Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The stressed synapse 2.0: pathophysiological mechanisms in stress-related neuropsychiatric disorders

Abstract

Stress is a primary risk factor for several neuropsychiatric disorders. Evidence from preclinical models and clinical studies of depression have revealed an array of structural and functional maladaptive changes, whereby adverse environmental factors shape the brain. These changes, observed from the molecular and transcriptional levels through to large-scale brain networks, to the behaviours reveal a complex matrix of interrelated pathophysiological processes that differ between sexes, providing insight into the potential underpinnings of the sex bias of neuropsychiatric disorders. Although many preclinical studies use chronic stress protocols, long-term changes are also induced by acute exposure to traumatic stress, opening a path to identify determinants of resilient versus susceptible responses to both acute and chronic stress. Epigenetic regulation of gene expression has emerged as a key player underlying the persistent impact of stress on the brain. Indeed, histone modification, DNA methylation and microRNAs are closely involved in many aspects of the stress response and reveal the glutamate system as a key player. The success of ketamine has stimulated a whole line of research and development on drugs directly or indirectly targeting glutamate function. However, the challenge of translating the emerging understanding of stress pathophysiology into effective clinical treatments remains a major challenge.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dimensions of stress impact on brain adaptation.
Fig. 2: Major putative maladaptive changes associated with chronic stress and depression: a scalar approach.
Fig. 3: Major epigenetic changes associated with chronic stress.
Fig. 4: Putative maladaptive stress-induced changes at the tripartite synapse and identified drug targets.

Similar content being viewed by others

References

  1. Duman, R. S. & Aghajanian, G. K. Synaptic dysfunction in depression: potential therapeutic targets. Science 338, 68–72 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Pitman, R. K. et al. Biological studies of post-traumatic stress disorder. Nat. Rev. Neurosci. 13, 769–787 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Popoli, M., Yan, Z., McEwen, B. S. & Sanacora, G. The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat. Rev. Neurosci. 13, 22–37 (2011). This review of stress-related effects on glutamatergic neurotransmitter function serves as the basis for this updated article.

    PubMed  PubMed Central  Google Scholar 

  4. McEwen, B. S. et al. Mechanisms of stress in the brain. Nat. Neurosci. 18, 1353–1363 (2015). This review highlights the broader roles of stress in modulating brain function.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Duman, R. S., Aghajanian, G. K., Sanacora, G. & Krystal, J. H. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat. Med. 22, 238–249 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Musazzi, L., Tornese, P., Sala, N. & Popoli, M. Acute or chronic? A stressful question. Trends Neurosci. 40, 525–535 (2017). This review summarizes recent findings on the outcomes of acute stress and proposes the use of acute stress protocols for distinguishing trajectories of resilience/susceptibility in the stress response.

    CAS  PubMed  Google Scholar 

  7. Cannon, W. B. Organization for physiological homeostasis. Physiol. Rev. 9, 399–431 (1929).

    Google Scholar 

  8. Selye, H. The general adaptation syndrome and the diseases of adaptation. J. Allergy 6, 117–230 (1946).

    CAS  Google Scholar 

  9. McEwen, B. S. & Milner, T. A. Understanding the broad influence of sex hormones and sex differences in the brain. J. Neurosci. Res. 95, 24–39 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Karatsoreos, I. N. & McEwen, B. S. Psychobiological allostasis: resistance, resilience and vulnerability. Trends Cogn. Sci. 15, 576–584 (2011).

    PubMed  Google Scholar 

  11. Russo, S. J., Murrough, J. W., Han, M. H., Charney, D. S. & Nestler, E. J. Neurobiology of resilience. Nat. Neurosci. 15, 1475–1484 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Tang, S. J. et al. A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proc. Natl Acad. Sci. USA 99, 467–472 (2002).

    CAS  PubMed  Google Scholar 

  13. Ota, K. T. et al. REDD1 is essential for stress-induced synaptic loss and depressive behavior. Nat. Med. 20, 531–535 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Jernigan, C. S. et al. The mTOR signaling pathway in the prefrontal cortex is compromised in major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 35, 1774–1779 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, N. et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329, 959–964 (2010). This study is among the first to demonstrate the relationship between ketamine’s ability to modulate neuroplasticity, especially through effects on the mTOR pathways and BDNF, and the drug’s antidepressant-like properties.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Duman, R. S. & Monteggia, L. M. A neurotrophic model for stress-related mood disorders. Biol. Psychiatry 59, 1116–1127 (2006).

    CAS  PubMed  Google Scholar 

  17. Krishnan, V. & Nestler, E. J. The molecular neurobiology of depression. Nature 455, 894–902 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lakshminarasimhan, H. & Chattarji, S. Stress leads to contrasting effects on the levels of brain derived neurotrophic factor in the hippocampus and amygdala. PLoS ONE 7, e30481 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Koo, J. W., Chaudhury, D., Han, M. H. & Nestler, E. J. Role of mesolimbic brain-derived neurotrophic factor in depression. Biol. Psychiatry 86, 738–748 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kallarackal, A. J. et al. Chronic stress induces a selective decrease in AMPA receptor-mediated synaptic excitation at hippocampal temporoammonic-CA1 synapses. J. Neurosci. 33, 15669–15674 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Tornese, P. et al. Chronic mild stress induces anhedonic behavior and changes in glutamate release, BDNF trafficking and dendrite morphology only in stress vulnerable rats. The rapid restorative action of ketamine. Neurobiol. Stress 10, 100160 (2019). This article shows that maladaptive changes after chronic stress affect only susceptible animals and that ketamine reverses most behavioural and cellular changes.

    PubMed  PubMed Central  Google Scholar 

  22. Song, M., Martinowich, K. & Lee, F. S. BDNF at the synapse: why location matters. Mol. Psychiatry 22, 1370–1375 (2017). This excellent brief review illustrates why local synaptic synthesis of BDNF is important for homeostatic synaptic plasticity.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Baj, G. et al. Physical exercise and antidepressants enhance BDNF targeting in hippocampal CA3 dendrites: further evidence of a spatial code for BDNF splice variants. Neuropsychopharmacology 37, 1600–1611 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Mallei, A. et al. Expression and dendritic trafficking of BDNF-6 splice variant are impaired in knock-in mice carrying human BDNF Val66Met polymorphism. Int. J. Neuropsychopharmacol. 18, pyv069 (2015).

    PubMed  PubMed Central  Google Scholar 

  25. Yadid, G. & Friedman, A. Dynamics of the dopaminergic system as a key component to the understanding of depression. Prog. Brain Res. 172, 265–286 (2008).

    CAS  PubMed  Google Scholar 

  26. Belujon, P. & Grace, A. A. Dopamine system dysregulation in major depressive disorders. Int. J. Neuropsychopharmacol. 20, 1036–1046 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Rincón-Cortés, M. & Grace, A. A. Antidepressant effects of ketamine on depression-related phenotypes and dopamine dysfunction in rodent models of stress. Behav. Brain Res. 379, 112367 (2020).

    PubMed  Google Scholar 

  28. Tye, K. M. et al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature 493, 537–541 (2013).

    CAS  PubMed  Google Scholar 

  29. Chaudhury, D. et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 493, 532–536 (2013).

    CAS  PubMed  Google Scholar 

  30. Friedman, A. K. et al. Enhancing depression mechanisms in midbrain dopamine neurons achieves homeostatic resilience. Science 344, 313–319 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lammel, S., Tye, K. M. & Warden, M. R. Progress in understanding mood disorders: optogenetic dissection of neural circuits. Genes Brain Behav. 13, 38–51 (2014).

    CAS  PubMed  Google Scholar 

  32. Chaudhury, D., Liu, H. & Han, M. H. Neuronal correlates of depression. Cell Mol. Life Sci. 72, 4825–4848 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Knowland, D. & Lim, B. K. Circuit-based frameworks of depressive behaviors: the role of reward circuitry and beyond. Pharmacol. Biochem. Behav. 174, 42–52 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Shabel, S. J., Proulx, C. D., Piriz, J. & Malinow, R. Mood regulation. GABA/glutamate co-release controls habenula output and is modified by antidepressant treatment. Science 345, 1494–1498 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang, Y., Wang, H., Hu, J. & Hu, H. Lateral habenula in the pathophysiology of depression. Curr. Opin. Neurobiol. 48, 90–96 (2018).

    CAS  PubMed  Google Scholar 

  36. Cerniauskas, I. et al. Chronic stress induces activity, synaptic, and transcriptional remodeling of the lateral habenula associated with deficits in motivated behaviors. Neuron 104, 899–915.e8 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hu, H., Cui, Y. & Yang, Y. Circuits and functions of the lateral habenula in health and in disease. Nat. Rev. Neurosci. 21, 277–295 (2020). This work is an excellent review on the role of the LHb in health, disease and the action of chronic stress.

    CAS  PubMed  Google Scholar 

  38. Moreines, J. L., Owrutsky, Z. L. & Grace, A. A. Involvement of infralimbic prefrontal cortex but not lateral habenula in dopamine attenuation after chronic mild stress. Neuropsychopharmacology 42, 904–913 (2017).

    CAS  PubMed  Google Scholar 

  39. Schmidt, F. M. et al. Habenula volume increases with disease severity in unmedicated major depressive disorder as revealed by 7T MRI. Eur. Arch. Psychiatry Clin. Neurosci. 267, 107–115 (2017).

    PubMed  Google Scholar 

  40. Morris, J. S., Smith, K. A., Cowen, P. J., Friston, K. J. & Dolan, R. J. Covariation of activity in habenula and dorsal raphe nuclei following tryptophan depletion. Neuroimage 10, 163–172 (1999).

    CAS  PubMed  Google Scholar 

  41. Sanacora, G., Treccani, G. & Popoli, M. Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology 62, 63–77 (2012).

    CAS  PubMed  Google Scholar 

  42. Sousa, N. & Almeida, O. F. Disconnection and reconnection: the morphological basis of (mal)adaptation to stress. Trends Neurosci. 35, 742–751 (2012).

    CAS  PubMed  Google Scholar 

  43. Abdallah, C. G., Sanacora, G., Duman, R. S. & Krystal, J. H. Ketamine and rapid-acting antidepressants: a window into a new neurobiology for mood disorder therapeutics. Annu. Rev. Med. 66, 509–523 (2015).

    CAS  PubMed  Google Scholar 

  44. Duman, R. S., Sanacora, G. & Krystal, J. H. Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments. Neuron 102, 75–90 (2019). This review draws comparisons of chronic stress exposure and MDD related to neuronal atrophy, altered connectivity and network function, highlighting findings showing alterations of the principle, excitatory glutamate neurons, as well as inhibitory GABA interneurons across studies.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Banasr, M. et al. Glial pathology in an animal model of depression: reversal of stress-induced cellular, metabolic and behavioral deficits by the glutamate-modulating drug riluzole. Mol. Psychiatry 15, 501–511 (2010).

    CAS  PubMed  Google Scholar 

  46. Koolschijn, P. C., van Haren, N. E., Lensvelt-Mulders, G. J., Hulshoff Pol, H. E. & Kahn, R. S. Brain volume abnormalities in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Hum. Brain Mapp. 30, 3719–3735 (2009).

    PubMed  PubMed Central  Google Scholar 

  47. Kempton, M. J. et al. Structural neuroimaging studies in major depressive disorder. Meta-analysis and comparison with bipolar disorder. Arch. Gen. Psychiatry 68, 675–690 (2011).

    PubMed  Google Scholar 

  48. Schmaal, L. et al. Subcortical brain alterations in major depressive disorder: findings from the ENIGMA major depressive disorder working group. Mol. Psychiatry 21, 806–812 (2016).

    CAS  PubMed  Google Scholar 

  49. Soetanto, A. et al. Association of anxiety and depression with microtubule-associated protein 2- and synaptopodin-immunolabeled dendrite and spine densities in hippocampal CA3 of older humans. Arch. Gen. Psychiatry 67, 448–457 (2010).

    PubMed  PubMed Central  Google Scholar 

  50. Kang, H. J. et al. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat. Med. 18, 1413–1417 (2012). This seminal article shows that synapse number and function are decreased in the dorsolateral PFC of patients with major depression, linking neuroarchitectural changes with volumetric loss evidenced with neuroimaging.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Schmaal, L. et al. ENIGMA MDD: seven years of global neuroimaging studies of major depression through worldwide data sharing. Transl. Psychiatry 10, 172 (2020).

    PubMed  PubMed Central  Google Scholar 

  52. Knowland, D. et al. Distinct ventral pallidal neural populations mediate separate symptoms of depression. Cell 170, 284–297.e18 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. McIntosh, A. L., Gormley, S., Tozzi, L., Frodl, T. & Harkin, A. Recent advances in translational magnetic resonance imaging in animal models of stress and depression. Front. Cell Neurosci. 11, 150 (2017).

    PubMed  PubMed Central  Google Scholar 

  54. Menon, V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn. Sci. 15, 483–506 (2011).

    PubMed  Google Scholar 

  55. Kaiser, R. H., Andrews-Hanna, J. R., Wager, T. D. & Pizzagalli, D. A. Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psychiatry 72, 603–611 (2015). This meta-analysis of resting-state functional connectivity studies in humans shows that major depression is characterized by altered connectivity among large-scale brain networks.

    PubMed  PubMed Central  Google Scholar 

  56. van Oort, J. et al. How the brain connects in response to acute stress: a review at the human brain systems level. Neurosci. Biobehav. Rev. 83, 281–297 (2017).

    PubMed  Google Scholar 

  57. Siegmund, A. & Wotjak, C. T. Toward an animal model of posttraumatic stress disorder. Ann. NY Acad. Sci. 1071, 324–334 (2006).

    PubMed  Google Scholar 

  58. Abdallah, C. G. et al. The neurobiology and pharmacotherapy of posttraumatic stress disorder. Annu. Rev. Pharmacol. Toxicol. 59, 171–189 (2019).

    CAS  PubMed  Google Scholar 

  59. Musazzi, L., Tornese, P., Sala, N. & Popoli, M. What acute stress protocols can tell us about PTSD and stress-related neuropsychiatric disorders. Front. Pharmacol. 9, 758 (2018).

    PubMed  PubMed Central  Google Scholar 

  60. Chen, Y. et al. Correlated memory defects and hippocampal dendritic spine loss after acute stress involve corticotropin-releasing hormone signaling. Proc. Natl Acad. Sci. USA 107, 13123–13128 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Izquierdo, A., Wellman, C. L. & Holmes, A. Brief uncontrollable stress causes dendritic retraction in infralimbic cortex and resistance to fear extinction in mice. J. Neurosci. 26, 5733–5738 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Hajszan, T. et al. Remodeling of hippocampal spine synapses in the rat learned helplessness model of depression. Biol. Psychiatry 65, 392–400 (2009).

    PubMed  Google Scholar 

  63. Nava, N. et al. Temporal dynamics of acute stress-induced dendritic remodeling in medial prefrontal cortex and the protective effect of desipramine. Cereb. Cortex 27, 694–705 (2017).

    PubMed  Google Scholar 

  64. Li, S. H. & Graham, B. M. Why are women so vulnerable to anxiety, trauma-related and stress-related disorders? The potential role of sex hormones. Lancet Psychiatry 4, 73–82 (2017).

    PubMed  Google Scholar 

  65. Eid, R. S., Gobinath, A. R. & Galea, L. A. M. Sex differences in depression: insights from clinical and preclinical studies. Prog. Neurobiol. 176, 86–102 (2019).

    PubMed  Google Scholar 

  66. Hodes, G. E. & Epperson, C. N. Sex differences in vulnerability and resilience to stress across the life span. Biol. Psychiatry 86, 421–432 (2019).

    PubMed  PubMed Central  Google Scholar 

  67. Bale, T. L. & Epperson, C. N. Sex differences and stress across the lifespan. Nat. Neurosci. 18, 1413–1420 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Wellman, C. L. et al. Sex differences in risk and resilience: stress effects on the neural substrates of emotion and motivation. J. Neurosci. 38, 9423–9432 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. McEwen, B. S. & Morrison, J. H. The brain on stress: vulnerability and plasticity of the prefrontal cortex over the life course. Neuron 79, 16–29 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kokras, N. & Dalla, C. Sex differences in animal models of psychiatric disorders. Br. J. Pharmacol. 171, 4595–4619 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Bondar, N. P., Lepeshko, A. A. & Reshetnikov, V. V. Effects of early-life stress on social and anxiety-like behaviors in adult mice: sex-specific effects. Behav. Neurol. 2018, 1538931 (2018).

    PubMed  PubMed Central  Google Scholar 

  72. Toledo-Rodriguez, M. & Sandi, C. Stress before puberty exerts a sex- and age-related impact on auditory and contextual fear conditioning in the rat. Neural Plast. 2007, 71203 (2007).

    PubMed  PubMed Central  Google Scholar 

  73. Yuen, E. Y. et al. Repeated stress causes cognitive impairment by suppressing glutamate receptor expression and function in prefrontal cortex. Neuron 73, 962–977 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Wei, J. et al. Estrogen protects against the detrimental effects of repeated stress on glutamatergic transmission and cognition. Mol. Psychiatry 19, 588–598 (2014). This excellent study shows the sex-specific effects of repeated stress on glutamatergic transmission in prefrontal cortex and cognitive behaviours, as well as the protective role of oestrogen.

    CAS  PubMed  Google Scholar 

  75. Papilloud, A. et al. Peripubertal stress-induced heightened aggression: modulation of the glucocorticoid receptor in the central amygdala and normalization by mifepristone treatment. Neuropsychopharmacology 44, 674–682 (2019).

    CAS  PubMed  Google Scholar 

  76. Wei, J., Zhong, P., Qin, L., Tan, T. & Yan, Z. Chemicogenetic restoration of the prefrontal cortex to amygdala pathway ameliorates stress-induced deficits. Cereb. Cortex 28, 1980–1990 (2018).

    PubMed  Google Scholar 

  77. Zelikowsky, M. et al. The neuropeptide Tac2 controls a distributed brain state induced by chronic social isolation stress. Cell 173, 1265–1279.e19 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Pohl, J., Olmstead, M. C., Wynne-Edwards, K. E., Harkness, K. & Menard, J. L. Repeated exposure to stress across the childhood-adolescent period alters rats’ anxiety- and depression-like behaviors in adulthood: the importance of stressor type and gender. Behav. Neurosci. 121, 462–474 (2007).

    PubMed  Google Scholar 

  79. Hodes, G. E. et al. Sex differences in nucleus accumbens transcriptome profiles associated with susceptibility versus resilience to subchronic variable stress. J. Neurosci. 35, 16362–16376 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Tan, T. et al. Neural circuits and activity dynamics underlying sex-specific effects of chronic social isolation stress. Cell Rep. 34, 108874 (2021).

    CAS  PubMed  Google Scholar 

  81. Rincón-Cortés, M. & Grace, A. A. Sex-dependent effects of stress on immobility behavior and VTA dopamine neuron activity: modulation by ketamine. Int. J. Neuropsychopharmacol. 20, 823–832 (2017).

    PubMed  PubMed Central  Google Scholar 

  82. Krishnan, V. et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 131, 391–404 (2007).

    CAS  PubMed  Google Scholar 

  83. Golden, S. A., Covington, H. E. 3rd, Berton, O. & Russo, S. J. A standardized protocol for repeated social defeat stress in mice. Nat. Protoc. 6, 1183–1191 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Iñiguez, S. D. et al. Vicarious social defeat stress induces depression-related outcomes in female mice. Biol. Psychiatry 83, 9–17 (2018).

    PubMed  Google Scholar 

  85. Shors, T. J., Chua, C. & Falduto, J. Sex differences and opposite effects of stress on dendritic spine density in the male versus female hippocampus. J. Neurosci. 21, 6292–6297 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Goodwill, H. L. et al. Early life stress drives sex-selective impairment in reversal learning by affecting parvalbumin interneurons in orbitofrontal cortex of mice. Cell Rep. 25, e2294 (2018).

    Google Scholar 

  87. Farrell, M. R., Holland, F. H., Shansky, R. M. & Brenhouse, H. C. Sex-specific effects of early life stress on social interaction and prefrontal cortex dendritic morphology in young rats. Behav. Brain Res. 310, 119–125 (2016).

    CAS  PubMed  Google Scholar 

  88. Sarkar, A. & Kabbaj, M. Sex differences in effects of ketamine on behavior, spine density, and synaptic proteins in socially isolated rats. Biol. Psychiatry 80, 448–456 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Labonté, B. et al. Sex-specific transcriptional signatures in human depression. Nat. Med. 23, 1102–1111 (2017). This work presents comprehensive genetic profiling that reveals marked sexual dimorphism at the transcriptional level in depressed humans and stressed mice, highlighting the importance of studying sex-specific treatments for depression.

    PubMed  PubMed Central  Google Scholar 

  90. Peña, C. J. et al. Early life stress alters transcriptomic patterning across reward circuitry in male and female mice. Nat. Commun. 10, 5098 (2019).

    PubMed  PubMed Central  Google Scholar 

  91. Seney, M. L. et al. Opposite molecular signatures of depression in men and women. Biol. Psychiatry 84, 18–27 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Nugent, B. M., O’Donnell, C. M., Epperson, C. N. & Bale, T. L. Placental H3K27me3 establishes female resilience to prenatal insults. Nat. Commun. 9, 2555 (2018).

    PubMed  PubMed Central  Google Scholar 

  93. Elliott, E. et al. Dnmt3a in the medial prefrontal cortex regulates anxiety-like behavior in adult mice. J. Neurosci. 36, 730–740 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Peña, C. J. et al. Early life stress confers lifelong stress susceptibility in mice via ventral tegmental area OTX2. Science 356, 1185–1188 (2017).

    PubMed  PubMed Central  Google Scholar 

  95. Duclot, F. & Kabbaj, M. The estrous cycle surpasses sex differences in regulating the transcriptome in the rat medial prefrontal cortex and reveals an underlying role of early growth response 1. Genome Biol. 16, 256 (2015).

    PubMed  PubMed Central  Google Scholar 

  96. Stack, A. et al. Sex differences in social interaction in rats: role of the immediate-early gene zif268. Neuropsychopharmacology 35, 570–580 (2010).

    PubMed  Google Scholar 

  97. Heck, A. L. & Handa, R. J. Sex differences in the hypothalamic–pituitary–adrenal axis’ response to stress: an important role for gonadal hormones. Neuropsychopharmacology 44, 45–58 (2019).

    CAS  PubMed  Google Scholar 

  98. Lorsch, Z. S. et al. Estrogen receptor α drives pro-resilient transcription in mouse models of depression. Nat. Commun. 9, 1116 (2018).

    PubMed  PubMed Central  Google Scholar 

  99. Gold, P. W. The organization of the stress system and its dysregulation in depressive illness. Mol. Psychiatry 20, 32–47 (2015).

    CAS  PubMed  Google Scholar 

  100. Bangasser, D. A. et al. Sex differences in corticotropin-releasing factor receptor signaling and trafficking: potential role in female vulnerability to stress-related psychopathology. Mol. Psychiatry 15, 896–904 (2010).

    CAS  Google Scholar 

  101. Harris, G. C. & Aston-Jones, G. Arousal and reward: a dichotomy in orexin function. Trends Neurosci. 29, 571–577 (2006).

    CAS  PubMed  Google Scholar 

  102. Soya, S. et al. Orexin modulates behavioral fear expression through the locus coeruleus. Nat. Commun. 8, 1606 (2017).

    PubMed  PubMed Central  Google Scholar 

  103. Flores, Á., Saravia, R., Maldonado, R. & Berrendero, F. Orexins and fear: implications for the treatment of anxiety disorders. Trends Neurosci. 38, 550–559 (2015).

    CAS  PubMed  Google Scholar 

  104. Ji, M. J., Zhang, X. Y., Chen, Z., Wang, J. J. & Zhu, J. N. Orexin prevents depressive-like behavior by promoting stress resilience. Mol. Psychiatry 24, 282–293 (2019).

    CAS  PubMed  Google Scholar 

  105. Brundin, L., Björkqvist, M., Petersén, A. & Träskman-Bendz, L. Reduced orexin levels in the cerebrospinal fluid of suicidal patients with major depressive disorder. Eur. Neuropsychopharmacol. 17, 573–579 (2007).

    CAS  PubMed  Google Scholar 

  106. Strawn, J. R. et al. Low cerebrospinal fluid and plasma orexin-A (hypocretin-1) concentrations in combat-related posttraumatic stress disorder. Psychoneuroendocrinology 35, 1001–1007 (2010).

    CAS  PubMed  Google Scholar 

  107. Johnson, P. L. et al. A key role for orexin in panic anxiety. Nat. Med. 16, 111–115 (2010).

    CAS  PubMed  Google Scholar 

  108. Grafe, L. A., Cornfeld, A., Luz, S., Valentino, R. & Bhatnagar, S. Orexins mediate sex differences in the stress response and in cognitive flexibility. Biol. Psychiatry 81, 683–692 (2017).

    CAS  PubMed  Google Scholar 

  109. Cohen, S. et al. Significance of the orexinergic system in modulating stress-related responses in an animal model of post-traumatic stress disorder. Transl. Psychiatry 10, 10 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Klengel, T. & Binder, E. B. Epigenetics of stress-related psychiatric disorders and gene × environment interactions. Neuron 86, 1343–1357 (2015). This work is an excellent review on epigenetic mechanisms associated with stress responses and the development of stress-related psychiatric disorders.

    CAS  PubMed  Google Scholar 

  111. Gray, J. D., Kogan, J. F., Marrocco, J. & McEwen, B. S. Genomic and epigenomic mechanisms of glucocorticoids in the brain. Nat. Rev. Endocrinol. 13, 661–673 (2017).

    CAS  PubMed  Google Scholar 

  112. Lee, J. B. et al. Histone deacetylase 6 gates the synaptic action of acute stress in prefrontal cortex. J. Physiol. 590, 1535–1546 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Lee, R. S. & Sawa, A. Environmental stressors and epigenetic control of the hypothalamic–pituitary–adrenal axis. Neuroendocrinology 100, 278–287 (2014).

    CAS  PubMed  Google Scholar 

  114. Yuen, E. Y. et al. Acute stress enhances glutamatergic transmission in prefrontal cortex and facilitates working memory. Proc. Natl Acad. Sci. USA 106, 14075–14079 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Yuen, E. Y. et al. Mechanisms for acute stress-induced enhancement of glutamatergic transmission and working memory. Mol. Psychiatry 16, 156–170 (2011).

    CAS  PubMed  Google Scholar 

  116. Wei, J. et al. Histone modification of Nedd4 ubiquitin ligase controls the loss of AMPA receptors and cognitive impairment induced by repeated stress. J. Neurosci. 36, 2119–2130 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Wei, J. et al. DNA methyltransferase 3A is involved in the sustained effects of chronic stress on synaptic functions and behaviors. Cereb. Cortex (2020).

  118. Vialou, V., Feng, J., Robison, A. J. & Nestler, E. J. Epigenetic mechanisms of depression and antidepressant action. Annu. Rev. Pharmacol. Toxicol. 53, 59–87 (2013).

    CAS  PubMed  Google Scholar 

  119. Golden, S. A. et al. Epigenetic regulation of RAC1 induces synaptic remodeling in stress disorders and depression. Nat. Med. 19, 337–344 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Bahari-Javan, S. et al. HDAC1 links early life stress to schizophrenia-like phenotypes. Proc. Natl Acad. Sci. USA 114, E4686–E4694 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Kim, H. D. et al. SIRT1 mediates depression-like behaviors in the nucleus accumbens. J. Neurosci. 36, 8441–8452 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Consortium, C. Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature 523, 588–591 (2015).

    Google Scholar 

  123. Renthal, W. et al. Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron 56, 517–529 (2007).

    CAS  PubMed  Google Scholar 

  124. Covington, H. E. III et al. Antidepressant actions of histone deacetylase inhibitors. J. Neurosci. 29, 11451–11460 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Jochems, J. et al. Enhancement of stress resilience through histone deacetylase 6-mediated regulation of glucocorticoid receptor chaperone dynamics. Biol. Psychiatry 77, 345–355 (2015).

    PubMed  Google Scholar 

  126. Covington, H. E. III et al. A role for repressive histone methylation in cocaine-induced vulnerability to stress. Neuron 71, 656–670 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Tsankova, N. M. et al. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat. Neurosci. 9, 519–525 (2006).

    CAS  PubMed  Google Scholar 

  128. Mallei, A., Ieraci, A. & Popoli, M. Chronic social defeat stress differentially regulates the expression of BDNF transcripts and epigenetic modifying enzymes in susceptible and resilient mice. World J. Biol. Psychiatry 20, 555–566 (2019).

    PubMed  Google Scholar 

  129. Barbier, E. et al. Dependence-induced increase of alcohol self-administration and compulsive drinking mediated by the histone methyltransferase PRDM2. Mol. Psychiatry 22, 1746–1758 (2017).

    CAS  PubMed  Google Scholar 

  130. Rusconi, F. et al. LSD1 modulates stress-evoked transcription of immediate early genes and emotional behavior. Proc. Natl Acad. Sci. USA 113, 3651–3656 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Zannas, A. S. & West, A. E. Epigenetics and the regulation of stress vulnerability and resilience. Neuroscience 264, 157–170 (2014).

    CAS  PubMed  Google Scholar 

  132. Turecki, G. & Meaney, M. J. Effects of the social environment and stress on glucocorticoid receptor gene methylation: a systematic review. Biol. Psychiatry 79, 87–96 (2016).

    CAS  PubMed  Google Scholar 

  133. Efstathopoulos, P. et al. NR3C1 hypermethylation in depressed and bullied adolescents. Transl. Psychiatry 8, 121 (2018).

    PubMed  PubMed Central  Google Scholar 

  134. Weaver, I. C. et al. Epigenetic programming by maternal behavior. Nat. Neurosci. 7, 847–854 (2004).

    CAS  PubMed  Google Scholar 

  135. Weaver, I. C. et al. Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. J. Neurosci. 25, 11045–11054 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Singh-Taylor, A. et al. NRSF-dependent epigenetic mechanisms contribute to programming of stress-sensitive neurons by neonatal experience, promoting resilience. Mol. Psychiatry 23, 648–657 (2018).

    CAS  PubMed  Google Scholar 

  137. Vogel Ciernia, A. et al. Experience-dependent neuroplasticity of the developing hypothalamus: integrative epigenomic approaches. Epigenetics 13, 318–330 (2018).

    PubMed  PubMed Central  Google Scholar 

  138. Elliott, E., Ezra-Nevo, G., Regev, L., Neufeld-Cohen, A. & Chen, A. Resilience to social stress coincides with functional DNA methylation of the Crf gene in adult mice. Nat. Neurosci. 13, 1351–1353 (2010).

    CAS  PubMed  Google Scholar 

  139. Niwa, M. et al. Adolescent stress-induced epigenetic control of dopaminergic neurons via glucocorticoids. Science 339, 335–339 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Roth, T. L., Zoladz, P. R., Sweatt, J. D. & Diamond, D. M. Epigenetic modification of hippocampal Bdnf DNA in adult rats in an animal model of post-traumatic stress disorder. J. Psychiatr. Res. 45, 919–926 (2011).

    PubMed  PubMed Central  Google Scholar 

  141. Boersma, G. J. et al. Prenatal stress decreases Bdnf expression and increases methylation of Bdnf exon IV in rats. Epigenetics 9, 437–447 (2014).

    PubMed  Google Scholar 

  142. Saunderson, E. A. et al. Stress-induced gene expression and behavior are controlled by DNA methylation and methyl donor availability in the dentate gyrus. Proc. Natl Acad. Sci. USA 113, 4830–4835 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Shen, X. F. et al. Role of DNA hypomethylation in lateral habenular nucleus in the development of depressive-like behavior in rats. J. Affect. Disord. 252, 373–381 (2019).

    CAS  PubMed  Google Scholar 

  144. Yao, B. et al. DNA N6-methyladenine is dynamically regulated in the mouse brain following environmental stress. Nat. Commun. 8, 1122 (2017).

    PubMed  PubMed Central  Google Scholar 

  145. Engel, M. et al. The role of m6A/m-RNA methylation in stress response regulation. Neuron 99, 389–403.e9 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhu, Y. et al. Genome-wide profiling of DNA methylome and transcriptome in peripheral blood monocytes for major depression: a monozygotic discordant twin study. Transl. Psychiatry 9, 215 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Higuchi, F. et al. Hippocampal microRNA-124 enhances chronic stress resilience in mice. J. Neurosci. 36, 7253–7267 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Roy, B., Dunbar, M., Shelton, R. C. & Dwivedi, Y. Identification of microRNA-124-3p as a putative epigenetic signature of major depressive disorder. Neuropsychopharmacology 42, 864–875 (2017).

    CAS  PubMed  Google Scholar 

  149. Sillivan, S. E. et al. MicroRNA regulation of persistent stress-enhanced memory. Mol. Psychiatry 25, 965–976 (2020).

    CAS  PubMed  Google Scholar 

  150. Murphy, C. P. & Singewald, N. Role of microRNAs in anxiety and anxiety-related disorders. Curr. Top. Behav. Neurosci. 42, 185–219 (2019).

    CAS  PubMed  Google Scholar 

  151. Dwyer, J. B. et al. Hormonal treatments for major depressive disorder: state of the art. Am. J. Psychiatry 177, 686–705 (2020).

    PubMed  PubMed Central  Google Scholar 

  152. Berman, R. M. et al. Antidepressant effects of ketamine in depressed patients. Biol. Psychiatry 47, 351–354 (2000).

    CAS  PubMed  Google Scholar 

  153. Krystal, J. H., Abdallah, C. G., Sanacora, G., Charney, D. S. & Duman, R. S. Ketamine: a paradigm shift for depression research and treatment. Neuron 101, 774–778 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Skolnick, P. Antidepressants for the new millennium. Eur. J. Pharmacol. 375, 31–40 (1999).

    CAS  PubMed  Google Scholar 

  155. Newport, D. J. et al. Ketamine and other NMDA antagonists: early clinical trials and possible mechanisms in depression. Am. J. Psychiatry 172, 950–966 (2015).

    PubMed  Google Scholar 

  156. US Food and Drug Administration. FDA approves new nasal spray medication for treatment-resistant depression; available only at a certified doctor’s office or clinic. FDA https://www.fda.gov/news-events/press-announcements/fda-approves-new-nasal-spray-medication-treatment-resistant-depression-available-only-certified (2019).

  157. Athira, K., Mohan, A. S. V. & Chakravarty, S. Rapid acting antidepressants in the mTOR pathway: current evidence. Brain Res. Bull. 163, 170–177 (2020).

    CAS  Google Scholar 

  158. Chowdhury, G. M. et al. Transiently increased glutamate cycling in rat PFC is associated with rapid onset of antidepressant-like effects. Mol. Psychiatry 22, 120–126 (2017).

    CAS  PubMed  Google Scholar 

  159. Moghaddam, B., Adams, B., Verma, A. & Daly, D. Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J. Neurosci. 17, 2921–2927 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Maeng, S. et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol. Psychiatry 63, 349–352 (2008).

    CAS  PubMed  Google Scholar 

  161. Elhussiny, M. E. A. et al. Modulation by chronic stress and ketamine of ionotropic AMPA/NMDA and metabotropic glutamate receptors in the rat hippocampus. Prog. Neuropsychopharmacol. Biol. Psychiatry 104, 110033 (2021).

    CAS  PubMed  Google Scholar 

  162. Pothula, S. et al. Cell-type specific modulation of NMDA receptors triggers antidepressant actions. Mol. Psychiatry 26, 5097–5111 (2020).

    PubMed  Google Scholar 

  163. Gerhard, D. M. et al. GABA interneurons are the cellular trigger for ketamine’s rapid antidepressant actions. J. Clin. Invest. 130, 1336–1349 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Perszyk, R. E. et al. GluN2D-containing N-methyl-d-aspartate receptors mediate synaptic transmission in hippocampal interneurons and regulate interneuron activity. Mol. Pharmacol. 90, 689–702 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Suzuki, K. & Monteggia, L. M. The role of eEF2 kinase in the rapid antidepressant actions of ketamine. Adv. Pharmacol. 89, 79–99 (2020).

    CAS  PubMed  Google Scholar 

  166. Tang, X. H. et al. Extrasynaptic CaMKIIα is involved in the antidepressant effects of ketamine by downregulating GluN2B receptors in an LPS-induced depression model. J. Neuroinflammation 17, 181 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Zanos, P. & Gould, T. D. Mechanisms of ketamine action as an antidepressant. Mol. Psychiatry 23, 801–811 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Kadriu, B. et al. Glutamatergic neurotransmission: pathway to developing novel rapid-acting antidepressant treatments. Int. J. Neuropsychopharmacol. 22, 119–135 (2019).

    CAS  PubMed  Google Scholar 

  169. Casarotto, P. C. et al. Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell 184, 1299–1313.e19 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Laje, G. et al. Brain-derived neurotrophic factor Val66Met polymorphism and antidepressant efficacy of ketamine in depressed patients. Biol. Psychiatry 72, e27–e28 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Su, T. P. et al. Dose-related effects of adjunctive ketamine in Taiwanese patients with treatment-resistant depression. Neuropsychopharmacology 42, 2482–2492 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Li, Q. S., Wajs, E., Ochs-Ross, R., Singh, J. & Drevets, W. C. Genome-wide association study and polygenic risk score analysis of esketamine treatment response. Sci. Rep. 10, 12649 (2020).

    PubMed  PubMed Central  Google Scholar 

  173. Chen, M. H. et al. Antidepressant and antisuicidal effects of ketamine on the functional connectivity of prefrontal cortex-related circuits in treatment-resistant depression: a double-blind, placebo-controlled, randomized, longitudinal resting fMRI study. J. Affect. Disord. 259, 15–20 (2019).

    CAS  PubMed  Google Scholar 

  174. Abdallah, C. G. et al. Modulation of the antidepressant effects of ketamine by the mTORC1 inhibitor rapamycin. Neuropsychopharmacology 45, 990–997 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Duncan, G. E., Moy, S. S., Knapp, D. J., Mueller, R. A. & Breese, G. R. Metabolic mapping of the rat brain after subanesthetic doses of ketamine: potential relevance to schizophrenia. Brain Res. 787, 181–190 (1998).

    CAS  PubMed  Google Scholar 

  176. Gass, N. et al. Differences between ketamine’s short-term and long-term effects on brain circuitry in depression. Transl. Psychiatry 9, 172 (2019).

    PubMed  PubMed Central  Google Scholar 

  177. Belujon, P. & Grace, A. A. Restoring mood balance in depression: ketamine reverses deficit in dopamine-dependent synaptic plasticity. Biol. Psychiatry 76, 927–936 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Ionescu, D. F. et al. Ketamine-associated brain changes: a review of the neuroimaging literature. Harv. Rev. Psychiatry 26, 320–339 (2018).

    PubMed  PubMed Central  Google Scholar 

  179. Grimm, O. et al. Acute ketamine challenge increases resting state prefrontal–hippocampal connectivity in both humans and rats. Psychopharmacology 232, 4231–4241 (2015).

    CAS  PubMed  Google Scholar 

  180. Abdallah, C. G. et al. Prefrontal connectivity and glutamate transmission: relevance to depression pathophysiology and ketamine treatment. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2, 566–574 (2017).

    PubMed  PubMed Central  Google Scholar 

  181. Abdallah, C. G. et al. Ketamine treatment and global brain connectivity in major depression. Neuropsychopharmacology 42, 1210–1219 (2017).

    CAS  PubMed  Google Scholar 

  182. Abdallah, C. G. et al. A robust and reproducible connectome fingerprint of ketamine is highly associated with the connectomic signature of antidepressants. Neuropsychopharmacology 46, 478–485 (2020).

    PubMed  PubMed Central  Google Scholar 

  183. Kraus, C. et al. Evaluating global brain connectivity as an imaging marker for depression: influence of preprocessing strategies and placebo-controlled ketamine treatment. Neuropsychopharmacology 45, 982–989 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Chaki, S., Koike, H. & Fukumoto, K. Targeting of metabotropic glutamate receptors for the development of novel antidepressants. Chronic Stress 3, 2470547019837712 (2019).

    PubMed  PubMed Central  Google Scholar 

  185. Joffe, M. E. & Conn, P. J. Antidepressant potential of metabotropic glutamate receptor mGlu2 and mGlu3 negative allosteric modulators. Neuropsychopharmacology 44, 214–236 (2019).

    CAS  PubMed  Google Scholar 

  186. Joffe, M. E. et al. mGlu2 and mGlu3 negative allosteric modulators divergently enhance thalamocortical transmission and exert rapid antidepressant-like effects. Neuron 105, 46–59.e3 (2020).

    CAS  PubMed  Google Scholar 

  187. Nasca, C., Bigio, B., Zelli, D., Nicoletti, F. & McEwen, B. S. Mind the gap: glucocorticoids modulate hippocampal glutamate tone underlying individual differences in stress susceptibility. Mol. Psychiatry 20, 755–763 (2015).

    CAS  PubMed  Google Scholar 

  188. Highland, J. N., Zanos, P., Georgiou, P. & Gould, T. D. Group II metabotropic glutamate receptor blockade promotes stress resilience in mice. Neuropsychopharmacology 44, 1788–1796 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Holz, A. et al. Enhanced mGlu5 signaling in excitatory neurons promotes rapid antidepressant effects via AMPA receptor activation. Neuron 104, 338–352.e7 (2019).

    CAS  PubMed  Google Scholar 

  190. Palucha, A. et al. Potential antidepressant-like effect of MTEP, a potent and highly selective mGluR5 antagonist. Pharmacol. Biochem. Behav. 81, 901–906 (2005).

    CAS  PubMed  Google Scholar 

  191. Pal, B. Involvement of extrasynaptic glutamate in physiological and pathophysiological changes of neuronal excitability. Cell Mol. Life Sci. 75, 2917–2949 (2018).

    CAS  PubMed  Google Scholar 

  192. Genoud, C. et al. Plasticity of astrocytic coverage and glutamate transporter expression in adult mouse cortex. PLoS Biol. 4, e343 (2006).

    PubMed  PubMed Central  Google Scholar 

  193. Witcher, M. R., Kirov, S. A. & Harris, K. M. Plasticity of perisynaptic astroglia during synaptogenesis in the mature rat hippocampus. Glia 55, 13–23 (2007).

    PubMed  Google Scholar 

  194. Murphy-Royal, C. et al. Surface diffusion of astrocytic glutamate transporters shapes synaptic transmission. Nat. Neurosci. 18, 219–226 (2015).

    CAS  PubMed  Google Scholar 

  195. Henneberger, C. et al. LTP induction boosts glutamate spillover by driving withdrawal of perisynaptic astroglia. Neuron 108, 919–936 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Ostroff, L. E., Manzur, M. K., Cain, C. K. & Ledoux, J. E. Synapses lacking astrocyte appear in the amygdala during consolidation of Pavlovian threat conditioning. J. Comp. Neurol. 522, 2152–2163 (2014).

    PubMed  PubMed Central  Google Scholar 

  197. Alexander, L. et al. Over-activation of primate subgenual cingulate cortex enhances the cardiovascular, behavioral and neural responses to threat. Nat. Commun. 11, 5386 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Alam, M. A. & Datta, P. K. Epigenetic regulation of excitatory amino acid transporter 2 in neurological disorders. Front. Pharmacol. 10, 1510 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Tetreault, L. A., Zhu, M. P., Wilson, J. R., Karadimas, S. K. & Fehlings, M. G. The impact of riluzole on neurobehavioral outcomes in preclinical models of traumatic and nontraumatic spinal cord injury: results from a systematic review of the literature. Glob. Spine J. 10, 216–229 (2020).

    Google Scholar 

  200. Shimizu, E. N., Seifert, J. L., Johnson, K. J. & Romero-Ortega, M. I. Prophylactic riluzole attenuates oxidative stress damage in spinal cord distraction. J. Neurotrauma 35, 1319–1328 (2018).

    PubMed  Google Scholar 

  201. Wu, Y., Satkunendrarajah, K. & Fehlings, M. G. Riluzole improves outcome following ischemia–reperfusion injury to the spinal cord by preventing delayed paraplegia. Neuroscience 265, 302–312 (2014).

    CAS  PubMed  Google Scholar 

  202. Srinivas, S., Wali, A. R. & Pham, M. H. Efficacy of riluzole in the treatment of spinal cord injury: a systematic review of the literature. Neurosurg. Focus. 46, E6 (2019).

    PubMed  Google Scholar 

  203. Kerckhove, N. et al. Effectiveness assessment of riluzole in the prevention of oxaliplatin-induced peripheral neuropathy: RILUZOX-01: protocol of a randomised, parallel, controlled, double-blind and multicentre study by the UNICANCER-AFSOS Supportive Care intergroup. BMJ Open 9, e027770 (2019).

    PubMed  PubMed Central  Google Scholar 

  204. Pittenger, C., Kelmendi, B., Wasylink, S., Bloch, M. H. & Coric, V. Riluzole augmentation in treatment-refractory obsessive-compulsive disorder: a series of 13 cases, with long-term follow-up. J. Clin. Psychopharmacol. 28, 363–367 (2008).

    PubMed  Google Scholar 

  205. Spangler, P. T. et al. Randomized controlled trial of riluzole augmentation for posttraumatic stress disorder: efficacy of a glutamatergic modulator for antidepressant-resistant symptoms. J. Clin. Psychiatry 81, 20m13233 (2020).

    PubMed  PubMed Central  Google Scholar 

  206. Sakurai, H. et al. Longer-term open-label study of adjunctive riluzole in treatment-resistant depression. J. Affect. Disord. 258, 102–108 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Mathew, S. J., Gueorguieva, R., Brandt, C., Fava, M. & Sanacora, G. A randomized, double-blind, placebo-controlled, sequential parallel comparison design trial of adjunctive riluzole for treatment-resistant major depressive disorder. Neuropsychopharmacology 42, 2567–2574 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Yao, R., Wang, H., Yuan, M., Wang, G. & Wu, C. Efficacy and safety of riluzole for depressive disorder: a systematic review and meta-analysis of randomized placebo-controlled trials. Psychiatry Res. 284, 112750 (2020).

    CAS  PubMed  Google Scholar 

  209. Pereira, A. C. et al. Glutamatergic regulation prevents hippocampal-dependent age-related cognitive decline through dendritic spine clustering. Proc. Natl Acad. Sci. USA 111, 18733–18738 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Mokhtari, Z., Baluchnejadmojarad, T., Nikbakht, F., Mansouri, M. & Roghani, M. Riluzole ameliorates learning and memory deficits in Aβ25–35-induced rat model of Alzheimer’s disease and is independent of cholinoceptor activation. Biomed. Pharmacother. 87, 135–144 (2017).

    CAS  PubMed  Google Scholar 

  211. Okamoto, M. et al. Riluzole reduces amyloid beta pathology, improves memory, and restores gene expression changes in a transgenic mouse model of early-onset Alzheimer’s disease. Transl. Psychiatry 8, 153 (2018).

    PubMed  PubMed Central  Google Scholar 

  212. Whitcomb, D. J. & Molnar, E. Is riluzole a new drug for Alzheimer’s disease? J. Neurochem. 135, 207–209 (2015).

    CAS  PubMed  Google Scholar 

  213. Pereira, A. C. et al. Age and Alzheimer’s disease gene expression profiles reversed by the glutamate modulator riluzole. Mol. Psychiatry 22, 296–305 (2017).

    CAS  PubMed  Google Scholar 

  214. Hunsberger, H. C. et al. Riluzole rescues glutamate alterations, cognitive deficits, and tau pathology associated with P301L tau expression. J. Neurochem. 135, 381–394 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Lesuis, S. L., Kaplick, P. M., Lucassen, P. J. & Krugers, H. J. Treatment with the glutamate modulator riluzole prevents early life stress-induced cognitive deficits and impairments in synaptic plasticity in APPswe/PS1dE9 mice. Neuropharmacology 150, 175–183 (2019).

    CAS  PubMed  Google Scholar 

  216. Recourt, K. et al. The selective orexin-2 antagonist seltorexant (JNJ-42847922/MIN-202) shows antidepressant and sleep-promoting effects in patients with major depressive disorder. Transl. Psychiatry 9, 216 (2019).

    PubMed  PubMed Central  Google Scholar 

  217. Gunduz-Bruce, H. et al. Trial of SAGE-217 in patients with major depressive disorder. N. Engl. J. Med. 381, 903–911 (2019).

    CAS  PubMed  Google Scholar 

  218. Kato, T. et al. Sestrin modulator NV-5138 produces rapid antidepressant effects via direct mTORC1 activation. J. Clin. Invest. 129, 2542–2554 (2019).

    PubMed  PubMed Central  Google Scholar 

  219. Azim, L. et al. Study protocol for a randomised placebo-controlled trial of pramipexole in addition to mood stabilisers for patients with treatment resistant bipolar depression (the PAX-BD study). BMC Psychiatry 21, 334 (2021).

    PubMed  PubMed Central  Google Scholar 

  220. Krystal, A. D. et al. A randomized proof-of-mechanism trial applying the ‘fast-fail’ approach to evaluating κ-opioid antagonism as a treatment for anhedonia. Nat. Med. 26, 760–768 (2020).

    CAS  PubMed  Google Scholar 

  221. Maier, S. F. & Seligman, M. E. Learned helplessness at fifty: insights from neuroscience. Psychol. Rev. 123, 349–367 (2016).

    PubMed  PubMed Central  Google Scholar 

  222. McEwen, B. S. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol. Rev. 87, 873–904 (2007).

    PubMed  Google Scholar 

  223. Lupien, S. J., McEwen, B. S., Gunnar, M. R. & Heim, C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci. 10, 434–445 (2009).

    CAS  PubMed  Google Scholar 

  224. Meaney, M. J. et al. Early environmental regulation of forebrain glucocorticoid receptor gene expression: implications for adrenocortical responses to stress. Dev. Neurosci. 18, 49–72 (1996).

    CAS  PubMed  Google Scholar 

  225. Moench, K. M., Breach, M. R. & Wellman, C. L. Chronic stress produces enduring sex- and region-specific alterations in novel stress-induced c-Fos expression. Neurobiol. Stress 10, 100147 (2019).

    PubMed  PubMed Central  Google Scholar 

  226. Arnau-Soler, A. et al. Genome-wide interaction study of a proxy for stress-sensitivity and its prediction of major depressive disorder. PLoS ONE 13, e0209160 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Malhi, G. S., Das, P., Bell, E., Mattingly, G. & Mannie, Z. Modelling resilience in adolescence and adversity: a novel framework to inform research and practice. Transl. Psychiatry 9, 316 (2019).

    PubMed  PubMed Central  Google Scholar 

  228. Bremner, J. D. Structural changes in the brain in depression and relationship to symptom recurrence. CNS Spectr. 7, 129–130 (2002).

    PubMed  Google Scholar 

  229. Bennett, M. R., Hatton, S. N. & Lagopoulos, J. Stress, trauma and PTSD: translational insights into the core synaptic circuitry and its modulation. Brain Struct. Funct. 221, 2401–2426 (2016).

    PubMed  Google Scholar 

  230. Slattery, D. A. & Cryan, J. F. Modelling depression in animals: at the interface of reward and stress pathways. Psychopharmacology 234, 1451–1465 (2017).

    CAS  PubMed  Google Scholar 

  231. Strekalova, T. et al. Update in the methodology of the chronic stress paradigm: internal control matters. Behav. Brain Funct. 7, 9 (2011).

    PubMed  PubMed Central  Google Scholar 

  232. Willner, P. The chronic mild stress (CMS) model of depression: history, evaluation and usage. Neurobiol. Stress 6, 78–93 (2017).

    PubMed  Google Scholar 

  233. Watanabe, Y., Gould, E. & McEwen, B. S. Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res. 588, 341–345 (1992).

    CAS  PubMed  Google Scholar 

  234. Radley, J. J. et al. Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. Neuroscience 125, 1–6 (2004).

    CAS  PubMed  Google Scholar 

  235. Vollmayr, B. & Henn, F. A. Learned helplessness in the rat: improvements in validity and reliability. Brain Res. Protoc. 8, 1–7 (2001).

    CAS  Google Scholar 

  236. Bagley, J. & Moghaddam, B. Temporal dynamics of glutamate efflux in the prefrontal cortex and in the hippocampus following repeated stress: effects of pretreatment with saline or diazepam. Neuroscience 77, 65–73 (1997).

    CAS  PubMed  Google Scholar 

  237. Venero, C. & Borrell, J. Rapid glucocorticoid effects on excitatory amino acid levels in the hippocampus: a microdialysis study in freely moving rats. Eur. J. Neurosci. 11, 2465–2473 (1999).

    CAS  PubMed  Google Scholar 

  238. Musazzi, L. et al. Acute stress increases depolarization-evoked glutamate release in the rat prefrontal/frontal cortex: the dampening action of antidepressants. PLoS ONE 5, e8566 (2010).

    PubMed  PubMed Central  Google Scholar 

  239. Treccani, G. et al. Stress and corticosterone increase the readily releasable pool of glutamate vesicles in synaptic terminals of prefrontal and frontal cortex. Mol. Psychiatry 19, 433–443 (2014).

    CAS  PubMed  Google Scholar 

  240. Yang, C. H., Huang, C. C. & Hsu, K. S. Behavioral stress enhances hippocampal CA1 long-term depression through the blockade of the glutamate uptake. J. Neurosci. 25, 4288–4293 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Homiack, D., O’Cinneide, E., Hajmurad, S., Dohanich, G. P. & Schrader, L. A. Effect of acute alarm odor exposure and biological sex on generalized avoidance and glutamatergic signaling in the hippocampus of Wistar rats. Stress 21, 292–303 (2018).

    CAS  PubMed  Google Scholar 

  242. Martin, K. P. & Wellman, C. L. NMDA receptor blockade alters stress-induced dendritic remodeling in medial prefrontal cortex. Cereb. Cortex 21, 2366–2373 (2011).

    PubMed  PubMed Central  Google Scholar 

  243. Musazzi, L., Tornese, P., Sala, N. & Popoli, M. Acute stress is not acute: sustained enhancement of glutamate release after acute stress involves readily releasable pool size and synapsin I activation. Mol. Psychiatry 22, 1226–1227 (2017).

    CAS  PubMed  Google Scholar 

  244. Marrocco, J. et al. The effects of antidepressant treatment in prenatally stressed rats support the glutamatergic hypothesis of stress-related disorders. J. Neurosci. 34, 2015–2024 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Komatsuzaki, Y. et al. Corticosterone induces rapid spinogenesis via synaptic glucocorticoid receptors and kinase networks in hippocampus. PLoS ONE 7, e34124 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Nava, N. et al. Chronic desipramine prevents acute stress-induced reorganization of medial prefrontal cortex architecture by blocking glutamate vesicle accumulation and excitatory synapse increase. Int. J. Neuropsychopharmacol. 18, pyu085 (2014).

    Article  PubMed  Google Scholar 

  247. Porsolt, R. D., Le Pichon, M. & Jalfre, M. Depression: a new animal model sensitive to antidepressant treatments. Nature 266, 730–732 (1977).

    CAS  PubMed  Google Scholar 

  248. Commons, K. G., Cholanians, A. B., Babb, J. A. & Ehlinger, D. G. The rodent forced swim test measures stress-coping strategy, not depression-like behavior. ACS Chem. Neurosci. 8, 955–960 (2017).

    CAS  PubMed  Google Scholar 

  249. Bali, A. & Jaggi, A. S. Electric foot shock stress adaptation: does it exist or not? Life Sci. 130, 97–102 (2015).

    CAS  PubMed  Google Scholar 

  250. Flandreau, E. I. & Toth, M. Animal models of PTSD: a critical review. Curr. Top. Behav. Neurosci. 38, 47–68 (2018).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors dedicate this article to the memory of B. McEwen and R. Duman, two colleagues and friends who contributed with their thorough and passionate work to many of the findings illustrated here and to the development of knowledge on stress and mental illness. M.P. is indebted to former and present members of his group, in particular L. Musazzi, A. Mallei, A. Ieraci, G. Treccani and P. Tornese, for some of the works illustrated here. Z.Y. is grateful to her laboratory members who have worked on stress-related projects, past collaboration with B. McEwen and US National Institutes of Health (NIH) support (MH085774, MH108842, MH126443). G.S. is extremely appreciative of the mentorship of R. Duman and B. McEwen and the collaborations with M. Banasr. The authors thank A. Raiti for preparation of Fig. 1.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding author

Correspondence to Maurizio Popoli.

Ethics declarations

Competing interests

G.S. has served as a consultant for Allergan, Alkermes, AstraZeneca, Avanier Pharmaceuticals, Axsome Therapeutics Biohaven Pharmaceuticals, Boehringer Ingelheim International GmbH, Bristol-Myers Squibb, Clexio, Denovo Biopharma, Engrail Therapeutics, EMA Wellness, Epiodyne, Intra-Cellular Therapies, Janssen, Lundbeck, Merck & Co., Navitor Pharmaceuticals, Neurocrine, Novartis, Noven Pharmaceuticals, Otsuka, Perception Neuroscience, Praxis Therapeutics, Sage Pharmaceuticals, Taisho Pharmaceuticals, Valeant, Vistagen Therapeutics, and XW Labs over the past 36 months; has received research contracts from AstraZeneca, Bristol-Myers Squibb, Eli Lilly, Johnson & Johnson, Hoffman La-Roche, Merck, Naurex, Servier and Usona over the past 36 months; holds equity in BioHaven Pharmaceuticals; and is a co-inventor on US Patent 8,778,979 held by Yale University and a co-inventor on US Provisional Patent Application No. 047162-7177P1 (00754) filed on 20 August, 2018 by Yale University Office of Cooperative Research. Z.Y. has no competing interests. M.P. has received research contracts from Rodin Therapeutics (now Alkermes) in the last 36 months; and has received research contracts from Merck, GlaxoSmithKline, Servier, Sigma-Tau, Fidia and Abbott.

Additional information

Peer review information

Nature Reviews Neuroscience thanks Anthony Grace, David Slattery and the other, anonymous, reviewer for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanacora, G., Yan, Z. & Popoli, M. The stressed synapse 2.0: pathophysiological mechanisms in stress-related neuropsychiatric disorders. Nat Rev Neurosci 23, 86–103 (2022). https://doi.org/10.1038/s41583-021-00540-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-021-00540-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing