Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Basal forebrain cholinergic signalling: development, connectivity and roles in cognition

Abstract

Acetylcholine plays an essential role in fundamental aspects of cognition. Studies that have mapped the activity and functional connectivity of cholinergic neurons have shown that the axons of basal forebrain cholinergic neurons innervate the pallium with far more topographical and functional organization than was historically appreciated. Together with the results of studies using new probes that allow release of acetylcholine to be detected with high spatial and temporal resolution, these findings have implicated cholinergic networks in ‘binding’ diverse behaviours that contribute to cognition. Here, we review recent findings on the developmental origins, connectivity and function of cholinergic neurons, and explore the participation of cholinergic signalling in the encoding of cognition-related behaviours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A model for BFCN fate specification.
Fig. 2: Spatial localization and projection patterns of BFCNs.
Fig. 3: Improvements in measurement of in vivo ACh dynamics.

Similar content being viewed by others

References

  1. Dale, H. H. The action of certain esters and ethers of choline, and their relation to muscarine. J. Pharmacol. Exp. Ther. 6, 147–190 (1914).

    CAS  Google Scholar 

  2. Ewins, A. J. Acetylcholine, a new active principle of ergot. Biochem. J. 8, 44 (1914).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Katz, B. & Miledi, R. The measurement of synaptic delay, and the time course of acetylcholine release at the neuromuscular junction. Proc. R. Soc. Lond. B 161, 483–495 (1965).

    Article  CAS  PubMed  Google Scholar 

  4. Peper, K., Bradley, R. J. & Dreyer, F. The acetylcholine receptor at the neuromuscular junction. Physiol. Rev. 62, 1271–1340 (1982).

    Article  CAS  PubMed  Google Scholar 

  5. Picciotto, M. R., Higley, M. J. & Mineur, Y. S. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron 76, 116–129 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ballinger, E. C., Ananth, M., Talmage, D. A. & Role, L. W. Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron 91, 1199–1218 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lohani, S. et al. Spatiotemporally heterogeneous coordination of cholinergic and neocortical activity. Nat. Neurosci. 25, 1706–1713 (2022). This study uses in vivo wide-field imaging of cortical activity and ACh release to show distinct activity profiles associated with specific behavioural states.

    Article  CAS  PubMed  Google Scholar 

  8. Záborszky, L. et al. Specific basal forebrain-cortical cholinergic circuits coordinate cognitive operations. J. Neurosci. 38, 9446–9458 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Stifani, N. Motor neurons and the generation of spinal motor neuron diversity. Front. Cell Neurosci. 8, 293 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Alkaslasi, M. R. et al. Single nucleus RNA-sequencing defines unexpected diversity of cholinergic neuron types in the adult mouse spinal cord. Nat. Commun. 12, 2471 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Higley, M. J. et al. Cholinergic interneurons mediate fast VGluT3-dependent glutamatergic transmission in the striatum. PLoS ONE 6, e19155 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kljakic, O., Janickova, H., Prado, V. F. & Prado, M. A. M. Cholinergic/glutamatergic co-transmission in striatal cholinergic interneurons: new mechanisms regulating striatal computation. J. Neurochem. 142 (Suppl. 2), 90–102 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Mayer, C. et al. Developmental diversification of cortical inhibitory interneurons. Nature 555, 457–462 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Obermayer, J. et al. Prefrontal cortical ChAT-VIP interneurons provide local excitation by cholinergic synaptic transmission and control attention. Nat. Commun. 10, 5280 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mineur, Y. S. et al. Hippocampal acetylcholine modulates stress-related behaviors independent of specific cholinergic inputs. Mol. Psychiatry 27, 1829–1838 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Granger, A. J. et al. Cortical ChAT+ neurons co-transmit acetylcholine and GABA in a target- and brain-region-specific manner. eLife 9, e57749 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dudai, A., Yayon, N., Soreq, H. & London, M. Cortical VIP+/ChAT+ interneurons: from genetics to function. J. Neurochem. 158, 1320–1333 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Mesulam, M. M., Mufson, E. J., Levey, A. I. & Wainer, B. H. Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J. Comp. Neurol. 214, 170–197 (1983).

    Article  CAS  PubMed  Google Scholar 

  19. Woolf, N. J. Cholinergic systems in mammalian brain and spinal cord. Prog. Neurobiol. 37, 475–524 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Eckenstein, F. & Baughman, R. W. Two types of cholinergic innervation in cortex, one co-localized with vasoactive intestinal polypeptide. Nature 309, 153–155 (1984).

    Article  CAS  PubMed  Google Scholar 

  21. Geula, C. et al. Basal forebrain cholinergic system in the dementias: vulnerability, resilience, and resistance. J. Neurochem. 158, 1394–1411 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bertrand, D. & Wallace, T. L. A review of the cholinergic system and therapeutic approaches to treat brain disorders. Curr. Top. Behav. Neurosci. 45, 1–28 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Ferreira-Vieira, T. H., Guimaraes, I. M., Silva, F. R. & Ribeiro, F. M. Alzheimer’s disease: targeting the cholinergic system. Curr. Neuropharmacol. 14, 101–115 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Solari, N. & Hangya, B. Cholinergic modulation of spatial learning, memory and navigation. Eur. J. Neurosci. 48, 2199–2230 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Knox, D. The role of basal forebrain cholinergic neurons in fear and extinction memory. Neurobiol. Learn. Mem. 133, 39–52 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kumar Yadav, R. & Mallick, B. N. Dopaminergic- and cholinergic-inputs from substantia nigra and pedunculo-pontine tegmentum, respectively, converge in amygdala to modulate rapid eye movement sleep in rats. Neuropharmacology 193, 108607 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Vanini, G. & Torterolo, P. Sleep-wake neurobiology. Adv. Exp. Med. Biol. 1297, 65–82 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Jones, B. E. Arousal and sleep circuits. Neuropsychopharmacology 45, 6–20 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Shao, X. & Feldman, J. Central cholinergic regulation of respiration: nicotinic receptors. Acta Pharmacol. Sin. 30, 761–770 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dani, J. A. & Bertrand, D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu. Rev. Pharmacol. Toxicol. 47, 699–729 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Thiele, A. Muscarinic signaling in the brain. Annu. Rev. Neurosci. 36, 271–294 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Nathanson, N. M. Regulation of muscarinic acetylcholine receptor expression and function. Prog. Brain Res. 109, 165–168 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Gaimarri, A. et al. Regulation of neuronal nicotinic receptor traffic and expression. Brain Res. Rev. 55, 134–143 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Wess, J. Molecular basis of muscarinic acetylcholine receptor function. Trends Pharmacol. Sci. 14, 308–313 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Zoli, M., Pucci, S., Vilella, A. & Gotti, C. Neuronal and extraneuronal nicotinic acetylcholine receptors. Curr. Neuropharmacol. 16, 338–349 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zaborszky, L., van den Pol, A. & Gyengesi, E. in The Mouse Nervous System (eds Watson, C., Paxinos, G. & Puelles, L.) 684–718 (Academic, 2012).

  37. Huerta-Ocampo, I., Dautan, D., Gut, N. K., Khan, B. & Mena-Segovia, J. Whole-brain mapping of monosynaptic inputs to midbrain cholinergic neurons. Sci. Rep. 11, 9055 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Poppi, L. A., Ho-Nguyen, K. T., Shi, A., Daut, C. T. & Tischfield, M. A. Recurrent implication of striatal cholinergic interneurons in a range of neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. Cells 10, 907 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mena-Segovia, J. & Bolam, J. P. Rethinking the pedunculopontine nucleus: from cellular organization to function. Neuron 94, 7–18 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Gut, N. K. & Mena-Segovia, J. Midbrain cholinergic neurons signal negative feedback to promote behavioral flexibility. Trends Neurosci. 45, 502–503 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Abudukeyoumu, N., Hernandez-Flores, T., Garcia-Munoz, M. & Arbuthnott, G. W. Cholinergic modulation of striatal microcircuits. Eur. J. Neurosci. 49, 604–622 (2019).

    Article  PubMed  Google Scholar 

  42. Nosaka, D. & Wickens, J. R. Striatal cholinergic signaling in time and space. Molecules 27, 1202 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tanabe, Y. & Jessell, T. M. Diversity and pattern in the developing spinal cord. Science 274, 1115–1123 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Marin, O. & Rubenstein, J. L. in Mouse Development (eds Rossant, J. & Tam, P. P. L.) 75–106 (Elsevier, 2002).

  45. Marín, O. & Rubenstein, J. L. A long, remarkable journey: tangential migration in the telencephalon. Nat. Rev. Neurosci. 2, 780–790 (2001).

    Article  PubMed  Google Scholar 

  46. Allaway, K. C. et al. Cellular birthdate predicts laminar and regional cholinergic projection topography in the forebrain. eLife 9, e63249 (2020). This is the most comprehensive analysis of the relationship between developmental origin and circuit integration of BFCNs to date.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pombero, A. et al. Pallial origin of basal forebrain cholinergic neurons in the nucleus basalis of Meynert and horizontal limb of the diagonal band nucleus. Development 138, 4315–4326 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Flames, N. et al. Delineation of multiple subpallial progenitor domains by the combinatorial expression of transcriptional codes. J. Neurosci. 27, 9682–9695 (2007). This work examines expression of several transcription factors using in situ hybridization to define subdomains of the embryonic subpallium, thereby generating a spatial combinatorial code.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Eiden, L. E. The cholinergic gene locus. J. Neurochem. 70, 2227–2240 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Brock, M., Nickel, A.-C., Madziar, B., Blusztajn, J. K. & Berse, B. Differential regulation of the high affinity choline transporter and the cholinergic locus by cAMP signaling pathways. Brain Res. 1145, 1–10 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shimojo, M., Wu, D. & Hersh, L. B. The cholinergic gene locus is coordinately regulated by protein kinase A II in PC12 cells. J. Neurochem. 71, 1118–1126 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Shimojo, M. & Hersh, L. B. Regulation of the cholinergic gene locus by the repressor element-1 silencing transcription factor/neuron restrictive silencer factor (REST/NRSF). Life Sci. 74, 2213–2225 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Dorn, R., Loy, B., Dechant, G. & Apostolova, G. Neurogenomics of the sympathetic neurotransmitter switch indicates that different mechanisms steer cholinergic differentiation in rat and chicken models. Dataset Pap. Sci. 2013, 520930 (2013).

    Google Scholar 

  54. Berse, B. & Blusztajn, J. K. Modulation of cholinergic locus expression by glucocorticoids and retinoic acid is cell-type specific. FEBS Lett. 410, 175–179 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Tanaka, H., Zhao, Y., Wu, D. & Hersh, L. B. The use of DNase I hypersensitivity site mapping to identify regulatory regions of the human cholinergic gene locus. J. Neurochem. 70, 1799–1808 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Kania, A. Concocting cholinergy. PLoS Genet. 10, e1004313 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lopez-Coviella, I. et al. Bone morphogenetic protein 9 induces the transcriptome of basal forebrain cholinergic neurons. Proc. Natl Acad. Sci. USA 102, 6984–6989 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bachy, I. & Rétaux, S. GABAergic specification in the basal forebrain is controlled by the LIM-hd factor Lhx7. Dev. Biol. 291, 218–226 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Elshatory, Y. & Gan, L. The LIM-homeobox gene Islet-1 is required for the development of restricted forebrain cholinergic neurons. J. Neurosci. 28, 3291–3297 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Furusho, M. et al. Involvement of the Olig2 transcription factor in cholinergic neuron development of the basal forebrain. Dev. Biol. 293, 348–357 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Magno, L. et al. NKX2-1 is required in the embryonic septum for cholinergic system development, learning, and memory. Cell Rep. 20, 1572–1584 (2017). This work identifies progenitors co-expressing Nkx2.1 and Zic4 as the major source of septal cholinergic neurons and examines the role of Nkx2.1 in their function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mori, T. et al. The LIM homeobox gene, L3/Lhx8, is necessary for proper development of basal forebrain cholinergic neurons. Eur. J. Neurosci. 19, 3129–3141 (2004).

    Article  PubMed  Google Scholar 

  63. Sussel, L., Marin, O., Kimura, S. & Rubenstein, J. Loss of Nkx2. 1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. Development 126, 3359–3370 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Zhao, Y. et al. Ldb1 is essential for development of Nkx2.1 lineage derived GABAergic and cholinergic neurons in the telencephalon. Dev. Biol. 385, 94–106 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Zhao, Y. et al. The LIM-homeobox gene Lhx8 is required for the development of many cholinergic neurons in the mouse forebrain. Proc. Natl Acad. Sci. USA 100, 9005–9010 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sun, T., Pringle, N. P., Hardy, A. P., Richardson, W. D. & Smith, H. K. Pax6 influences the time and site of origin of glial precursors in the ventral neural tube. Mol. Cell Neurosci. 12, 228–239 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Ravanelli, A. M. & Appel, B. Motor neurons and oligodendrocytes arise from distinct cell lineages by progenitor recruitment. Genes Dev. 29, 2504–2515 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Scott, K., O’Rourke, R., Winkler, C. C., Kearns, C. A. & Appel, B. Temporal single-cell transcriptomes of zebrafish spinal cord pMN progenitors reveal distinct neuronal and glial progenitor populations. Dev. Biol. 479, 37–50 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Xing, L. et al. Expression of myelin transcription factor 1 and lamin B receptor mediate neural progenitor fate transition in the zebrafish spinal cord pMN domain. J. Biol. Chem. 298, 102452 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Semba, K. & Fibiger, H. C. Time of origin of cholinergic neurons in the rat basal forebrain. J. Comp. Neurol. 269, 87–95 (1988).

    Article  CAS  PubMed  Google Scholar 

  71. Cho, H.-H. et al. Isl1 directly controls a cholinergic neuronal identity in the developing forebrain and spinal cord by forming cell type-specific complexes. PLoS Genet. 10, e1004280 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Alifragis, P., Liapi, A. & Parnavelas, J. G. Lhx6 regulates the migration of cortical interneurons from the ventral telencephalon but does not specify their GABA phenotype. J. Neurosci. 24, 5643–5648 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Magno, L. et al. Fate mapping reveals mixed embryonic origin and unique developmental codes of mouse forebrain septal neurons. Commun. Biol. 5, 1137 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fragkouli, A., van Wijk, N. V., Lopes, R., Kessaris, N. & Pachnis, V. LIM homeodomain transcription factor-dependent specification of bipotential MGE progenitors into cholinergic and GABAergic striatal interneurons. Development 136, 3841–3851 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Koh, S. & Loy, R. Localization and development of nerve growth factor-sensitive rat basal forebrain neurons and their afferent projections to hippocampus and neocortex. J. Neurosci. 9, 2999–3018 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Saunders, A. et al. Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174, 1015–1030.e16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Flandin, P. et al. Lhx6 and Lhx8 coordinately induce neuronal expression of Shh that controls the generation of interneuron progenitors. Neuron 70, 939–950 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhou, C. et al. Lhx6 and Lhx8: cell fate regulators and beyond. FASEB J. 29, 4083–4091 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hoch, R. V., Clarke, J. A. & Rubenstein, J. L. Fgf signaling controls the telencephalic distribution of Fgf-expressing progenitors generated in the rostral patterning center. Neural Dev. 10, 8 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Matthews, J. M. et al. Competition between LIM-binding domains. Biochem. Soc. Trans. 36, 1393–1397 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Lee, S. et al. A regulatory network to segregate the identity of neuronal subtypes. Dev. Cell 14, 877–889 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Asbreuk, C. H. et al. The homeobox genes Lhx7 and Gbx1 are expressed in the basal forebrain cholinergic system. Neuroscience 109, 287–298 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Waters, S. T., Wilson, C. P. & Lewandoski, M. Cloning and embryonic expression analysis of the mouse Gbx1 gene. Gene Expr. Patterns 3, 313–317 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Chen, L., Chatterjee, M. & Li, J. Y. The mouse homeobox gene Gbx2 is required for the development of cholinergic interneurons in the striatum. J. Neurosci. 30, 14824–14834 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sanchez-Ortiz, E. et al. TrkA gene ablation in basal forebrain results in dysfunction of the cholinergic circuitry. J. Neurosci. 32, 4065–4079 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Su-Feher, L. et al. Single cell enhancer activity distinguishes GABAergic and cholinergic lineages in embryonic mouse basal ganglia. Proc. Natl Acad. Sci. USA 119, e2108760119 (2022). This work uses subpallial enhancer lines combined with single-cell transcriptomics to identify postmitotic cells of the cholinergic lineage and reveals transcriptomes of striatal cholinergic interneurons as distinct from BFCNs, with hints of more heterogeneity within the BFCNs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Buckley, D. M., Burroughs-Garcia, J., Lewandoski, M. & Waters, S. T. Characterization of the Gbx1−/− mouse mutant: a requirement for Gbx1 in normal locomotion and sensorimotor circuit development. PLoS ONE 8, e56214 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Reilly, J. O., Karavanova, I. D., Williams, K. P., Mahanthappa, N. K. & Allendoerfer, K. L. Cooperative effects of sonic hedgehog and NGF on basal forebrain cholinergic neurons. Mol. Cell Neurosci. 19, 88–96 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Fagan, A. M. et al. Endogenous FGF-2 is important for cholinergic sprouting in the denervated hippocampus. J. Neurosci. 17, 2499–2511 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Halilagic, A. et al. Retinoids control anterior and dorsal properties in the developing forebrain. Dev. Biol. 303, 362–375 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Garel, S. & Rubenstein, J. L. Intermediate targets in formation of topographic projections: inputs from the thalamocortical system. Trends Neurosci. 27, 533–539 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Kang, Y. H. et al. Comparative analysis of three different protocols for cholinergic neuron differentiation in vitro using mesenchymal stem cells from human dental pulp. Anim. Cell Syst. 23, 275–287 (2019).

    Article  CAS  Google Scholar 

  93. Storm, E. E. et al. Dose-dependent functions of Fgf8 in regulating telencephalic patterning centers. Development 133, 1831–1844 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Boskovic, Z. et al. Regulation of cholinergic basal forebrain development, connectivity, and function by neurotrophin receptors. Neuronal Signal. 3, NS20180066 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lindholm, D. Models to study the role of neurotrophic factors in neurodegeneration. J. Neural Transm. Suppl. 49, 33–42 (1997).

    CAS  PubMed  Google Scholar 

  96. Nilbratt, M., Porras, O., Marutle, A., Hovatta, O. & Nordberg, A. Neurotrophic factors promote cholinergic differentiation in human embryonic stem cell-derived neurons. J. Cell Mol. Med. 14, 1476–1484 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Schnitzler, A. C. et al. BMP9 (bone morphogenetic protein 9) induces NGF as an autocrine/paracrine cholinergic trophic factor in developing basal forebrain neurons. J. Neurosci. 30, 8221–8228 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ginsberg, S. D., Che, S., Wuu, J., Counts, S. E. & Mufson, E. J. Down regulation of trk but not p75NTR gene expression in single cholinergic basal forebrain neurons mark the progression of Alzheimer’s disease. J. Neurochem. 97, 475–487 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Hashimoto, Y., Abiru, Y., Nishio, C. & Hatanaka, H. Synergistic effects of brain-derived neurotrophic factor and ciliary neurotrophic factor on cultured basal forebrain cholinergic neurons from postnatal 2-week-old rats. Dev. Brain Res. 115, 25–32 (1999).

    Article  CAS  Google Scholar 

  100. Biane, J., Conner, J. M. & Tuszynski, M. H. Nerve growth factor is primarily produced by GABAergic neurons of the adult rat cortex. Front. Cell Neurosci. 8, 220 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  101. La Manno, G. et al. Molecular architecture of the developing mouse brain. Nature 596, 92–96 (2021).

    Article  PubMed  Google Scholar 

  102. Nonomura, T., Nishio, C., Lindsay, R. M. & Hatanaka, H. Cultured basal forebrain cholinergic neurons from postnatal rats show both overlapping and non-overlapping responses to the neurotrophins. Brain Res. 683, 129–139 (1995).

    Article  CAS  PubMed  Google Scholar 

  103. di Sanguinetto, S. A. D. T., Dasen, J. S. & Arber, S. Transcriptional mechanisms controlling motor neuron diversity and connectivity. Curr. Opin. Neurobiol. 18, 36–43 (2008).

    Article  Google Scholar 

  104. Hollera, T., Berse, B., Cermak, J. M., Diebler, M.-F. & Krzysztof Blusztajn, J. Differences in the developmental expression of the vesicular acetylcholine transporter and choline acetyltransferase in the rat brain. Neurosci. Lett. 212, 107–110 (1996).

    Article  Google Scholar 

  105. Mallet, J. et al. The cholinergic locus: ChAT and VAChT genes. J. Physiol. 92, 145–147 (1998).

    CAS  Google Scholar 

  106. Berse, B. & Blusztajn, J. K. Coordinated up-regulation of choline acetyltransferase and vesicular acetylcholine transporter gene expression by the retinoic acid receptor α, cAMP, and leukemia inhibitory factor/ciliary neurotrophic factor signaling pathways in a murine septal cell line. J. Biol. Chem. 270, 22101–22104 (1995).

    Article  CAS  PubMed  Google Scholar 

  107. Berse, B., Lopez-Coviella, I. & Blusztajn, J. K. Activation of TrkA by nerve growth factor upregulates expression of the cholinergic gene locus but attenuates the response to ciliary neurotrophic growth factor. Biochem. J. 342, 301–308 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lee, D. R. et al. Transcriptional heterogeneity of ventricular zone cells in the ganglionic eminences of the mouse forebrain. eLife 11, e71854 (2022).

    Article  Google Scholar 

  109. Mi, D. et al. Early emergence of cortical interneuron diversity in the mouse embryo. Science 360, 81–85 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rhodes, C. T. et al. An epigenome atlas of neural progenitors within the embryonic mouse forebrain. Nat. Commun. 13, 4196 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Silberberg, S. N. et al. Subpallial enhancer transgenic lines: a data and tool resource to study transcriptional regulation of GABAergic cell fate. Neuron 92, 59–74 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tritsch, N. X., Granger, A. J. & Sabatini, B. L. Mechanisms and functions of GABA co-release. Nat. Rev. Neurosci. 17, 139–145 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nusbaum, M. P., Blitz, D. M. & Marder, E. Functional consequences of neuropeptide and small-molecule co-transmission. Nat. Rev. Neurosci. 18, 389–403 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Vaaga, C. E., Borisovska, M. & Westbrook, G. L. Dual-transmitter neurons: functional implications of co-release and co-transmission. Curr. Opin. Neurobiol. 29, 25–32 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. Frahm, S. et al. An essential role of acetylcholine-glutamate synergy at habenular synapses in nicotine dependence. eLife 4, e11396 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Ren, J. et al. Habenula “cholinergic” neurons co-release glutamate and acetylcholine and activate postsynaptic neurons via distinct transmission modes. Neuron 69, 445–452 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Amilhon, B. et al. VGLUT3 (vesicular glutamate transporter type 3) contribution to the regulation of serotonergic transmission and anxiety. J. Neurosci. 30, 2198–2210 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Gras, C. et al. A third vesicular glutamate transporter expressed by cholinergic and serotoninergic neurons. J. Neurosci. 22, 5442–5451 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kosaka, T., Tauchi, M. & Dahl, J. L. Cholinergic neurons containing GABA-like and/or glutamic acid decarboxylase-like immunoreactivities in various brain regions of the rat. Exp. Brain Res. 70, 605–617 (1988).

    Article  CAS  PubMed  Google Scholar 

  120. Fisher, R. S. & Levine, M. S. Transmitter cosynthesis by corticopetal basal forebrain neurons. Brain Res. 491, 163–168 (1989).

    Article  CAS  PubMed  Google Scholar 

  121. O’Malley, D. M., Sandell, J. H. & Masland, R. H. Co-release of acetylcholine and GABA by the starburst amacrine cells. J. Neurosci. 12, 1394–1408 (1992).

    Article  PubMed  PubMed Central  Google Scholar 

  122. O’Malley, D. M. & Masland, R. H. Co-release of acetylcholine and gamma-aminobutyric acid by a retinal neuron. Proc. Natl Acad. Sci. USA 86, 3414–3418 (1989).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Santos, P. F., Carvalho, A. L., Carvalho, A. P. & Duarte, C. B. Differential acetylcholine and GABA release from cultured chick retina cells. Eur. J. Neurosci. 10, 2723–2730 (1998).

    Article  CAS  PubMed  Google Scholar 

  124. Sethuramanujam, S. et al. A central role for mixed acetylcholine/GABA transmission in direction coding in the retina. Neuron 90, 1243–1256 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Hur, E. E., Edwards, R. H., Rommer, E. & Zaborszky, L. Vesicular glutamate transporter 1 and vesicular glutamate transporter 2 synapses on cholinergic neurons in the sublenticular gray of the rat basal forebrain: a double-label electron microscopic study. Neuroscience 164, 1721–1731 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Case, D. T. et al. Layer- and cell type-selective co-transmission by a basal forebrain cholinergic projection to the olfactory bulb. Nat. Commun. 8, 652 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Nickerson Poulin, A., Guerci, A., El Mestikawy, S. & Semba, K. Vesicular glutamate transporter 3 immunoreactivity is present in cholinergic basal forebrain neurons projecting to the basolateral amygdala in rat. J. Comp. Neurol. 498, 690–711 (2006).

    Article  PubMed  Google Scholar 

  128. Granger, A. J., Mulder, N., Saunders, A. & Sabatini, B. L. Cotransmission of acetylcholine and GABA. Neuropharmacology 100, 40–46 (2016).

    Article  CAS  PubMed  Google Scholar 

  129. Saunders, A., Granger, A. J. & Sabatini, B. L. Corelease of acetylcholine and GABA from cholinergic forebrain neurons. eLife 4, e06412 (2015). This article demonstrates co-transmission of ACh and GABA by forebrain cholinergic neurons.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Brunet Avalos, C. & Sprecher, S. G. Single-cell transcriptomic reveals dual and multi-transmitter use in neurons across metazoans. Front. Mol. Neurosci. 14, 623148 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Upmanyu, N. et al. Colocalization of different neurotransmitter transporters on synaptic vesicles is sparse except for VGLUT1 and ZnT3. Neuron 110, 1483–1497.e7 (2022).

    Article  CAS  PubMed  Google Scholar 

  132. Ximerakis, M. et al. Single-cell transcriptomic profiling of the aging mouse brain. Nat. Neurosci. 22, 1696–1708 (2019).

    Article  CAS  PubMed  Google Scholar 

  133. Desikan, S., Koser, D. E., Neitz, A. & Monyer, H. Target selectivity of septal cholinergic neurons in the medial and lateral entorhinal cortex. Proc. Natl Acad. Sci. USA 115, E2644–E2652 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Takács, V. T. et al. Co-transmission of acetylcholine and GABA regulates hippocampal states. Nat. Commun. 9, 2848 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Colangelo, C., Shichkova, P., Keller, D., Markram, H. & Ramaswamy, S. Cellular, synaptic and network effects of acetylcholine in the neocortex. Front. Neural Circuits 13, 24 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Changeux, J. P., Corringer, P. J. & Maskos, U. The nicotinic acetylcholine receptor: from molecular biology to cognition. Neuropharmacology 96, 135–136 (2015).

    Article  CAS  PubMed  Google Scholar 

  137. Gotti, C., Zoli, M. & Clementi, F. Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol. Sci. 27, 482–491 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. McKay, B. E., Placzek, A. N. & Dani, J. A. Regulation of synaptic transmission and plasticity by neuronal nicotinic acetylcholine receptors. Biochem. Pharmacol. 74, 1120–1133 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Jones, C. K., Byun, N. & Bubser, M. Muscarinic and nicotinic acetylcholine receptor agonists and allosteric modulators for the treatment of schizophrenia. Neuropsychopharmacology 37, 16–42 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. Wess, J., Eglen, R. M. & Gautam, D. Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat. Rev. Drug Discov. 6, 721–733 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Disney, A. A. & Higley, M. J. Diverse spatiotemporal scales of cholinergic signaling in the neocortex. J. Neurosci. 40, 720–725 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Sarter, M. & Lustig, C. Cholinergic double duty: cue detection and attentional control. Curr. Opin. Psychol. 29, 102–107 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Zhang, Y. et al. Cholinergic suppression of hippocampal sharp-wave ripples impairs working memory. Proc. Natl Acad. Sci. USA 118, e2016432118 (2021). This article shows that behavioural outcome in response to ACh signalling is critically dependent on brain state.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kramer, P. F. et al. Synaptic-like axo-axonal transmission from striatal cholinergic interneurons onto dopaminergic fibers. Neuron 110, 2949–2960.e4 (2022). In this technical tour de force, the authors use patch clamp recording from dopaminergic axons in the striatum to demonstrate axonal/presynaptic ACh signalling regulated dopamine release independently of soma-derived action potentials.

    Article  CAS  PubMed  Google Scholar 

  145. Muller, J. F., Mascagni, F., Zaric, V. & McDonald, A. J. Muscarinic cholinergic receptor M1 in the rat basolateral amygdala: ultrastructural localization and synaptic relationships to cholinergic axons. J. Comp. Neurol. 521, 1743–1759 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Turrini, P. et al. Cholinergic nerve terminals establish classical synapses in the rat cerebral cortex: synaptic pattern and age-related atrophy. Neuroscience 105, 277–285 (2001).

    Article  CAS  PubMed  Google Scholar 

  147. Umbriaco, D., Watkins, K. C., Descarries, L., Cozzari, C. & Hartman, B. K. Ultrastructural and morphometric features of the acetylcholine innervation in adult rat parietal cortex: an electron microscopic study in serial sections. J. Comp. Neurol. 348, 351–373 (1994).

    Article  CAS  PubMed  Google Scholar 

  148. Borden, P. M. et al. A fast genetically encoded fluorescent sensor for faithful in vivo acetylcholine detection in mice, fish, worms and flies. Preprint at bioRxiv https://doi.org/10.1101/2020.02.07.939504 (2020).

    Article  Google Scholar 

  149. Liu, C. et al. An action potential initiation mechanism in distal axons for the control of dopamine release. Science 375, 1378–1385 (2022).

    Article  CAS  PubMed  Google Scholar 

  150. Laszlovszky, T. et al. Distinct synchronization, cortical coupling and behavioral function of two basal forebrain cholinergic neuron types. Nat. Neurosci. 23, 992–1003 (2020). Using in vivo electrophysiology, this study demonstrates that distinct populations of BFCNs that differ in their firing modes are associated with unique behavioural profiles.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zheng, Y. et al. Different subgroups of cholinergic neurons in the basal forebrain are distinctly innervated by the olfactory regions and activated differentially in olfactory memory retrieval. Front. Neural Circuits 12, 99 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Li, X. et al. Molecularly defined and functionally distinct cholinergic subnetworks. Neuron 110, 3774–3788.e7 (2022).

    Article  CAS  PubMed  Google Scholar 

  153. Gritton, H. J. et al. Cortical cholinergic signaling controls the detection of cues. Proc. Natl Acad. Sci. USA 113, E1089–E1097 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Thiele, A. & Bellgrove, M. A. Neuromodulation of attention. Neuron 97, 769–785 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Aitta-Aho, T. et al. Basal forebrain and brainstem cholinergic neurons differentially impact amygdala circuits and learning-related behavior. Curr. Biol. 28, 2557–2569.e4 (2018).

    Article  CAS  PubMed  Google Scholar 

  156. Crouse, R. B. et al. Acetylcholine is released in the basolateral amygdala in response to predictors of reward and enhances the learning of cue-reward contingency. eLife 9, e57335 (2020). This study uses an ACh biosensor and shows that dynamic changes in ACh release in the BLA are associated with cue–reward contingency learning.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Rajebhosale, P. et al. Basal forebrain cholinergic neurons are part of the threat memory engram. Preprint at bioRxiv https://doi.org/10.1101/2021.05.02.442364 (2021). This study demonstrates that BFCNs are engaged during training and again during recall of the cued fear conditioning task, and are also necessary for proper defensive behaviours.

    Article  Google Scholar 

  158. Bloem, B. et al. Topographic mapping between basal forebrain cholinergic neurons and the medial prefrontal cortex in mice. J. Neurosci. 34, 16234–16246 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Gielow, M. R. & Zaborszky, L. The input-output relationship of the cholinergic basal forebrain. Cell Rep. 18, 1817–1830 (2017). Using output-specific monosynaptic tracing, this study reveals that the inputs to and outputs from cholinergic neurons are functionally organized.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Chandler, D. & Waterhouse, B. Evidence for broad versus segregated projections from cholinergic and noradrenergic nuclei to functionally and anatomically discrete subregions of prefrontal cortex. Front. Behav. Neurosci. 6, 20 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Wu, H., Williams, J. & Nathans, J. Complete morphologies of basal forebrain cholinergic neurons in the mouse. eLife 3, e02444 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Zaborszky, L. et al. Neurons in the basal forebrain project to the cortex in a complex topographic organization that reflects corticocortical connectivity patterns: an experimental study based on retrograde tracing and 3D reconstruction. Cereb. Cortex 25, 118–137 (2015).

    Article  PubMed  Google Scholar 

  163. Saper, C. B. Organization of cerebral cortical afferent systems in the rat. II. Magnocellular basal nucleus. J. Comp. Neurol. 222, 313–342 (1984).

    Article  CAS  PubMed  Google Scholar 

  164. Saper, C. B. Diffuse cortical projection systems: anatomical organization and role in cortical function. Compr. Physiol. https://doi.org/10.1002/cphy.cp010506 (2011).

    Article  Google Scholar 

  165. Huppé-Gourgues, F., Jegouic, K. & Vaucher, E. Topographic organization of cholinergic innervation from the basal forebrain to the visual cortex in the rat. Front. Neural Circuits 12, 19 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Zhu, F., Elnozahy, S. E., Lawlor, J. & Kuchibhotla, K. V. A parallel channel of state-dependent sensory signaling from the cholinergic basal forebrain to the auditory cortex. Preprint at bioRxiv https://doi.org/10.1101/2022.05.05.490613 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Alheid, G. F. Extended amygdala and basal forebrain. Ann. NY Acad. Sci. 985, 185–205 (2003).

    Article  CAS  PubMed  Google Scholar 

  168. Root, D. H., Melendez, R. I., Zaborszky, L. & Napier, T. C. The ventral pallidum: subregion-specific functional anatomy and roles in motivated behaviors. Prog. Neurobiol. 130, 29–70 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Teles-Grilo Ruivo, L. M. & Mellor, J. R. Cholinergic modulation of hippocampal network function. Front. Synaptic Neurosci. 5, 2 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Slomianka, L. & Geneser, F. A. Distribution of acetylcholinesterase in the hippocampal region of the mouse: II. Subiculum and hippocampus. J. Comp. Neurol. 312, 525–536 (1991).

    Article  CAS  PubMed  Google Scholar 

  171. Kondo, H. & Zaborszky, L. Topographic organization of the basal forebrain projections to the perirhinal, postrhinal, and entorhinal cortex in rats. J. Comp. Neurol. 524, 2503–2515 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Slomianka, L. & Geneser, F. A. Distribution of acetylcholinesterase in the hippocampal region of the mouse: I. Entorhinal area, parasubiculum, retrosplenial area, and presubiculum. J. Comp. Neurol. 303, 339–354 (1991).

    Article  CAS  PubMed  Google Scholar 

  173. Do, J. P. et al. Cell type-specific long-range connections of basal forebrain circuit. eLife 5, e13214 (2016). This study maps monosynaptic inputs to four distinct cell populations within the basal forebrain and identifies common patterns of input to basal forebrain cell types.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Hu, R., Jin, S., He, X., Xu, F. & Hu, J. Whole-brain monosynaptic afferent inputs to basal forebrain cholinergic system. Front. Neuroanat. 10, 98 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Chavez, C. & Zaborszky, L. Basal forebrain cholinergic–auditory cortical network: primary versus nonprimary auditory cortical areas. Cereb. Cortex 27, 2335–2347 (2016).

    PubMed Central  Google Scholar 

  176. Zaborszky, L. et al. in The Rat Nervous System 4th edn (ed. Paxinos, G.) 491–507 (Academic, 2015).

  177. Shu, S. Y. et al. A new neural pathway from the ventral striatum to the nucleus basalis of Meynert with functional implication to learning and memory. Mol. Neurobiol. 56, 7222–7233 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Yager, L. M., Garcia, A. F., Wunsch, A. M. & Ferguson, S. M. The ins and outs of the striatum: role in drug addiction. Neuroscience 301, 529–541 (2015).

    Article  CAS  PubMed  Google Scholar 

  179. Swanson, L. W. & Petrovich, G. D. What is the amygdala? Trends Neurosci. 21, 323–331 (1998).

    Article  CAS  PubMed  Google Scholar 

  180. Kreitzer, A. C. & Berke, J. D. Investigating striatal function through cell-type-specific manipulations. Neuroscience 198, 19–26 (2011).

    Article  CAS  PubMed  Google Scholar 

  181. Robert, B. et al. A functional topography within the cholinergic basal forebrain for encoding sensory cues and behavioral reinforcement outcomes. eLife 10, e69514 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Parikh, V., Kozak, R., Martinez, V. & Sarter, M. Prefrontal acetylcholine release controls cue detection on multiple timescales. Neuron 56, 141–154 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Howe, W. M. et al. Acetylcholine release in prefrontal cortex promotes gamma oscillations and theta-gamma coupling during cue detection. J. Neurosci. 37, 3215–3230 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Dalley, J. W. et al. Distinct changes in cortical acetylcholine and noradrenaline efflux during contingent and noncontingent performance of a visual attentional task. J. Neurosci. 21, 4908–4914 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Himmelheber, A. M., Sarter, M. & Bruno, J. P. Increases in cortical acetylcholine release during sustained attention performance in rats. Brain Res. Cogn. Brain Res. 9, 313–325 (2000).

    Article  CAS  PubMed  Google Scholar 

  186. Levin, E. D. & Simon, B. B. Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacology 138, 217–230 (1998).

    Article  CAS  PubMed  Google Scholar 

  187. Klinkenberg, I., Sambeth, A. & Blokland, A. Acetylcholine and attention. Behav. Brain Res. 221, 430–442 (2011).

    Article  CAS  PubMed  Google Scholar 

  188. Meir, I., Katz, Y. & Lampl, I. Membrane potential correlates of network decorrelation and improved SNR by cholinergic activation in the somatosensory cortex. J. Neurosci. 38, 10692–10708 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Pinto, L. et al. Fast modulation of visual perception by basal forebrain cholinergic neurons. Nat. Neurosci. 16, 1857–1863 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Minces, V., Pinto, L., Dan, Y. & Chiba, A. A. Cholinergic shaping of neural correlations. Proc. Natl Acad. Sci. USA 114, 5725–5730 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Sarter, M., Parikh, V. & Howe, W. M. Phasic acetylcholine release and the volume transmission hypothesis: time to move on. Nat. Rev. Neurosci. 10, 383–390 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Mineur, Y. S. & Picciotto, M. R. The role of acetylcholine in negative encoding bias: too much of a good thing? Eur. J. Neurosci. 53, 114–125 (2021).

    Article  CAS  PubMed  Google Scholar 

  193. Dulawa, S. C. & Janowsky, D. S. Cholinergic regulation of mood: from basic and clinical studies to emerging therapeutics. Mol. Psychiatry 24, 694–709 (2019).

    Article  CAS  PubMed  Google Scholar 

  194. Tye, K. M. Neural circuit motifs in valence processing. Neuron 100, 436–452 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Jing, M. et al. An optimized acetylcholine sensor for monitoring in vivo cholinergic activity. Nat. Methods 17, 1139–1146 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Jing, M. et al. A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies. Nat. Biotechnol. 36, 726–737 (2018). Together with Jing et al. (2020), this article describes the design and utility of genetically encoded fluorescent sensors that allow high spatiotemporal monitoring of ACh release in vitro and in vivo, providing a major advance in our understanding of cholinergic transmission relative to circuit function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Mineur, Y. S. et al. Cholinergic signaling in the hippocampus regulates social stress resilience and anxiety- and depression-like behavior. Proc. Natl Acad. Sci. USA 110, 3573–3578 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Hangya, B., Ranade, S. P., Lorenc, M. & Kepecs, A. Central cholinergic neurons are rapidly recruited by reinforcement feedback. Cell 162, 1155–1168 (2015). This study uses optogenetic tagging to identify cholinergic neurons in the basal forebrain and uses in vivo recordings to demonstrate that BFCNs respond to both negative valence and positive valence stimuli.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Wilson, M. A. & Fadel, J. R. Cholinergic regulation of fear learning and extinction. J. Neurosci. Res. 95, 836–852 (2017).

    Article  CAS  PubMed  Google Scholar 

  200. Kellis, D. M., Kaigler, K. F., Witherspoon, E., Fadel, J. R. & Wilson, M. A. Cholinergic neurotransmission in the basolateral amygdala during cued fear extinction. Neurobiol. Stress. 13, 100279 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Unal, C. T., Pare, D. & Zaborszky, L. Impact of basal forebrain cholinergic inputs on basolateral amygdala neurons. J. Neurosci. 35, 853–863 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Robinson, L., Platt, B. & Riedel, G. Involvement of the cholinergic system in conditioning and perceptual memory. Behav. Brain Res. 221, 443–465 (2011).

    Article  CAS  PubMed  Google Scholar 

  203. Huang, L. et al. Organizational principles of amygdalar input-output neuronal circuits. Mol. Psychiatry 26, 7118–7129 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Hájos, N. Interneuron types and their circuits in the basolateral amygdala. Front. Neural Circuits 15, 687257 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  205. O’Leary, T. P. et al. Extensive and spatially variable within-cell-type heterogeneity across the basolateral amygdala. eLife 9, e59003 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Teles-Grilo Ruivo, L. M. et al. Coordinated acetylcholine release in prefrontal cortex and hippocampus is associated with arousal and reward on distinct timescales. Cell Rep. 18, 905–917 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Buzsáki, G. Theta oscillations in the hippocampus. Neuron 33, 325–340 (2002).

    Article  PubMed  Google Scholar 

  208. Hasselmo, M. E. The role of acetylcholine in learning and memory. Curr. Opin. Neurobiol. 16, 710–715 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Lee, M. G., Chrobak, J. J., Sik, A., Wiley, R. G. & Buzsáki, G. Hippocampal theta activity following selective lesion of the septal cholinergic system. Neuroscience 62, 1033–1047 (1994).

    Article  CAS  PubMed  Google Scholar 

  210. Lawson, V. H. & Bland, B. H. The role of the septohippocampal pathway in the regulation of hippocampal field activity and behavior: analysis by the intraseptal microinfusion of carbachol, atropine, and procaine. Exp. Neurol. 120, 132–144 (1993).

    Article  CAS  PubMed  Google Scholar 

  211. Ma, X. et al. The firing of theta state-related septal cholinergic neurons disrupt hippocampal ripple oscillations via muscarinic receptors. J. Neurosci. 40, 3591–3603 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Vandecasteele, M. et al. Optogenetic activation of septal cholinergic neurons suppresses sharp wave ripples and enhances theta oscillations in the hippocampus. Proc. Natl Acad. Sci. USA 111, 13535–13540 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Norimoto, H., Mizunuma, M., Ishikawa, D., Matsuki, N. & Ikegaya, Y. Muscarinic receptor activation disrupts hippocampal sharp wave-ripples. Brain Res. 1461, 1–9 (2012).

    Article  CAS  PubMed  Google Scholar 

  214. Joo, H. R. & Frank, L. M. The hippocampal sharp wave–ripple in memory retrieval for immediate use and consolidation. Nat. Rev. Neurosci. 19, 744–757 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Jiang, L. et al. Cholinergic signaling controls conditioned fear behaviors and enhances plasticity of cortical-amygdala circuits. Neuron 90, 1057–1070 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Schmitz, T. W. & Zaborszky, L. Spatial topography of the basal forebrain cholinergic projections: organization and vulnerability to degeneration. Handb. Clin. Neurol. 179, 159–173 (2021).

    Article  PubMed  Google Scholar 

  217. Zhu, P. K. et al. Nanoscopic visualization of restricted nonvolume cholinergic and monoaminergic transmission with genetically encoded sensors. Nano Lett. 20, 4073–4083 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Marvin, J. S. et al. Stability, affinity, and chromatic variants of the glutamate sensor iGluSnFR. Nat. Methods 15, 936–939 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Marvin, J. S. et al. A genetically encoded fluorescent sensor for in vivo imaging of GABA. Nat. Methods 16, 763–770 (2019).

    Article  CAS  PubMed  Google Scholar 

  220. Díaz-García, C. M. et al. Quantitative in vivo imaging of neuronal glucose concentrations with a genetically encoded fluorescence lifetime sensor. J. Neurosci. Res. 97, 946–960 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Zong, W. et al. Large-scale two-photon calcium imaging in freely moving mice. Cell 185, 1240–1256.e30 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Mead, T. J. & Apte, S. S. Expression analysis by RNAscope™ in situ hybridization. Methods Mol. Biol. 2043, 173–178 (2020).

    Article  CAS  PubMed  Google Scholar 

  223. Dikshit, A., Zong, H., Anderson, C., Zhang, B. & Ma, X.-J. in In Situ Hybridization Protocols (eds Nielsen, B. S. & Jones, J.) 301–312 (Springer, 2020).

  224. Booeshaghi, A. S. et al. Isoform cell-type specificity in the mouse primary motor cortex. Nature 598, 195–199 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Meers, M. P., Bryson, T. D., Henikoff, J. G. & Henikoff, S. Improved CUT&RUN chromatin profiling tools. eLife 8, e46314 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Preissl, S. et al. Single-nucleus analysis of accessible chromatin in developing mouse forebrain reveals cell-type-specific transcriptional regulation. Nat. Neurosci. 21, 432–439 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Liu, H. et al. DNA methylation atlas of the mouse brain at single-cell resolution. Nature 598, 120–128 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Mesulam, M. M. Cholinergic circuitry of the human nucleus basalis and its fate in Alzheimer’s disease. J. Comp. Neurol. 521, 4124–4144 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Mufson, E. J., Ginsberg, S. D., Ikonomovic, M. D. & DeKosky, S. T. Human cholinergic basal forebrain: chemoanatomy and neurologic dysfunction. J. Chem. Neuroanat. 26, 233–242 (2003).

    Article  CAS  PubMed  Google Scholar 

  230. Boissière, F., Lehéricy, S., Strada, O., Agid, Y. & Hirsch, E. C. Neurotrophin receptors and selective loss of cholinergic neurons in Alzheimer disease. Mol. Chem. Neuropathol. 28, 219–223 (1996).

    Article  PubMed  Google Scholar 

  231. Boskovic, Z. et al. The role of p75NTR in cholinergic basal forebrain structure and function. J. Neurosci. 34, 13033–13038 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Mufson, E. J., Bothwell, M., Hersh, L. B. & Kordower, J. H. Nerve growth factor receptor immunoreactive profiles in the normal, aged human basal forebrain: colocalization with cholinergic neurons. J. Comp. Neurol. 285, 196–217 (1989).

    Article  CAS  PubMed  Google Scholar 

  233. Liu, A. K., Chang, R. C., Pearce, R. K. & Gentleman, S. M. Nucleus basalis of Meynert revisited: anatomy, history and differential involvement in Alzheimer’s and Parkinson’s disease. Acta Neuropathol. 129, 527–540 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Mesulam, M. M. Behavioral neuroanatomy of cholinergic innervation in the primate cerebral cortex. EXS 57, 1–11 (1989).

    CAS  PubMed  Google Scholar 

  235. Coppola, J. J. & Disney, A. A. Is there a canonical cortical circuit for the cholinergic system? Anatomical differences across common model systems. Front. Neural Circuits 12, 8 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Kimes, A. S. et al. Quantification of nicotinic acetylcholine receptors in the human brain with PET: bolus plus infusion administration of 2-[18F]F-A85380. Neuroimage 39, 717–727 (2008).

    Article  PubMed  Google Scholar 

  237. Wong, D. F. et al. Brain PET imaging of α7-nAChR with [18F]ASEM: reproducibility, occupancy, receptor density, and changes in schizophrenia. Int. J. Neuropsychopharmacol. 21, 656–667 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Horti, A. G., Kuwabara, H., Holt, D. P., Dannals, R. F. & Wong, D. F. Recent PET radioligands with optimal brain kinetics for imaging nicotinic acetylcholine receptors. J. Label. Comp. Radiopharm. 56, 159–166 (2013).

    Article  CAS  Google Scholar 

  239. Tiepolt, S. et al. PET imaging of cholinergic neurotransmission in neurodegenerative disorders. J. Nucl. Med. 63, 33S–44S (2022).

    Article  CAS  PubMed  Google Scholar 

  240. Jin, H. et al. Kinetic modeling of [18F]VAT, a novel radioligand for positron emission tomography imaging vesicular acetylcholine transporter in non-human primate brain. J. Neurochem. 144, 791–804 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Petrou, M. et al. In vivo imaging of human cholinergic nerve terminals with (–)-5-18F-fluoroethoxybenzovesamicol: biodistribution, dosimetry, and tracer kinetic analyses. J. Nucl. Med. 55, 396–404 (2014).

    Article  CAS  PubMed  Google Scholar 

  242. Hillmer, A. T. et al. PET imaging of α7 nicotinic acetylcholine receptors: a comparative study of [18F]ASEM and [18F]DBT-10 in nonhuman primates, and further evaluation of [18F]ASEM in humans. Eur. J. Nucl. Med. Mol. Imaging 44, 1042–1050 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Lao, P. J. et al. [18F]Nifene test-retest reproducibility in first-in-human imaging of α4β2* nicotinic acetylcholine receptors. Synapse https://doi.org/10.1002/syn.21981 (2017).

  244. Yuan, R., Biswal, B. B. & Zaborszky, L. Functional subdivisions of magnocellular cell groups in human basal forebrain: test-retest resting-state study at ultra-high field, and meta-analysis. Cereb. Cortex 29, 2844–2858 (2019).

    Article  PubMed  Google Scholar 

  245. Fritz, H. J. et al. The corticotopic organization of the human basal forebrain as revealed by regionally selective functional connectivity profiles. Hum. Brain Mapp. 40, 868–878 (2019).

    Article  PubMed  Google Scholar 

  246. Aghourian, M. et al. Quantification of brain cholinergic denervation in Alzheimer’s disease using PET imaging with [18F]-FEOBV. Mol. Psychiatry 22, 1531–1538 (2017).

    Article  CAS  PubMed  Google Scholar 

  247. Schmitz, T. W., Mur, M., Aghourian, M., Bedard, M. A. & Spreng, R. N. Longitudinal Alzheimer’s degeneration reflects the spatial topography of cholinergic basal forebrain projections. Cell Rep. 24, 38–46 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Xia, Y. et al. Reduced cortical cholinergic innervation measured using [18F]-FEOBV PET imaging correlates with cognitive decline in mild cognitive impairment. Neuroimage Clin. 34, 102992 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Bartus, R. T., Dean, R. L. 3rd, Beer, B. & Lippa, A. S. The cholinergic hypothesis of geriatric memory dysfunction. Science 217, 408–414 (1982).

    Article  CAS  PubMed  Google Scholar 

  250. Drachman, D. A. & Leavitt, J. Human memory and the cholinergic system. A relationship to aging? Arch. Neurol. 30, 113–121 (1974).

    Article  CAS  PubMed  Google Scholar 

  251. Geula, C. & Mesulam, M.-M. Systematic regional variations in the loss of cortical cholinergic fibers in Alzheimer’s disease. Cereb. Cortex 6, 165–177 (1996).

    Article  CAS  PubMed  Google Scholar 

  252. Geula, C. & Mesulam, M. M. Cortical cholinergic fibers in aging and Alzheimer’s disease: a morphometric study. Neuroscience 33, 469–481 (1989).

    Article  CAS  PubMed  Google Scholar 

  253. Whitehouse, P. J. et al. Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215, 1237–1239 (1982).

    Article  CAS  PubMed  Google Scholar 

  254. Newhouse, P. A. et al. Intravenous nicotine in Alzheimer’s disease: a pilot study. Psychopharmacology 95, 171–175 (1988).

    Article  CAS  PubMed  Google Scholar 

  255. Ovsepian, S. V., O’Leary, V. B. & Zaborszky, L. Cholinergic mechanisms in the cerebral cortex: beyond synaptic transmission. Neuroscientist 22, 238–251 (2016).

    Article  CAS  PubMed  Google Scholar 

  256. Fisher, A. Cholinergic modulation of amyloid precursor protein processing with emphasis on M1 muscarinic receptor: perspectives and challenges in treatment of Alzheimer’s disease. J. Neurochem. 120 (Suppl. 1), 22–33 (2012).

    Article  CAS  PubMed  Google Scholar 

  257. Gil-Bea, F. J. et al. Cholinergic denervation exacerbates amyloid pathology and induces hippocampal atrophy in Tg2576 mice. Neurobiol. Dis. 48, 439–446 (2012).

    Article  CAS  PubMed  Google Scholar 

  258. Wang, Y. J. et al. p75NTR regulates Aβ deposition by increasing Aβ production but inhibiting Aβ aggregation with its extracellular domain. J. Neurosci. 31, 2292–2304 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Majdi, A. et al. Amyloid-β, tau, and the cholinergic system in Alzheimer’s disease: seeking direction in a tangle of clues. Rev. Neurosci. 31, 391–413 (2020).

    Article  CAS  PubMed  Google Scholar 

  260. Cantero, J. L. et al. Atrophy of basal forebrain initiates with tau pathology in individuals at risk for Alzheimer’s disease. Cereb. Cortex 30, 2083–2098 (2020).

    Article  PubMed  Google Scholar 

  261. Wysocka, A., Palasz, E., Steczkowska, M. & Niewiadomska, G. Dangerous liaisons: tau interaction with muscarinic receptors. Curr. Alzheimer Res. 17, 224–237 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Gamage, R. et al. Cholinergic modulation of glial function during aging and chronic neuroinflammation. Front. Cell Neurosci. 14, 577912 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Piovesana, R., Salazar Intriago, M. S., Dini, L. & Tata, A. M. Cholinergic modulation of neuroinflammation: focus on α7 nicotinic receptor. Int. J. Mol. Sci. 22, 4912 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Nazmi, A. et al. Cholinergic signalling in the forebrain controls microglial phenotype and responses to systemic inflammation. Preprint at bioRxiv https://doi.org/10.1101/2021.01.18.427123 (2021).

    Article  Google Scholar 

  265. Leng, K. et al. Molecular characterization of selectively vulnerable neurons in Alzheimer’s disease. Nat. Neurosci. 24, 276–287 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Igarashi, K. M. Entorhinal cortex dysfunction in Alzheimer’s disease. Trends Neurosci. 46, 124–136 (2023).

    Article  CAS  PubMed  Google Scholar 

  267. Ovsepian, S. V., O’Leary, V. B., Hoschl, C. & Zaborszky, L. Integrated phylogeny of the human brain and pathobiology of Alzheimer’s disease: a unifying hypothesis. Neurosci. Lett. 755, 135895 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Li, S. & Sheng, Z. H. Energy matters: presynaptic metabolism and the maintenance of synaptic transmission. Nat. Rev. Neurosci. 23, 4–22 (2022).

    Article  CAS  PubMed  Google Scholar 

  269. Cavanagh, J. B. The problems of neurons with long axons. Lancet 1, 1284–1287 (1984).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

All authors are supported by funds from the NINDS Intramural Research Program.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Mala R. Ananth or Lorna W. Role.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks M. A. M. Prado, who co-reviewed with M. Skirzewski; J. L. R. Rubenstein; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related link

BRAIN Initiative Cell Census Network collection: https://www.nature.com/collections/cicghheddj

Glossary

Chromatin landscape

An umbrella term encompassing chromatin accessibility, long-range contacts and looping, higher-order chromatin structure and DNA/histone modifications.

Collateral projections

Branching neuronal projections from a single neuron targeting multiple brain regions.

Co-release

The release of two (and possibly more) neurotransmitters from the same presynaptic vesicle using the same mechanism.

Co-transmission

The release of multiple neurotransmitters from different presynaptic vesicles via distinct mechanisms but leading to an aggregate effect on synaptic transmission.

En passant release

Neurotransmitter release along axonal projections rather than from an axon terminal.

Fluorescent biosensors

A class of tools used to visualize and measure changes in biological processes using sensitive fluorescence readout in response to a conformational change.

Homeodomain transcription factors

Transcription factors with a conserved helix–turn–helix motif, called a ‘homeodomain’, involved in regulating gene expression early in development.

Morphogens

Secreted signalling molecules that pattern cell and tissue fates during early development.

Neuromodulator

A messenger (including peptides and certain neurotransmitters) that can change the state of a neuron or group of neurons to alter their excitability.

Optogenetics

A technique that uses light to manipulate neuronal activity.

Point-to-point synapses

Synapses at which individual sites of presynaptic release are closely apposed to postsynaptic terminals.

Phasic signalling

Fast, transient signalling in response to the onset of a stimulus.

Radial migration

Migration radially from the ventricular zone towards the directly overlying surface of the brain.

Retrograde signals

Signalling initiated in axon terminals influencing signalling/gene expression in the soma/nucleus.

Single-cell RNA sequencing

Sequencing technology that allows transcriptomic profiling of individual cells/nuclei.

Specification

The process involved in the specification of cell identity.

Synaptic release probability

The likelihood that a neurotransmitter will be released from a presynaptic vesicle.

Tangential migration

Migration parallel to the ventricular zone.

Terminal fields

A collection of axon terminals used to describe innervation of an anatomically defined region.

Theta oscillations

Synchronous neuronal activity between 4 Hz and 8 Hz that corresponds to a behavioural state of alertness and attention in the brain.

Tonic signalling

Slow and graded signalling.

Trophic factors

Peptides (often secreted) that promote growth and survival of cells.

Top-down attention

Intentional and goal-driven attention, as opposed to ‘bottom-up’ attention in response to sensory stimuli.

Valence

The hedonic value (positive or negative) of a stimulus.

Virus-based mapping

The use of viral vectors (anterograde and/or retrograde) to delineate anatomical connections between different brain regions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ananth, M.R., Rajebhosale, P., Kim, R. et al. Basal forebrain cholinergic signalling: development, connectivity and roles in cognition. Nat Rev Neurosci 24, 233–251 (2023). https://doi.org/10.1038/s41583-023-00677-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-023-00677-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing