Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Persistent inflammatory and non-inflammatory mechanisms in refractory rheumatoid arthritis

Abstract

Despite nearly three decades of advances in the management of rheumatoid arthritis (RA), a substantial minority of patients are exposed to multiple DMARDs without necessarily benefitting from them; a group of patients variously designated as having ‘difficult to treat’, ‘treatment-resistant’ or ‘refractory’ RA. This Review of refractory RA focuses on two types of patients: those for whom multiple targeted therapies lack efficacy and who have persistent inflammatory pathology, which we designate as persistent inflammatory refractory RA (PIRRA); and those with supposed refractory RA who have continued disease activity that is predominantly independent of objective evidence of inflammation, which we designate as non-inflammatory refractory RA (NIRRA). These two types of disease are not mutually exclusive, but identifying those individuals with predominant PIRRA or NIRRA is important, as it informs distinct treatment and management approaches. This Review outlines the clinical differences between PIRRA and NIRRA, the genetic and epigenetic mechanisms and immune pathways that might contribute to the immunopathogenesis of recalcitrant synovitis in PIRRA, and a possible basis for non-inflammatory symptomatology in NIRRA. Future approaches towards the definition of refractory RA and the application of single-cell and integrated omics technologies to the identification of refractory RA endotypes are also discussed.

Key points

  • The term refractory rheumatoid arthritis (RA) implies treatment-resistant persistent joint and/or systemic inflammation; however, it is often used interchangeably with broader definitions such as ‘difficult to treat’ RA.

  • Refractory RA could be stratified into two major categories; persistent inflammatory refractory RA (PIRRA), in which unabated inflammation is evident, and non-inflammatory refractory RA (NIRRA), which lacks discernible inflammation.

  • Within the category of PIRRA, serological status and HLA associations can provide meaningful stratification that can inform potential therapeutic avenues.

  • Epigenetic modifiers, including methylation, microRNAs and long non-coding RNAs, can influence the course of RA and could provide a basis for the emergence of refractory RA.

  • NIRRA is typically mediated by ongoing pain and patient-reported outcomes; pain mechanisms might include autoimmune and neuroinflammatory pathways that are independent of joint synovitis.

  • The classification of RA and other diseases along an innate-to-adaptive immunological axis can be applied to refractory RA to help discover targets that might be of therapeutic benefit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Refractory RA subgroups within the wider context of ‘difficult-to-treat’ RA.
Fig. 2: Proposed trajectory and distribution of joint involvement in refractory RA.
Fig. 3: Speculative pain mechanisms in non-inflammatory refractory RA.
Fig. 4: A first step in the stratification of refractory RA.
Fig. 5: Therapeutic approaches to targeting inflammation in refractory RA.

Similar content being viewed by others

References

  1. Smolen, J. S. & Aletaha, D. Rheumatoid arthritis therapy reappraisal: strategies, opportunities and challenges. Nat. Rev. Rheumatol. 11, 276–289 (2015).

    PubMed  Google Scholar 

  2. Buch, M. H. Defining refractory rheumatoid arthritis. Ann. Rheum. Dis. 77, 966–999 (2018).

    CAS  PubMed  Google Scholar 

  3. de Hair, M. J. H., Jacobs, J. W. G., Schoneveld, J. L. M. & van Laar, J. M. Difficult-to-treat rheumatoid arthritis: an area of unmet clinical need. Rheumatology 57, 1135–1144 (2018).

    PubMed  Google Scholar 

  4. Nagy, G. et al. EULAR definition of difficult-to-treat rheumatoid arthritis. Ann. Rheum. Dis. https://doi.org/10.1136/annrheumdis-2020-217344 (2020).

    Article  PubMed  Google Scholar 

  5. Roodenrijs, N. M. T. et al. Characteristics of difficult-to-treat rheumatoid arthritis: results of an international survey. Ann. Rheum. Dis. 77, 1705–1709 (2018).

    CAS  PubMed  Google Scholar 

  6. Gabriel, S. E. & Luthra, H. S. Rheumatoid arthritis: can the long-term outcome be altered? Mayo Clin. Proc. 63, 58–68 (1988).

    CAS  PubMed  Google Scholar 

  7. Smolen, J. S. et al. Evidence of radiographic benefit of treatment with infliximab plus methotrexate in rheumatoid arthritis patients who had no clinical improvement: a detailed subanalysis of data from the anti-tumor necrosis factor trial in rheumatoid arthritis with concomitant therapy study. Arthritis Rheum. 52, 1020–1030 (2005).

    CAS  PubMed  Google Scholar 

  8. Buch, M. H. et al. The value of synovial cytokine expression in predicting the clinical response to TNF antagonist therapy (infliximab). Rheumatology 47, 1469–1475 (2008).

    CAS  PubMed  Google Scholar 

  9. McGonagle, D., Gibbon, W. & Emery, P. Classification of inflammatory arthritis by enthesitis. Lancet 352, 1137–1140 (1998).

    CAS  PubMed  Google Scholar 

  10. Conaghan, P. G. et al. Elucidation of the relationship between synovitis and bone damage: a randomized magnetic resonance imaging study of individual joints in patients with early rheumatoid arthritis. Arthritis Rheum. 48, 64–71 (2003).

    PubMed  Google Scholar 

  11. Brown, A. K. et al. An explanation for the apparent dissociation between clinical remission and continued structural deterioration in rheumatoid arthritis. Arthritis Rheum. 58, 2958–2967 (2008).

    CAS  PubMed  Google Scholar 

  12. Lee, Y. C. et al. Incidence and predictors of secondary fibromyalgia in an early arthritis cohort. Ann. Rheum. Dis. 72, 949–954 (2013).

    PubMed  Google Scholar 

  13. Joharatnam, N. et al. A cross-sectional study of pain sensitivity, disease-activity assessment, mental health, and fibromyalgia status in rheumatoid arthritis. Arthritis Res. Ther. 17, 11 (2015).

    PubMed  PubMed Central  Google Scholar 

  14. Ton, E. et al. Look beyond the disease activity score of 28 joints (DAS28): tender points influence the DAS28 in patients with rheumatoid arthritis. J. Rheumatol. 39, 22–27 (2012).

    PubMed  Google Scholar 

  15. Ferreira, R. J. O. et al. Suppressing inflammation in rheumatoid arthritis: does patient global assessment blur the target? A practice-based call for a paradigm change. Arthritis Care Res. 70, 369–378 (2018).

    Google Scholar 

  16. Studenic, P., Smolen, J. S. & Aletaha, D. Near misses of ACR/EULAR criteria for remission: effects of patient global assessment in Boolean and index-based definitions. Ann. Rheum. Dis. 71, 1702–1705 (2012).

    PubMed  Google Scholar 

  17. Lard, L. R., Visser, H. & Speyer, I. Early versus delayed treatment in patients with recent-onset rheumatoid arthritis: comparison of two cohorts who received different treatment strategies. Am. J. Med. 111, 446–451 (2001).

    CAS  PubMed  Google Scholar 

  18. Emery, P. et al. A pragmatic randomised controlled trial of Very early Etanercept and MTX versus MTX with Delayed Etanercept in RA — the VEDERA trial. Ann. Rheum. Dis. 79, 464–471 (2020).

    PubMed  PubMed Central  Google Scholar 

  19. Kearsley-Fleet, L. et al. Biologic refractory disease in rheumatoid arthritis: results from the British Society for Rheumatology Biologics Register for Rheumatoid Arthritis. Ann. Rheum. Dis. 77, 1405–1412 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. Bécède, M. et al. Risk profiling for a refractory course of rheumatoid arthritis. Semin. Arthritis Rheum. 49, 211–217 (2019).

    PubMed  Google Scholar 

  21. Aletaha, D. et al. Effect of disease duration and prior disease-modifying antirheumatic drug use on treatment outcomes in patients with rheumatoid arthritis. Ann. Rheum. Dis. 78, 1609–1615 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Nell, V. P. et al. Benefit of very early referral and very early therapy with disease-modifying anti-rheumatic drugs in patients with early rheumatoid arthritis. Rheumatology 43, 906–914 (2004).

    CAS  PubMed  Google Scholar 

  23. Myasoedova, E., Crowson, C. S., Turesson, C., Gabriel, S. E. & Matteson, E. L. Incidence of extraarticular rheumatoid arthritis in olmsted county, Minnesota, in 1995–2007 versus 1985–1994: a population-based study. J. Rheumatol. 38, 983–989 (2011).

    PubMed  PubMed Central  Google Scholar 

  24. Erhardt, C. C., Mumford, P. A., Venables, P. J. W. & Maini, R. N. Factors predicting a poor life prognosis in rheumatoid arthritis: an eight year prospective study. Ann. Rheum. Dis. 48, 7–13 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Nikiphorou, E., Sjöwall, C., Hannonen, P., Rannio, T. & Sokka, T. Long-term outcomes of destructive seronegative (rheumatoid) arthritis – description of four clinical cases. BMC Musculoskelet. Disord. 17, 246 (2016).

    PubMed  PubMed Central  Google Scholar 

  26. van der Helm-van Mil, A. H. M., Verpoort, K. N., Breedveld, F. C., Toes, R. E. M. & Huizinga, T. W. J. Antibodies to citrullinated proteins and differences in clinical progression of rheumatoid arthritis. Arthritis Res. Ther. 7, R949–R958 (2005).

    PubMed  PubMed Central  Google Scholar 

  27. Cader, M. Z., Filer, A. D., Buckley, C. D. & Raza, K. The relationship between the clinical manifestations and the presence of anti cyclic citrullinated peptide antibodies in very early rheumatoid arthritis. BMC Musculoskelet. Disord. 11, 187 (2010).

    PubMed  PubMed Central  Google Scholar 

  28. Mankia, K. & Emery, P. Palindromic rheumatism as part of the rheumatoid arthritis continuum. Nat. Rev. Rheumatol. 15, 687–695 (2019).

    CAS  PubMed  Google Scholar 

  29. Pollard, L. C., Choy, E. H., Gonzalez, J., Khoshaba, B. & Scott, D. L. Fatigue in rheumatoid arthritis reflects pain, not disease activity. Rheumatology 45, 885–889 (2006).

    CAS  PubMed  Google Scholar 

  30. Lee, Y. C. et al. Subgrouping of patients with rheumatoid arthritis based on pain, fatigue, inflammation, and psychosocial factors. Arthritis Rheumatol. 66, 2006–2014 (2014).

    PubMed  PubMed Central  Google Scholar 

  31. Albrecht, K. & Zink, A. Poor prognostic factors guiding treatment decisions in rheumatoid arthritis patients: a review of data from randomized clinical trials and cohort studies. Arthritis Res. Ther. 19, 68 (2017).

    PubMed  PubMed Central  Google Scholar 

  32. van der Helm-van Mil, A. H. M. & Huizinga, T. W. J. Advances in the genetics of rheumatoid arthritis point to subclassification into distinct disease subsets. Arthritis Res. Ther. 10, 205 (2008).

    PubMed  PubMed Central  Google Scholar 

  33. Aletaha, D., Alasti, F. & Smolen, J. S. Rheumatoid factor, not antibodies against citrullinated proteins, is associated with baseline disease activity in rheumatoid arthritis clinical trials. Arthritis Res. Ther. 17, 229 (2015).

    PubMed  PubMed Central  Google Scholar 

  34. Gonzalez, A. et al. Mortality trends in rheumatoid arthritis: the role of rheumatoid factor. J. Rheumatol. 35, 1009–1014 (2008).

    PubMed  PubMed Central  Google Scholar 

  35. van Gaalen, F. A. et al. Association between HLA class II genes and autoantibodies to cyclic citrullinated peptides (CCPs) influences the severity of rheumatoid arthritis. Arthritis Rheum. 50, 2113–2121 (2004).

    PubMed  Google Scholar 

  36. Mouterde, G. et al. Association of anticyclic citrullinated peptide antibodies and/or rheumatoid factor status and clinical presentation in early arthritis: results from the ESPOIR cohort. J. Rheumatol. 41, 1614–1622 (2014).

    PubMed  Google Scholar 

  37. Sokolove, J. et al. Rheumatoid factor as a potentiator of anti-citrullinated protein antibody-mediated inflammation in rheumatoid arthritis. Arthritis Rheumatol. 66, 813–821 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Isaacs, J. D. et al. Effect of baseline rheumatoid factor and anticitrullinated peptide antibody serotype on rituximab clinical response: a meta-analysis. Ann. Rheum. Dis. 72, 329–336 (2013).

    CAS  PubMed  Google Scholar 

  39. Maneiro, R. J., Salgado, E., Carmona, L. & Gomez-Reino, J. J. Rheumatoid factor as predictor of response to abatacept, rituximab and tocilizumab in rheumatoid arthritis: systematic review and meta-analysis. Semin. Arthritis Rheum. 43, 9–17 (2013).

    CAS  PubMed  Google Scholar 

  40. van Oosterhout, M. et al. Differences in synovial tissue infiltrates between anti-cyclic citrullinated peptide-positive rheumatoid arthritis and anti-cyclic citrullinated peptide-negative rheumatoid arthritis. Arthritis Rheum. 58, 53–60 (2007).

    Google Scholar 

  41. Gómez-Puerta, J. A. et al. Differences in synovial fluid cytokine levels but not in synovial tissue cell infiltrate between anti-citrullinated peptide/protein antibody-positive and -negative rheumatoid arthritis patients. Arthritis Res. Ther. 15, R182 (2013).

    PubMed  PubMed Central  Google Scholar 

  42. Viatte, S. et al. Genetic markers of rheumatoid arthritis susceptibility in anti-citrullinated peptide antibody negative patients. Ann. Rheum. Dis. 71, 1984–1990 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Huizinga, T. W. J. et al. Refining the complex rheumatoid arthritis phenotype based on specificity of the HLA-DRB1 shared epitope for antibodies to citrullinated proteins. Arthritis Rheum. 52, 3433–3438 (2005).

    CAS  PubMed  Google Scholar 

  44. Han, B. et al. Fine mapping seronegative and seropositive rheumatoid arthritis to shared and distinct HLA alleles by adjusting for the effects of heterogeneity. Am. J. Hum. Genet. 94, 522–532 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Viatte, S. et al. Replication of associations of genetic loci outside the HLA region with susceptibility to anti-cyclic citrullinated peptide-negative rheumatoid arthritis. Arthritis Rheumatol. 68, 1603–1613 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Klareskog, L. et al. A new model for an etiology of rheumatoid arthritis: smoking may trigger HLA–DR (shared epitope)-restricted immune reactions to autoantigens modified by citrullination. Arthritis Rheum. 54, 38–46 (2005).

    Google Scholar 

  47. Verpoort, K. N. et al. Association of HLA-DR3 with anti-cyclic citrullinated peptide antibody-negative rheumatoid arthritis. Arthritis Rheum. 52, 3058–3062 (2005).

    CAS  PubMed  Google Scholar 

  48. Irigoyen, P. et al. Regulation of anti-cyclic citrullinated peptide antibodies in rheumatoid arthritis: contrasting effects of HLA-DR3 and the shared epitope alleles. Arthritis Rheum. 52, 3813–3818 (2005).

    CAS  PubMed  Google Scholar 

  49. FitzGerald, O., Haroon, M., Giles, J. T. & Winchester, R. Concepts of pathogenesis in psoriatic arthritis: genotype determines clinical phenotype. Arthritis Res. Ther. 17, 115 (2015).

    PubMed  PubMed Central  Google Scholar 

  50. FitzGerald, O. & Winchester, R. Psoriatic arthritis: from pathogenesis to therapy. Arthritis Res. Ther. 11, 214 (2009).

    PubMed  PubMed Central  Google Scholar 

  51. McGonagle, D., Aydin, S. Z., Gül, A., Mahr, A. & Direskeneli, H. ‘MHC-I-opathy’-unified concept for spondyloarthritis and Behçet disease. Nat. Rev. Rheumatol. 11, 731–740 (2015).

    CAS  PubMed  Google Scholar 

  52. Menon, B. et al. Interleukin-17+CD8T cells are enriched in the joints of patients with psoriatic arthritis and correlate with disease activity and joint damage progression. Arthritis Rheumatol. 66, 1272–1281 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. McGonagle, D., Watad, A. & Savic, S. Mechanistic immunological based classification of rheumatoid arthritis. Autoimmun. Rev. 17, 1115–1123 (2018).

    CAS  PubMed  Google Scholar 

  54. Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506, 376–381 (2014).

    CAS  PubMed  Google Scholar 

  55. Porcu, E. et al. Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits. Nat. Commun. 10, 3300 (2019).

    PubMed  PubMed Central  Google Scholar 

  56. Patsopoulos, N. A. et al. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 365, eaav7188 (2019).

    CAS  Google Scholar 

  57. Emery, P. et al. Comparison of methotrexate monotherapy with a combination of methotrexate and etanercept in active, early, moderate to severe rheumatoid arthritis (COMET): a randomised, double-blind, parallel treatment trial. Lancet 372, 375–382 (2008).

    CAS  PubMed  Google Scholar 

  58. Emery, P. et al. Combination etanercept and methotrexate provides better disease control in very early (≤4 months) versus early rheumatoid arthritis (>4 months and <2 years): post hoc analyses from the COMET study. Ann. Rheum. Dis. 71, 989–992 (2012).

    CAS  PubMed  Google Scholar 

  59. Nemtsova, M. V. et al. Epigenetic changes in the pathogenesis of rheumatoid arthritis. Front. Genet. 10, 570 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ai, R. et al. DNA methylome signature in synoviocytes from patients with early rheumatoid arthritis compared to synoviocytes from patients with longstanding rheumatoid arthritis. Arthritis Rheumatol. 67, 1978–1980 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Nakano, K., Whitaker, J. W., Boyle, D. L., Wang, W. & Firestein, G. S. DNA methylome signature in rheumatoid arthritis. Ann. Rheum. Dis. 72, 110–117 (2013).

    CAS  PubMed  Google Scholar 

  62. Nair, N. et al. Differential DNA methylation correlates with response to methotrexate in rheumatoid arthritis. Rheumatology 59, 1364–1371 (2019).

    Google Scholar 

  63. Trenkmann, M. et al. Epigenetically-driven anatomical diversity of synovial fibroblasts guides joint-specific fibroblast functions. Nat. Commun. 8, 14852 (2017).

    PubMed  PubMed Central  Google Scholar 

  64. Stanczyk, J. et al. Altered expression of microRNA-203 in rheumatoid arthritis synovial fibroblasts and its role in fibroblast activation. Int. J. Adv. Rheumatol. 63, 373–381 (2011).

    Google Scholar 

  65. Kurowska-Stolarska, M. et al. MicroRNA-155 as a proinflammatory regulator in clinical and experimental arthritis. Proc. Natl Acad. Sci. USA 108, 11193–11198 (2011).

    CAS  PubMed  Google Scholar 

  66. Zhou, Q. et al. Decreased expression of miR-146a and miR-155 contributes to an abnormal Treg phenotype in patients with rheumatoid arthritis. Ann. Rheum. Dis. 74, 1265–1274 (2015).

    CAS  PubMed  Google Scholar 

  67. Alivernini, S. et al. MicroRNA-155 influences B-cell function through PU.1 in rheumatoid arthritis. Nat. Commun. 7, 12970 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Zeilinger, S. et al. Tobacco smoking leads to extensive genome-wide changes in DNA methylation. PLoS One 8, e63812 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Lee, A. et al. Tumor necrosis factor α induces sustained signaling and a prolonged and unremitting inflammatory response in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum. 65, 928–938 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Viatte, S., Plant, D. & Raychaudhuri, S. Genetics and epigenetics of rheumatoid arthritis. Nat. Rev. Rheumatol. 9, 141–153 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Neidhart, M. et al. Retrotransposable L1 elements expressed in rheumatoid arthritis synovial tissue. Arthritis Rheum. 43, 2634–2647 (2000).

    CAS  PubMed  Google Scholar 

  72. Nakano, K., Boyle, D. L. & Firestein, G. S. Regulation of DNA methylation in rheumatoid arthritis synoviocytes. J. Immunol. 190, 1297–1303 (2013).

    CAS  PubMed  Google Scholar 

  73. Liu, Y. et al. Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat. Biotechnol. 31, 142–147 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ospelt, C., Gay, S. & Klein, K. Epigenetics in the pathogenesis of RA. Semin. Immunopathol. 39, 409–419 (2017).

    PubMed  Google Scholar 

  75. Gondek, L. P. & DeZern, A. E. Assessing clonal haematopoiesis: clinical burdens and benefits of diagnosing myelodysplastic syndrome precursor states. Lancet Haematol. 7, e73–e81 (2019).

    PubMed  PubMed Central  Google Scholar 

  76. Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

    PubMed  PubMed Central  Google Scholar 

  77. Abdel-Wahab, O. & Levine, R. L. Mutations in epigenetic modifiers in the pathogenesis and therapy of acute myeloid leukemia. Blood 121, 3563–3572 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Gibson, C. J. & Steensma, D. P. New insights from studies of clonal hematopoiesis. Clin. Cancer Res. 24, 4633–4642 (2018).

    CAS  PubMed  Google Scholar 

  79. Jaiswal, S. & Libby, P. Clonal haematopoiesis: connecting ageing and inflammation in cardiovascular disease. Nat. Rev. Cardiol. 17, 137–144 (2020).

    PubMed  Google Scholar 

  80. Savola, P. et al. Clonal hematopoiesis in patients with rheumatoid arthritis. Blood Cancer J. 8, 69 (2018).

    PubMed  PubMed Central  Google Scholar 

  81. De Santis, M. et al. Mutations associated with clonal hematopoiesis of indeterminate potential are found in peripheral blood and synovial fluid macrophages from patients with rheumatoid and psoriatic arthritis [abstract]. Arthritis Rheumatol. 70 (Suppl. 10), 1983 (2018).

    Google Scholar 

  82. Savola, P. et al. Somatic STAT3 mutations in Felty syndrome: an implication for a common pathogenesis with large granular lymphocyte leukemia. Haematologica 103, 304–312 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Savola, P. et al. Somatic mutations in clonally expanded cytotoxic T lymphocytes in patients with newly diagnosed rheumatoid arthritis. Nat. Commun. 8, 15869 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Mekinian, A. et al. Inflammatory arthritis in patients with myelodysplastic syndromes: A multicenter retrospective study and literature review of 68 cases. Medicine 93, 1–10 (2018).

    Google Scholar 

  85. Beck, D. B. et al. Somatic mutations in UBA1 and severe adult-onset autoinflammatory disease. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2026834 (2020).

    Article  Google Scholar 

  86. De Rooy, D. P. C. et al. Smoking as a risk factor for the radiological severity of rheumatoid arthritis: a study on six cohorts. Ann. Rheum. Dis. 73, 1384–1387 (2014).

    PubMed  Google Scholar 

  87. Söderlin, M. K., Petersson, I. F. & Geborek, P. The effect of smoking on response and drug survival in rheumatoid arthritis patients treated with their first anti-TNF drug. Scand. J. Rheumatol. 41, 1–9 (2012).

    PubMed  Google Scholar 

  88. Chang, K. et al. Smoking and rheumatoid arthritis. Int. J. Mol. Sci. 15, 22279–22295 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Facchinetti, F. et al. α,β-unsaturated aldehydes in cigarette smoke release inflammatory mediators from human macrophages. Am. J. Respir. Cell Mol. Biol. 37, 617–623 (2007).

    CAS  PubMed  Google Scholar 

  90. Monick, M. M. et al. Identification of an autophagy defect in smokers’ alveolar macrophages. J. Immunol. 185, 5425–5435 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Meng, W. et al. DNA methylation mediates genotype and smoking interaction in the development of anti-citrullinated peptide antibody-positive rheumatoid arthritis. Arthritis Res. Ther. 19, 71 (2017).

    PubMed  PubMed Central  Google Scholar 

  92. Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014).

    PubMed  PubMed Central  Google Scholar 

  93. Strom, S. S., Gu, Y., Gruschkus, S. K., Pierce, S. A. & Estey, E. H. Risk factors of myelodysplastic syndromes: a case-control study. Leukemia 19, 1912–1918 (2015).

    Google Scholar 

  94. Bjork, J. et al. Smoking and myelodysplastic syndromes. Epidemiology 11, 285–291 (2000).

    CAS  PubMed  Google Scholar 

  95. Bendayan, R., Cooper, R. & Muthuri, S. G. Lifetime cigarette smoking and chronic widespread and regional pain in later adulthood: evidence from the 1946 British birth cohort study. BMJ Open 8, e021896 (2018).

    PubMed  PubMed Central  Google Scholar 

  96. Shi, Y., Weingarten, T. N., Mantilla, C. B., Hooten, W. M. & Warner, D. O. Smoking and pain: pathophysiology and clinical implications. Anesthesiology 113, 977–992 (2010).

    CAS  PubMed  Google Scholar 

  97. McInnes, I. B., Buckley, C. D. & Isaacs, J. D. Cytokines in rheumatoid arthritis-shaping the immunological landscape. Nat. Rev. Rheumatol. 12, 63–68 (2016).

    CAS  PubMed  Google Scholar 

  98. Schett, G., Elewaut, D., McInnes, I. B., Dayer, J.-M. & Neurath, M. F. How cytokine networks fuel inflammation: toward a cytokine-based disease taxonomy. Nat. Med. 19, 822–824 (2013).

    CAS  PubMed  Google Scholar 

  99. Bijlsma, J. W. J. et al. Early rheumatoid arthritis treated with tocilizumab, methotrexate, or their combination (U-Act-Early): a multicentre, randomised, double-blind, double-dummy, strategy trial. Lancet 388, 343–355 (2016).

    CAS  PubMed  Google Scholar 

  100. Pratt, A. G. et al. A CD4 T cell gene signature for early rheumatoid arthritis implicates interleukin 6-mediated STAT3 signalling, particularly in anti-citrullinated peptide antibody-negative disease. Ann. Rheum. Dis. 71, 1374–1381 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Anderson, A. E. et al. IL-6-driven STAT signalling in circulating CD4+ lymphocytes is a marker for early anticitrullinated peptide antibody-negative rheumatoid arthritis. Ann. Rheum. Dis. 75, 466–473 (2016).

    CAS  PubMed  Google Scholar 

  102. Weinblatt, M. E. et al. A randomized phase IIb study of mavrilimumab and golimumab in rheumatoid arthritis. Arthritis Rheumatol. 70, 49–59 (2018).

    CAS  PubMed  Google Scholar 

  103. Edwards, J. C. W. et al. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N. Engl. J. Med. 350, 2572–2581 (2004).

    CAS  PubMed  Google Scholar 

  104. Kremer, J. M. et al. Effects of abatacept in patients with methotrexate-resistant active rheumatoid arthritis: a randomized trial. Ann. Intern. Med. 144, 865–876 (2006).

    CAS  PubMed  Google Scholar 

  105. Lubberts, E., Koenders, M. & van den Berg, W. B. The role of T cell interleukin-17 in conducting destructive arthritis: lessons from animal models. Arthritis Res. Ther. 7, 29–37 (2005).

    CAS  PubMed  Google Scholar 

  106. Chabaud, M. et al. Human interleukin 17. A T cell–derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum. 42, 963–970 (1999).

    CAS  PubMed  Google Scholar 

  107. Dayer, J.-M. The pivotal role of interleukin-1 in the clinical manifestations of rheumatoid arthritis. Rheumatology 42 (Suppl. 2), ii3–10 (2003).

    CAS  PubMed  Google Scholar 

  108. Joosten, L. A. B. et al. IL-1αβ blockade prevents cartilage and bone destruction in murine type II collagen-induced arthritis, whereas TNF-α blockade only ameliorates joint inflammation. J. Immunol. 163, 5049–5055 (1999).

    CAS  PubMed  Google Scholar 

  109. Blanco, F. J. et al. Secukinumab in active rheumatoid arthritis: a phase III randomized, double-blind, active comparator- and placebo-controlled study. Arthritis Rheumatol. 69, 1144–1153 (2017).

    CAS  PubMed  Google Scholar 

  110. Buch, M. H. et al. Lack of response to anakinra in rheumatoid arthritis following failure of tumor necrosis factor alpha blockade. Arthritis Rheum. 50, 725–728 (2004).

    CAS  PubMed  Google Scholar 

  111. Alzabin, S. et al. Incomplete response of inflammatory arthritis to TNF α blockade is associated with the Th17 pathway. Ann. Rheum. Dis. 71, 1741–1748 (2012).

    CAS  PubMed  Google Scholar 

  112. Wiesenfeld-Hallin, Z. Sex differences in pain perception. Gend. Med. 2, 137–145 (2005).

    PubMed  Google Scholar 

  113. Sluka, K. A. & Clauw, D. J. Neurobiology of fibromyalgia and chronic widespread pain. Neuroscience 338, 114–129 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Saevarsdottir, S. et al. Predictors of response to methotrexate in early DMARD naive rheumatoid arthritis: results from the initial open-label phase of the SWEFOT trial. Ann. Rheum. Dis. 70, 469–475 (2011).

    PubMed  Google Scholar 

  115. Catrina, A. I., Svensson, C. I., Malmström, V., Schett, G. & Klareskog, L. Mechanisms leading from systemic autoimmunity to joint-specific disease in rheumatoid arthritis. Nat. Rev. Rheumatol. 13, 79–86 (2017).

    CAS  PubMed  Google Scholar 

  116. Bersellini Farinotti, A. et al. Cartilage-binding antibodies induce pain through immune complex-mediated activation of neurons. J. Exp. Med. 216, 1904–1924 (2019).

    PubMed  PubMed Central  Google Scholar 

  117. Christianson, C. A. et al. Characterization of the acute and persistent pain state present in K/BxN serum transfer arthritis. Pain 151, 394–403 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Kalcheva, I., Yu, N., Park, J., Kaang, B. & Michael, P. Dorsal root ganglia: potential roles in acute inflammatory pain. Pain 155, 1150–1160 (2014).

    PubMed  PubMed Central  Google Scholar 

  119. Cook, A. D. et al. TNF and granulocyte macrophage-colony stimulating factor interdependence mediates inflammation via CCL17. JCI Insight 3, e99249 (2018).

    PubMed Central  Google Scholar 

  120. Burmester, G. R. et al. A randomised phase IIb study of mavrilimumab, a novel GM–CSF receptor alpha monoclonal antibody, in the treatment of rheumatoid arthritis. Ann. Rheum. Dis. 76, 1020–1030 (2017).

    CAS  PubMed  Google Scholar 

  121. McGonagle, D., Tan, A. L., Døhn, U. M., Østergaard, M. & Benjamin, M. Microanatomic studies to define predictive factors for the topography of periarticular erosion formation in inflammatory arthritis. Arthritis Rheum. 60, 1042–1051 (2009).

    PubMed  Google Scholar 

  122. McGonagle, D., Lories, R. J. U., Tan, A. L. & Benjamin, M. The concept of a “synovio-entheseal complex” and its implications for understanding joint inflammation and damage in psoriatic arthritis and beyond. Arthritis Rheum. 56, 2482–2491 (2007).

    PubMed  Google Scholar 

  123. Freemont, A. J. et al. Nerve ingrowth into diseased intervertebral disc in chronic back pain. Lancet 350, 178–181 (1997).

    CAS  PubMed  Google Scholar 

  124. Hess, A., Axmann, R., Rech, J. & Finzel, S. Blockade of TNF-α rapidly inhibits pain responses in the central nervous system. Proc. Natl Acad. Sci. USA 108, 3731–3736 (2011).

    CAS  PubMed  Google Scholar 

  125. Rech, J. et al. Association of brain functional magnetic resonance activity with response to tumor necrosis factor inhibition in rheumatoid arthritis. Arthritis Rheum. 65, 325–333 (2013).

    CAS  PubMed  Google Scholar 

  126. Schrepf, A. et al. A multi-modal MRI study of the central response to inflammation in rheumatoid arthritis. Nat. Commun. 9, 2243 (2018).

    PubMed  PubMed Central  Google Scholar 

  127. Taylor, P. C. et al. Achieving pain control in rheumatoid arthritis with baricitinib or adalimumab plus methotrexate: results from the RA-BEAM trial. J. Clin. Med. 8, 831 (2019).

    CAS  PubMed Central  Google Scholar 

  128. Taylor, P. C. et al. Baricitinib versus placebo or adalimumab in rheumatoid arthritis. N. Engl. J. Med. 376, 652–662 (2017).

    CAS  PubMed  Google Scholar 

  129. Fleischmann, R. et al. Upadacitinib versus placebo or adalimumab in patients with rheumatoid arthritis and an inadequate response to methotrexate: results of a phase III, double-blind, randomized controlled trial. Arthritis Rheumatol. 71, 1788–1800 (2019).

    CAS  PubMed  Google Scholar 

  130. Buckley, C. D. Why does chronic inflammation persist: an unexpected role for fibroblasts. Immunol. Lett. 138, 12–14 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Yoshitomi, H. Regulation of immune responses and chronic inflammation by fibroblast-like synoviocytes. Front. Immunol. 10, 1395 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Bartok, B. & Firestein, G. S. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol. Rev. 233, 233–255 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. McGettrick, H. M., Butler, L. M., Buckley, C. D., Rainger, G. E. & Nash, G. B. Tissue stroma as a regulator of leukocyte recruitment in inflammation. J. Leukoc. Biol. 91, 385–400 (2012).

    CAS  PubMed  Google Scholar 

  134. Ospelt, C. & Gay, S. The role of resident synovial cells in destructive arthritis. Best Pract. Res. Clin. Rheumatol. 22, 239–252 (2008).

    CAS  PubMed  Google Scholar 

  135. Humby, F. et al. Synovial cellular and molecular signatures stratify clinical response to csDMARD therapy and predict radiographic progression in early rheumatoid arthritis patients. Ann. Rheum. Dis. 78, 761–772 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Lliso-Ribera, G. et al. Synovial tissue signatures enhance clinical classification and prognostic/treatment response algorithms in early inflammatory arthritis and predict requirement for subsequent biological therapy: results from the pathobiology of early arthritis cohort (PEAC). Ann. Rheum. Dis. 78, 1642–1652 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. BioMed Central. ISRCTN Registry http://www.isrctn.com/ISRCTN36667085 (2020).

  138. Lefèvre, S. et al. Synovial fibroblasts spread rheumatoid arthritis to unaffected joints. Nat. Med. 15, 1414–1420 (2009).

    PubMed  PubMed Central  Google Scholar 

  139. Orange, D. E. et al. RNA identification of PRIME cells predicting rheumatoid arthritis flares. N. Engl. J. Med. 383, 218–228 (2020).

    CAS  PubMed  Google Scholar 

  140. Churchman, S. M. et al. Transient existence of circulating mesenchymal stem cells in the deep veins in humans following long bone intramedullary reaming. J. Clin. Med. 9, 968 (2020).

    PubMed Central  Google Scholar 

  141. Wernig, G. et al. Unifying mechanism for different fibrotic diseases. Proc. Natl Acad. Sci. USA 114, 4757–4762 (2020).

    Google Scholar 

  142. Mizoguchi, F. et al. Functionally distinct disease-associated fibroblast subsets in rheumatoid arthritis. Nat. Commun. 9, 789 (2018).

    PubMed  PubMed Central  Google Scholar 

  143. Croft, A. P. et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 570, 246–251 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. McInnes, I. B. & Schett, G. Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet 389, 2328–2337 (2017).

    CAS  PubMed  Google Scholar 

  145. Alten, R. et al. Baseline autoantibodies preferentially impact abatacept efficacy in patients with rheumatoid arthritis who are biologic naïve: 6-month results froma real-world, international, prospective study. RMD Open 3, e000345 (2017).

    PubMed  PubMed Central  Google Scholar 

  146. Petsch, C. et al. Prevalence of monosodium urate deposits in a population of rheumatoid arthritis patients with hyperuricemia. Semin. Arthritis Rheum. 45, 663–668 (2016).

    CAS  PubMed  Google Scholar 

  147. Savic, S. et al. Autoimmune-autoinflammatory rheumatoid arthritis overlaps: a rare but potentially important subgroup of diseases. RMD Open 3, e000550 (2017).

    PubMed  PubMed Central  Google Scholar 

  148. Harrison, S. R. et al. Anakinra as a diagnostic challenge and treatment option for systemic autoinflammatory disorders of undefined etiology. JCI Insight 1, e86336 (2016).

    PubMed  PubMed Central  Google Scholar 

  149. Gabay, C. et al. Open-label, multicentre, dose-escalating phase II clinical trial on the safety and efficacy of tadekinig alfa (IL-18BP) in adult-onset Still’s disease. Ann. Rheum. Dis. 77, 840–847 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. de Jesus, A. A. et al. Distinct interferon signatures and cytokine patterns define additional systemic autoinflammatory diseases. J. Clin. Invest. 130, 1669–1682 (2020).

    PubMed  PubMed Central  Google Scholar 

  151. Reinhardt, R. L. et al. A novel model for IFN-γ-mediated autoinflammatory syndromes. J. Immunol. 194, 2358–2368 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Aletaha, D. et al. Efficacy and safety of sirukumab in patients with active rheumatoid arthritis refractory to anti-TNF therapy (SIRROUND-T): a randomised, double-blind, placebo-controlled, parallel-group, multinational, phase 3 study. Lancet 389, 1206–1217 (2017).

    CAS  PubMed  Google Scholar 

  153. Humby, F. et al. Ectopic lymphoid structures support ongoing production of class-switched autoantibodies in rheumatoid synovium. PLoS Med. 6, e1 (2009).

    PubMed  PubMed Central  Google Scholar 

  154. Genovese, M. C. et al. Safety and efficacy of upadacitinib in patients with active rheumatoid arthritis refractory to biologic disease-modifying anti-rheumatic drugs (SELECT-BEYOND): a double-blind, randomised controlled phase 3 trial. Lancet 391, 2513–2524 (2018).

    CAS  PubMed  Google Scholar 

  155. Genovese, M. C. et al. Baricitinib in patients with refractory rheumatoid arthritis. N. Engl. J. Med. 374, 1243–1252 (2016).

    CAS  PubMed  Google Scholar 

  156. Genovese, M. C. et al. Response to baricitinib based on prior biologic use in patients with refractory rheumatoid arthritis. Rheumatology 57, 900–908 (2018).

    CAS  PubMed  Google Scholar 

  157. Hu, Q. et al. Tofacitinib in refractory adult-onset Still’s disease: 14 cases from a single centre in China. Ann. Rheum. Dis. 79, 842–844 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Genovese, M. C. et al. Combination therapy with etanercept and anakinra in the treatment of patients with rheumatoid arthritis who have been treated unsuccessfully with methotrexate. Arthritis Rheum. 50, 1412–1419 (2004).

    CAS  PubMed  Google Scholar 

  159. Genovese, M. C. et al. ABT-122, a bispecific dual variable domain immunoglobulin targeting tumor necrosis factor and interleukin-17A, in patients with rheumatoid arthritis with an inadequate response to methotrexate: a randomized, double-blind study. Arthritis Rheumatol. 70, 1710–1720 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Glatt, S. et al. Efficacy and safety of bimekizumab as add-on therapy for rheumatoid arthritis in patients with inadequate response to certolizumab pegol: a proof-of-concept study. Ann. Rheum. Dis. 78, 1033–1040 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Bingham, S. J. et al. Autologous stem cell transplantation for rheumatoid arthritis — interim report of 6 patients. J. Rheumatol. Suppl. 64, 21–24 (2001).

    CAS  PubMed  Google Scholar 

  162. Greco, R. et al. Allogeneic HSCT for autoimmune diseases: a retrospective study from the EBMT ADWP, IEWP, and PDWP working parties. Front. Immunol. 10, 1570 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Álvaro-Gracia, J. M. et al. Intravenous administration of expanded allogeneic adipose-derived mesenchymal stem cells in refractory rheumatoid arthritis (Cx611): results of a multicentre, dose escalation, randomised, singleblind, placebo-controlled phase Ib/IIa clinical trial. Ann. Rheum. Dis. 76, 196–202 (2017).

    PubMed  Google Scholar 

  164. Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).

    PubMed  PubMed Central  Google Scholar 

  165. Rao, D. A. et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 542, 110–114 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.H.B. and D.M. researched data for the article. All authors provided substantial contributions to discussions of content, wrote the article and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Maya H. Buch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Disclaimer

The views expressed in this article are those of the author(s) and not necessarily those of the National Institute of Health Research or the Department of Health and Social Care.

Peer review information

Nature Reviews Rheumatology thanks T. Takeuchi, J. Kremer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Review criteria

A search for original articles was performed in PubMed. The search terms used were “refractory” and “rheumatoid arthritis” in combination. We also searched the reference lists of identified articles for further relevant papers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buch, M.H., Eyre, S. & McGonagle, D. Persistent inflammatory and non-inflammatory mechanisms in refractory rheumatoid arthritis. Nat Rev Rheumatol 17, 17–33 (2021). https://doi.org/10.1038/s41584-020-00541-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-020-00541-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing