natl Acad. Sci. USA 105, 19396–19401 (2008).

    CAS  PubMed  Google Scholar 

  32. Chemin, K., Gerstner, C. & Malmström, V. Effector functions of CD4+T cells at the site of local autoimmune inflammation-lessons from rheumatoid arthritis. Front. Immunol. 10, 353 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang, X. Z. et al. Restoring oxidant signaling suppresses proarthritogenic T cell effector functions in rheumatoid arthritis. Sci. Transl Med. 8, 331ra38 (2016).

    PubMed  PubMed Central  Google Scholar 

  34. Rosenzwajg, M. et al. Immunological and clinical effects of low-dose interleukin-2 across 11 autoimmune diseases in a single, open clinical trial. Ann. Rheum. Dis. 78, 209–217 (2019).

    CAS  PubMed  Google Scholar 

  35. Hao, H. et al. Conversion of T follicular helper cells to T follicular regulatory cells through transcriptional regulation in systemic lupus erythematosus. Arthritis Rheumatol. https://doi.org/10.1002/art.41457 (2020).

    Article  PubMed  Google Scholar 

  36. Crotty, S. T follicular helper cell biology: a decade of discovery and diseases. Immunity 50, 1133–1148 (2019).

    Google Scholar 

  37. Wunderlich, C. et al. Effects of DMARDs on citrullinated peptide autoantibody levels in RA patients — a longitudinal analysis. Semin. Arthritis Rheum. 46, 709–714 (2017).

    CAS  PubMed  Google Scholar 

  38. Rao, D. A. et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 542, 110–114 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Scott, I. C. et al. The protective effect of alcohol on developing rheumatoid arthritis: a systematic review and meta-analysis. Rheumatology 52, 856–867 (2013).

    CAS  PubMed  Google Scholar 

  40. Azizov, V. et al. Ethanol consumption inhibits the development of autoimmunity by blocking IL-21 secretion in TFH cells. Nat. Commun. 11, 1998 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Iwata, S. et al. Activation of Syk in peripheral blood B cells in patients with rheumatoid arthritis: a potential target for abatacept therapy. Arthritis Rheumatol. 67, 63–73 (2015).

    CAS  PubMed  Google Scholar 

  42. Bozec, A. et al. Abatacept blocks anti-citrullinated protein antibody and rheumatoid factor mediated cytokine production in human macrophages in IDO-dependent manner. Arthritis Res. Ther. 20, 24 (2018).

    PubMed  PubMed Central  Google Scholar 

  43. Jansen, D. et al. Conversion to seronegative status after abatacept treatment in patients with early and poor prognostic rheumatoid arthritis is associated with better radiographic outcomes and sustained remission: post hoc analysis of the AGREE study. RMD Open 4, e000564 (2018).

    PubMed  PubMed Central  Google Scholar 

  44. Emery, P. et al. Evaluating drug-free remission with abatacept in early rheumatoid arthritis: results from the phase 3b, multicentre, randomised, active-controlled AVERT study of 24 months, with a 12-month, double-blind treatment period. Ann. Rheum. Dis. 74, 19–26 (2015).

    CAS  PubMed  Google Scholar 

  45. Gerlag, D. M. et al. Effects of B-cell directed therapy on the preclinical stage of rheumatoid arthritis: the PRAIRI study. Ann. Rheum. Dis. 78, 179–185 (2019).

    CAS  PubMed  Google Scholar 

  46. Hartkamp, L. M. et al. Btk inhibition suppresses agonist-induced human macrophage activation and inflammatory gene expression in RA synovial tissue explants. Ann. Rheum. Dis. 74, 1603–1611 (2015).

    CAS  PubMed  Google Scholar 

  47. Clavel, C., Ceccato, L., Anquetil, F., Serre, G. & Sebbag, M. Among human macrophages polarised to different phenotypes, the M-CSF-oriented cells present the highest pro-inflammatory response to the rheumatoid arthritis-specific immune complexes containing ACPA. Ann. Rheum. Dis. 75, 2184–2191 (2016).

    CAS  PubMed  Google Scholar 

  48. Nimmerjahn, F. & Ravetch, J. V. Fcγ receptors as regulators of immune responses. Nat. Rev. Immunol. 8, 34–47 (2008).

    CAS  PubMed  Google Scholar 

  49. Pfeifle, R. et al. Regulation of autoantibody activity by the IL-23-TH17 axis determines the onset of autoimmune disease. Nat. Immunol. 18, 104–113 (2017).

    CAS  PubMed  Google Scholar 

  50. Engdahl, C. et al. Estrogen induces St6gal1 expression and increases IgG sialylation in mice and patients with rheumatoid arthritis: a potential explanation for the increased risk of rheumatoid arthritis in postmenopausal women. Arthritis Res. Ther. 20, 84 (2018).

    PubMed  PubMed Central  Google Scholar 

  51. De Moel, E. C. et al. Baseline autoantibody profile in rheumatoid arthritis is associated with early treatment response but not long-term outcomes. Arthritis Res. Ther. 20, 33 (2018).

    PubMed  PubMed Central  Google Scholar 

  52. Culemann, S. et al. Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature 572, 670–675 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Filková, M. et al. Association of circulating miR-223 and miR-16 with disease activity in patients with early rheumatoid arthritis. Ann. Rheum. Dis. 73, 1898–1904 (2014).

    PubMed  Google Scholar 

  54. Alivernini, S. et al. Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis. Nat. Med. 26, 1295–1306 (2020).

    CAS  PubMed  Google Scholar 

  55. Croft, A. P. et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 570, 246–251 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ai, R. et al. Comprehensive epigenetic landscape of rheumatoid arthritis fibroblast-like synoviocytes. Nat. Commun. 9, 1921 (2018).

    PubMed  PubMed Central  Google Scholar 

  57. Karouzakis, E. et al. Epigenome analysis reveals TBX5 as a novel transcription factor involved in the activation of rheumatoid arthritis synovial fibroblasts. J. Immunol. 193, 4945–4951 (2014).

    CAS  PubMed  Google Scholar 

  58. Kurowska-Stolarska, M. et al. MicroRNA-155 as a proinflammatory regulator in clinical and experimental arthritis. Proc. Natl Acad. Sci. USA 108, 11193–11198 (2011).

    CAS  PubMed  Google Scholar 

  59. Karouzakis, E. et al. Analysis of early changes in DNA methylation in synovial fibroblasts of RA patients before diagnosis. Sci. Rep. 8, 7370 (2018).

    PubMed  PubMed Central  Google Scholar 

  60. Ai, R. et al. DNA methylome signature in synoviocytes from patients with early rheumatoid arthritis compared to synoviocytes from patients with longstanding rheumatoid arthritis. Arthritis Rheumatol. 67, 1978–1980 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Whitaker, J. W. et al. Integrative omics analysis of rheumatoid arthritis identifies non-obvious therapeutic targets. PLoS One 10, e0124254 (2015).

    PubMed  PubMed Central  Google Scholar 

  62. Suraweera, A., O’Byrne, K. J. & Richard, D. J. Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: achieving the full therapeutic potential of HDACi. Front. Oncol. 8, 92 (2018).

    PubMed  PubMed Central  Google Scholar 

  63. Frank-Bertoncelj, M. et al. Epigenetically-driven anatomical diversity of synovial fibroblasts guides joint-specific fibroblast functions. Nat. Commun. 8, 14852 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang, H. J. et al. LncRNA HOTAIR alleviates rheumatoid arthritis by targeting miR-138 and inactivating NF-κB pathway. Int. Immunopharmacol. 50, 283–290 (2017).

    CAS  PubMed  Google Scholar 

  65. Hu, X. et al. Silencing of long non-coding RNA HOTTIP reduces inflammation in rheumatoid arthritis by demethylation of SFRP1. Mol. Ther. Nucleic Acids 19, 468–481 (2020).

    CAS  PubMed  Google Scholar 

  66. Scher, J. U. et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife 2, e01202 (2013).

    PubMed  PubMed Central  Google Scholar 

  67. Alpizar-Rodriguez, D. et al. Prevotella copri in individuals at risk for rheumatoid arthritis. Ann. Rheum. Dis. 78, 590–593 (2019).

    CAS  PubMed  Google Scholar 

  68. Tajik, N. et al. Targeting zonulin and intestinal epithelial barrier function to prevent onset of arthritis. Nat. Commun. 11, 1995 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Edwards, R. R. et al. Enhanced reactivity to pain in patients with rheumatoid arthritis. Arthritis Res. Ther. 11, R61 (2009).

    PubMed  PubMed Central  Google Scholar 

  70. Yılmaz, V., Umay, E., Gündoğdu, İ., Karaahmet, Z. Ö. & Öztürk, A. E. Rheumatoid arthritis: are psychological factors effective in disease flare? Eur. J. Rheumatol. 4, 127–132 (2017).

    PubMed  PubMed Central  Google Scholar 

  71. Evers, A. W. et al. Does stress affect the joints? Daily stressors stress vulnerability, immune and HPA axis activity, and short-term disease and symptom fluctuations in rheumatoid arthritis. Ann. Rheum. Dis. 73, 1683–1688 (2014).

    CAS  PubMed  Google Scholar 

  72. Kolmus, K., Tavernier, J. & Gerlo, S. β2-Adrenergic receptors in immunity and inflammation: stressing NF-κB. Brain Behav. Immun. 4, 297–310 (2015).

    Google Scholar 

  73. del Rey, A. et al. Disrupted brain-immune system-joint communication during experimental arthritis. Arthritis Rheum. 58, 3090–3099 (2008).

    PubMed  Google Scholar 

  74. Harre, U. et al. Glycosylation of immunoglobulin G determines osteoclast differentiation and bone loss. Nat. Commun. 6, 6651 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Radbruch, A. et al. Competence and competition: the challenge of becoming a long-lived plasma cell. Nat. Rev. Immunol. 6, 741–750 (2006).

    CAS  PubMed  Google Scholar 

  76. Stanway, J. A. & Isaacs, J. D. Tolerance-inducing medicines in autoimmunity: rheumatology and beyond. Lancet Rheumatol. 9, 565–575 (2020).

    Google Scholar 

  77. Herold, K. C. et al. An anti-CD3 antibody, teplizumab, in relatives at risk for type 1 diabetes. N. Engl. J. Med. 381, 603–613 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02778906 (2020).

  79. Bio Med Central. ISRCTN Registry https://doi.org/10.1186/ISRCTN46017566 (2020).

  80. Iqbal, K. & Isaacs, J. Potential pharmacologic targets for the prevention of rheumatoid arthritis. Clin. Ther. 41, 1312–1322 (2019).

    PubMed  Google Scholar 

  81. Mrsny, R. J. et al. A key claudin extracellular loop domain is critical for epithelial barrier integrity. Am. J. Pathol. 172, 905–915 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Pastori, C. et al. The Bromodomain protein BRD4 controls HOTAIR, a long noncoding RNA essential for glioblastoma proliferation. Proc. Natl Acad. Sci. USA 112, 8326–8331 (2015).

    CAS  PubMed  Google Scholar 

  83. Cochran, A. G. et al. Bromodomains: a new target class for drug development. Nat. Rev. Drug Discov. 18, 609–628 (2019).

    CAS  PubMed  Google Scholar 

  84. Lindner, T. et al. Targeting of activated fibroblasts for imaging and therapy. EJNMMI Radiopharm. Chem. 4, 16 (2019).

    PubMed  PubMed Central  Google Scholar 

  85. Jia, W. et al. Histone demethylase JMJD3 regulates fibroblast-like synoviocyte-mediated proliferation and joint destruction in rheumatoid arthritis. FASEB J. 32, 4031–4042 (2018).

    CAS  PubMed  Google Scholar 

  86. Zhou, S. et al. In vivo therapeutic success of microRNA‐155 antagomir in a mouse model of lupus alveolar hemorrhage. Arthritis Rheumatol. 68, 953–964 (2016).

    CAS  PubMed  Google Scholar 

  87. Häger, J. et al. The role of dietary fiber in rheumatoid arthritis patients: a feasibility study. Nutrients 11, E2392 (2019).

    PubMed  Google Scholar 

  88. Bosmann, M. et al. Anti-inflammatory effects of β2 adrenergic receptor agonists in experimental acute lung injury. FASEB J. 26, 2137–2144 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Hadi, T. et al. Beta3 adrenergic receptor stimulation in human macrophages inhibits NADPHoxidase activity and induces catalase expression via PPARγ activation. BBA Mol. Cell Res. 1864, 1769–1784 (2017).

    CAS  Google Scholar 

  90. Koopman, F. A. et al. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc. Natl Acad. Sci. USA 113, 8284–8289 (2016).

    CAS  PubMed  Google Scholar 

  91. Van der Woude, D., Young, A. & Jayakumar, K. Prevalence of and predictive factors for sustained disease-modifying antirheumatic drug-free remission in rheumatoid arthritis: results from two large early arthritis cohorts. Arthritis Rheum. 60, 2262–2271 (2009).

    PubMed  Google Scholar 

  92. Baker, K. F. et al. Predicting drug-free remission in rheumatoid arthritis: a prospective interventional cohort study. J. Autoimmun. 105, 102298 (2019).

    PubMed  PubMed Central  Google Scholar 

  93. Jones, G. W. et al. Interleukin-27 inhibits ectopic lymphoid-like structure development in early inflammatory arthritis. J. Exp. Med. 212, 1793–1802 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Teitsma, X. M. et al. Baseline metabolic profiles of early rheumatoid arthritis patients achieving sustained drug-free remission after initiating treat-to-target tocilizumab, methotrexate, or the combination: insights from systems biology. Arthritis Res. Ther. 20, 230 (2018).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of G.S. is supported by the German Research Council (DFG: SPP1468-IMMUNOBONE; CRC1181), the German Ministry of Science and Education (project MASCARA), the European Union (ERC Synergy grant 4DnanoSCOPE) and EU/EFPIA Innovative Medicines Initiative 2 (project RTCure). The work of J.D.I. is supported by the Research into Inflammatory Arthritis Centre Versus Arthritis, the National Institute for Health Research Newcastle Biomedical Research Centre, a partnership between Newcastle Hospitals NHS Foundation Trust and Newcastle University, and the EU/EFPIA Innovative Medicines Initiative 2 (project RTCure).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and provided substantial contributions to discussions of content. G.S. and J.D.I. wrote the article. G.S. and Y.T. reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Georg Schett.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Disclaimer

The views expressed are those of the author(s) and not necessarily those of the National Institute for Health Research or the Department of Health and Social Care.

Peer review information

Nature Reviews Rheumatology thanks H. Xu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schett, G., Tanaka, Y. & Isaacs, J.D. Why remission is not enough: underlying disease mechanisms in RA that prevent cure. Nat Rev Rheumatol 17, 135–144 (2021). https://doi.org/10.1038/s41584-020-00543-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-020-00543-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing