Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

Stress, microRNAs, and stress-related psychiatric disorders: an overview

Abstract

Stress is a major risk factor for psychiatric disorders. During and after exposure to stressors, the stress response may have pro- or maladaptive consequences, depending on several factors related to the individual response and nature of the stressor. However, the mechanisms mediating the long-term effects of exposure to stress, which may ultimately lead to the development of stress-related disorders, are still largely unknown. Epigenetic mechanisms have been shown to mediate the effects of the environment on brain gene expression and behavior. MicroRNAs, small non-coding RNAs estimated to control the expression of about 60% of all genes by post-transcriptional regulation, are a fundamental epigenetic mechanism. Many microRNAs are expressed in the brain, where they work as fine-tuners of gene expression, with a key role in the regulation of homeostatic balance, and a likely influence on pro- or maladaptive brain changes. Here we have selected a number of microRNAs, which have been strongly implicated as mediators of the effects of stress in the brain and in the development of stress-related psychiatric disorders. For all of them recent evidence is reported, obtained from rodent stress models, manipulation of microRNAs levels with related behavioral changes, and clinical studies of stress-related psychiatric disorders. Moreover, we have performed a bioinformatic analysis of the predicted brain-expressed target genes of the microRNAs discussed, and found a central role for mechanisms involved in the regulation of synaptic function. The complex regulatory role of microRNAs has suggested their use as biomarkers for diagnosis and treatment response, as well as possible therapeutic drugs. While, microRNA-based diagnostics have registered advancements, particularly in oncology and other fields, and many biotech companies have launched miRNA therapeutics in their development pipeline, the development of microRNA-based tests and drugs for brain disorders is comparatively slower.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Stress and microRNAs in the etiology of stress-related disorders.
Fig. 2: Network analysis of the first 20 biological processes containing target genes of the nine stress-related microRNAs.
Fig. 3: The potential of microRNAs for diagnosis and therapy of stress-related psychiatric disorders.

Similar content being viewed by others

References

  1. McEwen BS, Bowles NP, Gray JD, Hill MN, Hunter RG, Karatsoreos IN, et al. Mechanisms of stress in the brain. Nat Neurosci. 2015;18:1353–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Duman RS, Aghajanian GK, Sanacora G, Krystal JH. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med. 2016;22:238–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Sanacora G, Yan Z, Popoli M. The stressed synapse 2.0: pathophysiological mechanisms in stress-related neuropsychiatric disorders. Nat Rev Neurosci. 2022;23:86–103.

    CAS  PubMed  Google Scholar 

  4. Feinberg AP. The Key Role of Epigenetics in Human Disease Prevention and Mitigation. N. Engl J Med. 2018;378:1323–34.

    CAS  PubMed  Google Scholar 

  5. Klengel T, Binder EB. Epigenetics of Stress-Related Psychiatric Disorders and Gene × Environment Interactions. Neuron 2015;86:1343–57.

    CAS  PubMed  Google Scholar 

  6. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11:597–610.

    CAS  PubMed  Google Scholar 

  7. Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet. 2011;12:99–110.

    CAS  PubMed  Google Scholar 

  8. O’Carroll D, Schaefer A. General Principals of miRNA Biogenesis and Regulation in the Brain. Neuropsychopharmacology 2013;38:39–54.

    PubMed  Google Scholar 

  9. Chekulaeva M, Filipowicz W. Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol. 2009;21:452–60.

    CAS  PubMed  Google Scholar 

  10. Breving K, Esquela-Kerscher A. The complexities of microRNA regulation: mirandering around the rules. Int J Biochem Cell Biol. 2010;42:1316–29.

    CAS  PubMed  Google Scholar 

  11. Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet. 2012;13:271–82.

    CAS  PubMed  Google Scholar 

  12. Friedman RC, Farh KK-H, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sayed D, Abdellatif M. MicroRNAs in Development and Disease. Physiol Rev. 2011;91:827–87.

    CAS  PubMed  Google Scholar 

  14. Chan AWS, Kocerha J. The Path to microRNA Therapeutics in Psychiatric and Neurodegenerative Disorders. Front Genet. 2012;3:82.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ambros V. A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans. Cell 1989;57:49–57.

    CAS  PubMed  Google Scholar 

  16. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000;403:901–6.

    CAS  PubMed  Google Scholar 

  17. Sun AX, Crabtree GR, Yoo AS. MicroRNAs: regulators of neuronal fate. Curr Opin Cell Biol. 2013;25:215–21.

    CAS  PubMed  Google Scholar 

  18. Smalheiser NR, Lugli G. microRNA regulation of synaptic plasticity. Neuromolecular Med. 2009;11:133–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Schratt G. microRNAs at the synapse. Nat Rev Neurosci. 2009;10:842–9.

    CAS  PubMed  Google Scholar 

  20. Issler O, Chen A. Determining the role of microRNAs in psychiatric disorders. Nat Rev Neurosci. 2015;16:201–12.

    CAS  PubMed  Google Scholar 

  21. Du J, Li M, Huang Q, Liu W, Li W, Li Y, et al. The critical role of microRNAs in stress response: Therapeutic prospect and limitation. Pharm Res. 2019;142:294–302.

    CAS  Google Scholar 

  22. Allen L, Dwivedi Y. MicroRNA mediators of early life stress vulnerability to depression and suicidal behavior. Mol Psychiatry. 2020;25:308–20.

    CAS  PubMed  Google Scholar 

  23. Martins HC, Schratt G. MicroRNA-dependent control of neuroplasticity in affective disorders. Transl Psychiatry. 2021;11:263.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Żurawek D, Turecki G. The miRNome of Depression. Int J Mol Sci. 2021;22:11312.

    PubMed  PubMed Central  Google Scholar 

  25. Murphy CP, Singewald N. Potential of microRNAs as novel targets in the alleviation of pathological fear. Genes, Brain Behav. 2018;17:e12427.

    CAS  PubMed  Google Scholar 

  26. McEwen BS, Nasca C, Gray JD. Stress Effects on Neuronal Structure: Hippocampus, Amygdala, and Prefrontal Cortex. Neuropsychopharmacology. 2016;41:3–23.

    CAS  PubMed  Google Scholar 

  27. Chaudhury D, Walsh JJ, Friedman AK, Juarez B, Ku SM, Koo JW, et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature. 2013;493:532–6.

    CAS  PubMed  Google Scholar 

  28. Belujon P, Grace AA. Dopamine System Dysregulation in Major Depressive Disorders. Int J Neuropsychopharmacol. 2017;20:1036–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Johansen JP, Cain CK, Ostroff LE, LeDoux JE. Molecular Mechanisms of Fear Learning and Memory. Cell 2011;147:509–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Milad MR, Quirk GJ. Fear Extinction as a Model for Translational Neuroscience: Ten Years of Progress. Annu Rev Psychol. 2012;63:129–51.

    PubMed  PubMed Central  Google Scholar 

  31. Czéh B, Fuchs E, Wiborg O, Simon M. Animal models of major depression and their clinical implications. Prog Neuro-Psychopharmacol Biol Psychiatry. 2016;64:293–310.

    Google Scholar 

  32. Penner-Goeke S, Binder EB. Epigenetics and depression. Dialogues Clin Neurosci. 2019;21:397–405.

    PubMed  PubMed Central  Google Scholar 

  33. Torres-Berrío A, Issler O, Parise EM, Nestler EJ. Unraveling the epigenetic landscape of depression: Focus on early life stress. Dialogues Clin Neurosci. 2019;21:341–57.

    PubMed  PubMed Central  Google Scholar 

  34. Antoniuk S, Bijata M, Ponimaskin E, Wlodarczyk J. Chronic unpredictable mild stress for modeling depression in rodents: Meta-analysis of model reliability. Neurosci Biobehav Rev. 2019;99:101–16.

    PubMed  Google Scholar 

  35. Siegmund A. Toward an Animal Model of Posttraumatic Stress Disorder. Ann N. Y Acad Sci. 2006;1071:324–34.

    PubMed  Google Scholar 

  36. Abdallah CG, Averill LA, Akiki TJ, Raza M, Averill CL, Gomaa H, et al. The Neurobiology and Pharmacotherapy of Posttraumatic Stress Disorder. Annu Rev Pharm Toxicol. 2019;59:171–89.

    CAS  Google Scholar 

  37. Izquierdo A. Brief Uncontrollable Stress Causes Dendritic Retraction in Infralimbic Cortex and Resistance to Fear Extinction in Mice. J Neurosci. 2006;26:5733–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hajszan T, Dow A, Warner-Schmidt JL, Szigeti-Buck K, Sallam NL, Parducz A, et al. Remodeling of Hippocampal Spine Synapses in the Rat Learned Helplessness Model of Depression. Biol Psychiatry. 2009;65:392–400.

    PubMed  Google Scholar 

  39. Chen Y, Rex CS, Rice CJ, Dubé CM, Gall CM, Lynch G, et al. Correlated memory defects and hippocampal dendritic spine loss after acute stress involve corticotropin-releasing hormone signaling. Proc Natl Acad Sci. 2010;107:13123–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Nava N, Treccani G, Alabsi A, Kaastrup Mueller H, Elfving B, Popoli M, et al. Temporal Dynamics of Acute Stress-Induced Dendritic Remodeling in Medial Prefrontal Cortex and the Protective Effect of Desipramine. Cereb Cortex. 2015;27:694–705. bhv254

    Google Scholar 

  41. Musazzi L, Tornese P, Sala N, Popoli M. Acute or Chronic? A Stressful Question. Trends Neurosci. 2017;40:525–35.

    CAS  PubMed  Google Scholar 

  42. Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol. 2004;5:R13.

    PubMed  PubMed Central  Google Scholar 

  43. Coolen M, Katz S, Bally-Cuif L. miR-9: a versatile regulator of neurogenesis. Front Cell Neurosci. 2013;7:220.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Dajas-Bailador F, Bonev B, Garcez P, Stanley P, Guillemot F, Papalopulu N. microRNA-9 regulates axon extension and branching by targeting Map1b in mouse cortical neurons. Nat Neurosci. 2012;15:697–9.

    CAS  PubMed  Google Scholar 

  45. Giusti SA, Vogl AM, Brockmann MM, Vercelli CA, Rein ML, Trümbach D, et al. MicroRNA-9 controls dendritic development by targeting REST. Elife. 2014;3:e02755.

    PubMed  PubMed Central  Google Scholar 

  46. Meerson A, Cacheaux L, Goosens KA, Sapolsky RM, Soreq H, Kaufer D. Changes in brain MicroRNAs contribute to cholinergic stress reactions. J Mol Neurosci. 2010;40:47–55.

    CAS  PubMed  Google Scholar 

  47. Rinaldi A, Vincenti S, De Vito F, Bozzoni I, Oliverio A, Presutti C, et al. Stress induces region specific alterations in microRNAs expression in mice. Behav Brain Res. 2010;208:265–9.

    CAS  PubMed  Google Scholar 

  48. Uchida S, Hara K, Kobayashi A, Funato H, Hobara T, Otsuki K, et al. Early Life Stress Enhances Behavioral Vulnerability to Stress through the Activation of REST4-Mediated Gene Transcription in the Medial Prefrontal Cortex of Rodents. J Neurosci. 2010;30:15007–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang Y, Wang Y, Wang L, Bai M, Zhang X, Zhu X. Dopamine Receptor D2 and Associated microRNAs Are Involved in Stress Susceptibility and Resistance to Escitalopram Treatment. Int J Neuropsychopharmacol. 2015;18:pyv025–pyv025.

    PubMed  PubMed Central  Google Scholar 

  50. Buran İ, Etem EÖ, Tektemur A, Elyas H. Treatment with TREK1 and TRPC3/6 ion channel inhibitors upregulates microRNA expression in a mouse model of chronic mild stress. Neurosci Lett. 2017;656:51–57.

    CAS  PubMed  Google Scholar 

  51. Ma Z-Y, Chen F, Xiao P, Zhang X-M, Gao X-X. Silence of MiR-9 protects depression mice through Notch signaling pathway. Eur Rev Med Pharmacol Sci. 2019. https://doi.org/10.26355/eurrev_201906_18087.

  52. Xiao P, Zhang X, Li Y, Ma Z, Si S, Gao X. miR‑9 inhibition of neuronal apoptosis and expression levels of apoptosis genes Bcl‑2 and Bax in depression model rats through Notch pathway. Exp Ther Med. 2019. https://doi.org/10.3892/etm.2019.8228.

  53. Mingardi J, La Via L, Tornese P, Carini G, Trontti K, Seguini M, et al. miR-9-5p is involved in the rescue of stress-dependent dendritic shortening of hippocampal pyramidal neurons induced by acute antidepressant treatment with ketamine. Neurobiol Stress. 2021;15:100381.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang Y, Du L, Bai Y, Han B, He C, Gong L, et al. CircDYM ameliorates depressive-like behavior by targeting miR-9 to regulate microglial activation via HSP90 ubiquitination. Mol Psychiatry. 2020;25:1175–90.

    CAS  PubMed  Google Scholar 

  55. He C, Bai Y, Wang Z, Fan D, Wang Q, Liu X, et al. Identification of microRNA-9 linking the effects of childhood maltreatment on depression using amygdala connectivity. Neuroimage 2021;224:117428.

    CAS  PubMed  Google Scholar 

  56. Xian X, Cai L-L, Li Y, Wang R-C, Xu Y-H, Chen Y-J, et al. Neuron secrete exosomes containing miR-9-5p to promote polarization of M1 microglia in depression. J Nanobiotechnology. 2022;20:122.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Baudry A, Mouillet-Richard S, Schneider B, Launay J-M, Kellermann O. MiR-16 Targets the Serotonin Transporter: A New Facet for Adaptive Responses to Antidepressants. Science. 2010;329:1537–41.

    CAS  PubMed  Google Scholar 

  58. Launay JM, Mouillet-Richard S, Baudry A, Pietri M, Kellermann O. Raphe-mediated signals control the hippocampal response to SRI antidepressants via miR-16. Transl Psychiatry. 2011;1:e56.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Yang Y, Hu Z, Du X, Davies H, Huo X, Fang M. miR-16 and Fluoxetine Both Reverse Autophagic and Apoptotic Change in Chronic Unpredictable Mild Stress Model Rats. Front Neurosci. 2017;11:428.

    PubMed  PubMed Central  Google Scholar 

  60. Song M-F, Dong J-Z, Wang Y-W, He J, Ju X, Zhang L, et al. CSF miR-16 is decreased in major depression patients and its neutralization in rats induces depression-like behaviors via a serotonin transmitter system. J Affect Disord. 2015;178:25–31.

    CAS  PubMed  Google Scholar 

  61. Shao Q-Y, You F, Zhang Y-H, Hu L-L, Liu W-J, Liu Y, et al. CSF miR-16 expression and its association with miR-16 and serotonin transporter in the raphe of a rat model of depression. J Affect Disord. 2018;238:609–14.

    CAS  PubMed  Google Scholar 

  62. Bai M, Zhu X, Zhang Y, Zhang S, Zhang L, Xue L, et al. Abnormal Hippocampal BDNF and miR-16 Expression Is Associated with Depression-Like Behaviors Induced by Stress during Early Life. PLoS One. 2012;7:e46921.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Zurawek D, Kusmider M, Faron-Gorecka A, Gruca P, Pabian P, Kolasa M, et al. Time-dependent miR-16 serum fluctuations together with reciprocal changes in the expression level of miR-16 in mesocortical circuit contribute to stress resilient phenotype in chronic mild stress – An animal model of depression. Eur Neuropsychopharmacol. 2016;26:23–36.

    CAS  PubMed  Google Scholar 

  64. Liu Y, Liu D, Xu J, Jiang H, Pan F. Early adolescent stress-induced changes in prefrontal cortex miRNA-135a and hippocampal miRNA-16 in male rats. Dev Psychobiol. 2017;59:958–69.

    CAS  PubMed  Google Scholar 

  65. Gheysarzadeh A, Sadeghifard N, Afraidooni L, Pooyan F, Mofid M, Valadbeigi H, et al. Serum-based microRNA biomarkers for major depression: MiR-16, miR-135a, and miR-1202. J Res Med Sci. 2018;23:69.

    PubMed  PubMed Central  Google Scholar 

  66. Fiori LM, Lopez JP, Richard-Devantoy S, Berlim M, Chachamovich E, Jollant F, et al. Investigation of miR-1202, miR-135a, and miR-16 in Major Depressive Disorder and Antidepressant Response. Int J Neuropsychopharmacol. 2017;20:619–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Honda M, Kuwano Y, Katsuura-Kamano S, Kamezaki Y, Fujita K, Akaike Y, et al. Chronic Academic Stress Increases a Group of microRNAs in Peripheral Blood. PLoS One. 2013;8:e75960.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Katsuura S, Kuwano Y, Yamagishi N, Kurokawa K, Kajita K, Akaike Y, et al. MicroRNAs miR-144/144* and miR-16 in peripheral blood are potential biomarkers for naturalistic stress in healthy Japanese medical students. Neurosci Lett. 2012;516:79–84.

    CAS  PubMed  Google Scholar 

  69. Wang C, Jia Q, Guo X, Li K, Chen W, Shen Q, et al. microRNA-34 family: From mechanism to potential applications. Int J Biochem Cell Biol. 2022;144:106168.

    CAS  PubMed  Google Scholar 

  70. Hermeking H. The miR-34 family in cancer and apoptosis. Cell Death Differ. 2010;17:193–9.

    CAS  PubMed  Google Scholar 

  71. Haramati S, Navon I, Issler O, Ezra-Nevo G, Gil S, Zwang R, et al. microRNA as Repressors of Stress-Induced Anxiety: The Case of Amygdalar miR-34. J Neurosci. 2011;31:14191–203.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Dias BG, Goodman JV, Ahluwalia R, Easton AE, Andero R, Ressler KJ. Amygdala-Dependent Fear Memory Consolidation via miR-34a and Notch Signaling. Neuron. 2014;83:906–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Andolina D, Di Segni M, Bisicchia E, D’Alessandro F, Cestari V, Ventura A, et al. Effects of lack of microRNA-34 on the neural circuitry underlying the stress response and anxiety. Neuropharmacology. 2016;107:305–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Andolina D, Di Segni M, Accoto A, Lo Iacono L, Borreca A, Ielpo D, et al. MicroRNA-34 Contributes to the Stress-related Behavior and Affects 5-HT Prefrontal/GABA Amygdalar System through Regulation of Corticotropin-releasing Factor Receptor 1. Mol Neurobiol. 2018;55:7401–12.

    CAS  PubMed  Google Scholar 

  75. Lo Iacono L, Ielpo D, Parisi C, Napoli G, Accoto A, Di Segni M, et al. MicroRNA-34a regulates 5-HT2C expression in dorsal raphe and contributes to the anti-depressant-like effect of fluoxetine. Neuropharmacology. 2021;190:108559.

    CAS  PubMed  Google Scholar 

  76. Zaidan H, Galiani D, Gaisler-Salomon I. Pre-reproductive stress in adolescent female rats alters oocyte microRNA expression and offspring phenotypes: pharmacological interventions and putative mechanisms. Transl Psychiatry. 2021;11:113.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Zaidan H, Leshem M, Gaisler-Salomon I. Prereproductive Stress to Female Rats Alters Corticotropin Releasing Factor Type 1 Expression in Ova and Behavior and Brain Corticotropin Releasing Factor Type 1 Expression in Offspring. Biol Psychiatry. 2013;74:680–7.

    CAS  PubMed  Google Scholar 

  78. Lopez JP, Fiori LM, Gross JA, Labonte B, Yerko V, Mechawar N, et al. Regulatory role of miRNAs in polyamine gene expression in the prefrontal cortex of depressed suicide completers. Int J Neuropsychopharmacol. 2014;17:23–32.

    CAS  PubMed  Google Scholar 

  79. Azevedo JA, Carter BS, Meng F, Turner DL, Dai M, Schatzberg AF, et al. The microRNA network is altered in anterior cingulate cortex of patients with unipolar and bipolar depression. J Psychiatr Res. 2016;82:58–67.

    PubMed  PubMed Central  Google Scholar 

  80. Wan Y, Liu Y, Wang X, Wu J, Liu K, Zhou J, et al. Identification of Differential MicroRNAs in Cerebrospinal Fluid and Serum of Patients with Major Depressive Disorder. PLoS One. 2015;10:e0121975.

    PubMed  PubMed Central  Google Scholar 

  81. Kuang W-H, Dong Z-Q, Tian L-T, Li J. MicroRNA-451a, microRNA-34a-5p, and microRNA-221-3p as predictors of response to antidepressant treatment. Brazilian J Med Biol Res. 2018;51:e7212.

  82. Sun N, Lei L, Wang Y, Yang C, Liu Z, Li X, et al. Preliminary comparison of plasma notch-associated microRNA-34b and -34c levels in drug naive, first episode depressed patients and healthy controls. J Affect Disord. 2016;194:109–14.

    CAS  PubMed  Google Scholar 

  83. Bocchio-Chiavetto L, Maffioletti E, Bettinsoli P, Giovannini C, Bignotti S, Tardito D, et al. Blood microRNA changes in depressed patients during antidepressant treatment. Eur Neuropsychopharmacol. 2013;23:602–11.

    CAS  PubMed  Google Scholar 

  84. Sun N, Yang C, He X, Liu Z, Liu S, Li X, et al. Impact of Expression and Genetic Variation of microRNA-34b/c on Cognitive Dysfunction in Patients with Major Depressive Disorder. Neuropsychiatr Dis Treat. 2020;16:1543–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Papagiannakopoulos T, Kosik KS. MicroRNA-124: Micromanager of Neurogenesis. Cell Stem Cell. 2009;4:375–6.

    CAS  PubMed  Google Scholar 

  86. Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M, et al. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med. 2008;6:14.

    PubMed  PubMed Central  Google Scholar 

  87. Cheng L-C, Pastrana E, Tavazoie M, Doetsch F. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci. 2009;12:399–408.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Pan B, Liu Y. Effects of duloxetine on microRNA expression profile in frontal lobe and hippocampus in a mouse model of depression. Int J Clin Exp Pathol. 2015;8:15454–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Xu J, Wang R, Liu Y, Liu D, Jiang H, Pan F. FKBP5 and specific microRNAs via glucocorticoid receptor in the basolateral amygdala involved in the susceptibility to depressive disorder in early adolescent stressed rats. J Psychiatr Res. 2017;95:102–13.

    PubMed  Google Scholar 

  90. Xu J, Wang R, Liu Y, Wang W, Liu D, Jiang H, et al. Short- and long-term alterations of FKBP5-GR and specific microRNAs in the prefrontal cortex and hippocampus of male rats induced by adolescent stress contribute to depression susceptibility. Psychoneuroendocrinology 2019;101:204–15.

    CAS  PubMed  Google Scholar 

  91. Yang W, Liu M, Zhang Q, Zhang J, Chen J, Chen Q, et al. Knockdown of miR-124 Reduces Depression-like Behavior by Targeting CREB1 and BDNF. Curr Neurovasc Res. 2020;17:196–203.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Huang Y-L, Zeng N-X, Chen J, Niu J, Luo W-L, Liu P, et al. Dynamic changes of behaviors, dentate gyrus neurogenesis and hippocampal miR-124 expression in rats with depression induced by chronic unpredictable mild stress. Neural Regen Res. 2020;15:1150.

    CAS  PubMed  Google Scholar 

  93. Gu Z, Pan J, Chen L. MiR-124 suppression in the prefrontal cortex reduces depression-like behavior in mice. Biosci Rep. 2019;39:BSR20190186.

    PubMed  PubMed Central  Google Scholar 

  94. Lou D, Wang J, Wang X. miR-124 ameliorates depressive-like behavior by targeting STAT3 to regulate microglial activation. Mol Cell Probes. 2019;48:101470.

    CAS  PubMed  Google Scholar 

  95. Higuchi F, Uchida S, Yamagata H, Abe-Higuchi N, Hobara T, Hara K, et al. Hippocampal MicroRNA-124 Enhances Chronic Stress Resilience in Mice. J Neurosci. 2016;36:7253–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Bahi A, Chandrasekar V, Dreyer J-L. Selective lentiviral-mediated suppression of microRNA124a in the hippocampus evokes antidepressants-like effects in rats. Psychoneuroendocrinology. 2014;46:78–87.

    CAS  PubMed  Google Scholar 

  97. Shi L-S, Ji C-H, Tang W-Q, Liu Y, Zhang W, Guan W. Hippocampal miR-124 Participates in the Pathogenesis of Depression via Regulating the Expression of BDNF in a Chronic Social Defeat Stress Model of Depression. Curr Neurovasc Res. 2022;19:210–8.

    CAS  PubMed  Google Scholar 

  98. Karen C, Shyu DJH, Rajan KE. Lactobacillus paracasei Supplementation Prevents Early Life Stress-Induced Anxiety and Depressive-Like Behavior in Maternal Separation Model-Possible Involvement of Microbiota-Gut-Brain Axis in Differential Regulation of MicroRNA124a/132 and Glutamate Rec. Front Neurosci. 2021;15:719933.

    PubMed  PubMed Central  Google Scholar 

  99. Dwivedi Y, Roy B, Lugli G, Rizavi H, Zhang H, Smalheiser NR. Chronic corticosterone-mediated dysregulation of microRNA network in prefrontal cortex of rats: relevance to depression pathophysiology. Transl Psychiatry. 2015;5:e682–e682.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang S-S, Mu R-H, Li C-F, Dong S-Q, Geng D, Liu Q, et al. microRNA-124 targets glucocorticoid receptor and is involved in depression-like behaviors. Prog Neuro-Psychopharmacology. Biol Psychiatry. 2017;79:417–25.

    CAS  Google Scholar 

  101. Yi L-T, Mu R-H, Dong S-Q, Wang S-S, Li C-F, Geng D, et al. miR-124 antagonizes the antidepressant-like effects of standardized gypenosides in mice. J Psychopharmacol. 2018;32:458–68.

    CAS  PubMed  Google Scholar 

  102. Mannironi C, Camon J, De Vito F, Biundo A, De Stefano ME, Persiconi I, et al. Acute Stress Alters Amygdala microRNA miR-135a and miR-124 Expression: Inferences for Corticosteroid Dependent Stress Response. PLoS One. 2013;8:e73385.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Mifsud KR, Saunderson EA, Spiers H, Carter SD, Trollope AF, Mill J, et al. Rapid Down-Regulation of Glucocorticoid Receptor Gene Expression in the Dentate Gyrus after Acute Stress in vivo: Role of DNA Methylation and MicroRNA Activity. Neuroendocrinology 2017;104:157–69.

    CAS  PubMed  Google Scholar 

  104. Chen Y, An Q, Yang S-T, Chen Y-L, Tong L, Ji L-L. MicroRNA-124 attenuates PTSD-like behaviors and reduces the level of inflammatory cytokines by downregulating the expression of TRAF6 in the hippocampus of rats following single-prolonged stress. Exp Neurol. 2022;356:114154.

    CAS  PubMed  Google Scholar 

  105. He S, Liu X, Jiang K, Peng D, Hong W, Fang Y, et al. Alterations of microRNA-124 expression in peripheral blood mononuclear cells in pre- and post-treatment patients with major depressive disorder. J Psychiatr Res. 2016;78:65–71.

    PubMed  Google Scholar 

  106. Fang Y, Qiu Q, Zhang S, Sun L, Li G, Xiao S, et al. Changes in miRNA-132 and miR-124 levels in non-treated and citalopram-treated patients with depression. J Affect Disord. 2018;227:745–51.

    CAS  PubMed  Google Scholar 

  107. Zeng D, He S, Yu S, Li G, Ma C, Wen Y, et al. Analysis of the association of MIR124-1 and its target gene RGS4 polymorphisms with major depressive disorder and antidepressant response. Neuropsychiatr Dis Treat. 2018;14:715–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. James SL, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1789–858.

    Google Scholar 

  109. Roy B, Dunbar M, Shelton RC, Dwivedi Y. Identification of MicroRNA-124-3p as a Putative Epigenetic Signature of Major Depressive Disorder. Neuropsychopharmacology. 2017;42:864–75.

    CAS  PubMed  Google Scholar 

  110. Wayman GA, Davare M, Ando H, Fortin D, Varlamova O, Cheng H-YM, et al. An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc Natl Acad Sci. 2008;105:9093–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Shaltiel G, Hanan M, Wolf Y, Barbash S, Kovalev E, Shoham S, et al. Hippocampal microRNA-132 mediates stress-inducible cognitive deficits through its acetylcholinesterase target. Brain Struct Funct. 2013;218:59–72.

    CAS  PubMed  Google Scholar 

  112. Wang R-Y, Phang R-Z, Hsu P-H, Wang W-H, Huang H-T, Liu IY. In vivo knockdown of hippocampal miR-132 expression impairs memory acquisition of trace fear conditioning. Hippocampus. 2013;23:625–33.

    CAS  PubMed  Google Scholar 

  113. Aten S, Page CE, Kalidindi A, Wheaton K, Niraula A, Godbout JP, et al. miR-132/212 is induced by stress and its dysregulation triggers anxiety-related behavior. Neuropharmacology. 2019;144:256–70.

    CAS  PubMed  Google Scholar 

  114. Nie P-Y, Ji L-L, Fu C-H, Peng J-B, Wang Z-Y, Tong L. miR-132 Regulates PTSD-like Behaviors in Rats Following Single-Prolonged Stress Through Fragile X-Related Protein 1. Cell Mol Neurobiol. 2021;41:327–40.

    CAS  PubMed  Google Scholar 

  115. Tong L, Li M-D, Nie P-Y, Chen Y, Chen Y-L, Ji L-L. miR-132 downregulation alleviates behavioral impairment of rats exposed to single prolonged stress, reduces the level of apoptosis in PFC, and upregulates the expression of MeCP2 and BDNF. Neurobiol Stress. 2021;14:100311.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Ma L, Wang L, Chang L, Shan J, Qu Y, Wang X, et al. A key role of miR-132-5p in the prefrontal cortex for persistent prophylactic actions of (R)-ketamine in mice. Transl Psychiatry. 2022;12:417.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Su M, Hong J, Zhao Y, Liu S, Xue X. MeCP2 controls hippocampal brain-derived neurotrophic factor expression via homeostatic interactions with microRNA-132 in rats with depression. Mol Med Rep. 2015;12:5399–406.

    CAS  PubMed  Google Scholar 

  118. Qi S, Yang X, Zhao L, Calhoun VD, Perrone-Bizzozero N, Liu S, et al. MicroRNA132 associated multimodal neuroimaging patterns in unmedicated major depressive disorder. Brain. 2018;141:916–26.

    PubMed  PubMed Central  Google Scholar 

  119. Liu Y, Yang X, Zhao L, Zhang J, Li T, Ma X. Increased miR-132 level is associated with visual memory dysfunction in patients with depression. Neuropsychiatr Dis Treat. 2016;12:2905–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Li Y-J, Xu M, Gao Z-H, Wang Y-Q, Yue Z, Zhang Y-X, et al. Alterations of Serum Levels of BDNF-Related miRNAs in Patients with Depression. PLoS One. 2013;8:e63648.

    PubMed  PubMed Central  Google Scholar 

  121. Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, et al. A brain-specific microRNA regulates dendritic spine development. Nature 2006;439:283–9.

    CAS  PubMed  Google Scholar 

  122. Shen J, Li Y, Qu C, Xu L, Sun H, Zhang J. The enriched environment ameliorates chronic unpredictable mild stress-induced depressive-like behaviors and cognitive impairment by activating the SIRT1/miR-134 signaling pathway in hippocampus. J Affect Disord. 2019;248:81–90.

    CAS  PubMed  Google Scholar 

  123. Shen J, Xu L, Qu C, Sun H, Zhang J. Resveratrol prevents cognitive deficits induced by chronic unpredictable mild stress: Sirt1/miR-134 signalling pathway regulates CREB/BDNF expression in hippocampus in vivo and in vitro. Behav Brain Res. 2018;349:1–7.

    CAS  PubMed  Google Scholar 

  124. Fan C, Zhu X, Song Q, Wang P, Liu Z, Yu SY. MiR-134 modulates chronic stress-induced structural plasticity and depression-like behaviors via downregulation of Limk1/cofilin signaling in rats. Neuropharmacology. 2018;131:364–76.

    CAS  PubMed  Google Scholar 

  125. Yu H, Fan C, Yang L, Yu S, Song Q, Wang P, et al. Ginsenoside Rg1 Prevents Chronic Stress-Induced Depression-Like Behaviors and Neuronal Structural Plasticity in Rats. Cell Physiol Biochem. 2018;48:2470–82.

    CAS  PubMed  Google Scholar 

  126. Castañeda P, Muñoz M, García-Rojo G, Ulloa JL, Bravo JA, Márquez R, et al. Association of N-cadherin levels and downstream effectors of Rho GTPases with dendritic spine loss induced by chronic stress in rat hippocampal neurons. J Neurosci Res. 2015;93:1476–91.

    PubMed  Google Scholar 

  127. Jiang T, Hu S, Dai S, Yi Y, Wang T, Li X, et al. Programming changes of hippocampal miR-134-5p/SOX2 signal mediate the susceptibility to depression in prenatal dexamethasone-exposed female offspring. Cell Biol Toxicol. 2022;38:69–86.

    CAS  PubMed  Google Scholar 

  128. Wang G, An T, Lei C, Zhu X, Yang L, Zhang L, et al. Antidepressant-like effect of ginsenoside Rb1 on potentiating synaptic plasticity via the miR-134–mediated BDNF signaling pathway in a mouse model of chronic stress-induced depression. J Ginseng Res. 2022;46:376–86.

    PubMed  Google Scholar 

  129. Wang G, Liu Y, Zhu X, Lin K, Li M, Wu Z, et al. Knockdown of miRNA-134-5p rescues dendritic deficits by promoting AMPK-mediated mitophagy in a mouse model of depression. Neuropharmacology. 2022;214:109154.

    CAS  PubMed  Google Scholar 

  130. Zhang H, Liu X, Chen J, Cheng K, Bai S-J, Zheng P, et al. Circulating microRNA 134 sheds light on the diagnosis of major depressive disorder. Transl Psychiatry. 2020;10:95.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Hu Z, Yu D, Gu Q, Yang Y, Tu K, Zhu J, et al. miR-191 and miR-135 are required for long-lasting spine remodelling associated with synaptic long-term depression. Nat Commun. 2014;5:3263.

    PubMed  Google Scholar 

  132. Zheng K, Hu F, Zhou Y, Zhang J, Zheng J, Lai C, et al. miR-135a-5p mediates memory and synaptic impairments via the Rock2/Adducin1 signaling pathway in a mouse model of Alzheimer’s disease. Nat Commun. 2021;12:1903.

    PubMed  PubMed Central  Google Scholar 

  133. Mannironi C, Biundo A, Rajendran S, De Vito F, Saba L, Caioli S, et al. miR-135a Regulates Synaptic Transmission and Anxiety-Like Behavior in Amygdala. Mol Neurobiol. 2018;55:3301–15.

    CAS  PubMed  Google Scholar 

  134. Ding Y, Zhong M, Qiu B, Liu C, Wang J, Liang J. Abnormal expression of miR‑135a in patients with depression and its possible involvement in the pathogenesis of the condition. Exp Ther Med. 2021;22:726.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Issler O, Haramati S, Paul ED, Maeno H, Navon I, Zwang R, et al. MicroRNA 135 is essential for chronic stress resiliency, antidepressant efficacy, and intact serotonergic activity. Neuron. 2014;83:344–60.

    CAS  PubMed  Google Scholar 

  136. Sillivan SE, Jamieson S, de Nijs L, Jones M, Snijders C, Klengel T, et al. MicroRNA regulation of persistent stress-enhanced memory. Mol Psychiatry. 2020;25:965–76.

    CAS  PubMed  Google Scholar 

  137. Yoshino Y, Roy B, Dwivedi Y. Corticosterone-mediated regulation and functions of miR-218-5p in rat brain. Sci Rep. 2022;12:194.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Torres-Berrío A, Morgunova A, Giroux M, Cuesta S, Nestler EJ, Flores C. miR-218 in Adolescence Predicts and Mediates Vulnerability to Stress. Biol Psychiatry. 2021;89:911–9.

    PubMed  Google Scholar 

  139. Torres-Berrío A, Lopez JP, Bagot RC, Nouel D, Dal Bo G, Cuesta S, et al. DCC Confers Susceptibility to Depression-like Behaviors in Humans and Mice and Is Regulated by miR-218. Biol Psychiatry. 2017;81:306–15.

    PubMed  Google Scholar 

  140. Torres-Berrío A, Nouel D, Cuesta S, Parise EM, Restrepo-Lozano JM, Larochelle P, et al. MiR-218: a molecular switch and potential biomarker of susceptibility to stress. Mol Psychiatry. 2020;25:951–64.

    PubMed  Google Scholar 

  141. Lopez JP, Lim R, Cruceanu C, Crapper L, Fasano C, Labonte B, et al. miR-1202 is a primate-specific and brain-enriched microRNA involved in major depression and antidepressant treatment. Nat Med. 2014;20:764–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Lopez JP, Pereira F, Richard-Devantoy S, Berlim M, Chachamovich E, Fiori LM, et al. Co-Variation of Peripheral Levels of miR-1202 and Brain Activity and Connectivity During Antidepressant Treatment. Neuropsychopharmacology. 2017;42:2043–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Murphy CP, Li X, Maurer V, Oberhauser M, Gstir R, Wearick-Silva LE, et al. MicroRNA-Mediated Rescue of Fear Extinction Memory by miR-144-3p in Extinction-Impaired Mice. Biol Psychiatry. 2017;81:979–89.

    CAS  PubMed  Google Scholar 

  144. Li Y, Wang N, Pan J, Wang X, Zhao Y, Guo Z. Hippocampal miRNA-144 Modulates Depressive-Like Behaviors in Rats by Targeting PTP1B. Neuropsychiatr Dis Treat. 2021;17:389–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. van der Zee YY, Eijssen LMT, Mews P, Ramakrishnan A, Alvarez K, Lardner CK, et al. Blood miR-144-3p: a novel diagnostic and therapeutic tool for depression. Mol Psychiatry. 2022;27:4536–49.

    PubMed  PubMed Central  Google Scholar 

  146. Vaisvaser S, Modai S, Farberov L, Lin T, Sharon H, Gilam A, et al. Neuro-Epigenetic Indications of Acute Stress Response in Humans: The Case of MicroRNA-29c. PLoS One. 2016;11:e0146236.

    PubMed  PubMed Central  Google Scholar 

  147. Smalheiser NR, Lugli G, Rizavi HS, Zhang H, Torvik VI, Pandey GN, et al. MicroRNA expression in rat brain exposed to repeated inescapable shock: differential alterations in learned helplessness vs. non-learned helplessness. Int J Neuropsychopharmacol. 2011;14:1315–25.

    CAS  PubMed  Google Scholar 

  148. Misiewicz Z, Iurato S, Kulesskaya N, Salminen L, Rodrigues L, Maccarrone G, et al. Multi-omics analysis identifies mitochondrial pathways associated with anxiety-related behavior. PLOS Genet. 2019;15:e1008358.

    PubMed  PubMed Central  Google Scholar 

  149. McKibben LA, Dwivedi Y. Early-life stress induces genome-wide sex-dependent miRNA expression and correlation across limbic brain areas in rats. Epigenomics. 2021;13:1031–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Yoshino Y, Roy B, Dwivedi Y. Altered miRNA landscape of the anterior cingulate cortex is associated with potential loss of key neuronal functions in depressed brain. Eur Neuropsychopharmacol. 2020;40:70–84.

    CAS  PubMed  Google Scholar 

  151. Jin M, Zhu X, Sun Y, Li Z, Li X, Ai L, et al. Identification of Peripheral Blood miRNA Biomarkers in First-Episode Drug-Free Schizophrenia Patients Using Bioinformatics Strategy. Mol Neurobiol. 2022;59:4730–46.

    CAS  PubMed  Google Scholar 

  152. Yu H, Wu J, Zhang H, Zhang G, Sui J, Tong W, et al. Alterations of miR-132 are novel diagnostic biomarkers in peripheral blood of schizophrenia patients. Prog Neuro-Psychopharmacology. Biol Psychiatry. 2015;63:23–29.

    CAS  Google Scholar 

  153. Jiang T, Yang Y, Wu C, Qu C, Chen J-G, Cao H. MicroRNA-218 regulates neuronal radial migration and morphogenesis by targeting Satb2 in developing neocortex. Biochem Biophys Res Commun. 2023;647:9–15.

    CAS  PubMed  Google Scholar 

  154. Zhang Y, Pang Y, Feng W, Jin Y, Chen S, Ding S, et al. miR-124 regulates early isolation-induced social abnormalities via inhibiting myelinogenesis in the medial prefrontal cortex. Cell Mol Life Sci. 2022;79:507.

    CAS  PubMed  Google Scholar 

  155. Bonneau E, Neveu B, Kostantin E, Tsongalis GJ, De Guire V. How close are miRNAs from clinical practice? A perspective on the diagnostic and therapeutic market. EJIFCC. 2019;30:114–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Kos MZ, Puppala S, Cruz D, Neary JL, Kumar A, Dalan E, et al. Blood-Based miRNA Biomarkers as Correlates of Brain-Based miRNA Expression. Front Mol Neurosci. 2022;15:817290.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Hoy SM. Patisiran: First Global Approval. Drugs 2018;78:1625–31.

    CAS  PubMed  Google Scholar 

  158. Hanna J, Hossain GS, Kocerha J. The Potential for microRNA Therapeutics and Clinical Research. Front Genet. 2019;10:478.

  159. Winkle M, El-Daly SM, Fabbri M, Calin GA. Noncoding RNA therapeutics—challenges and potential solutions. Nat Rev Drug Discov. 2021;20:629–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Walgrave H, Zhou L, De Strooper B, Salta E. The promise of microRNA-based therapies in Alzheimer’s disease: challenges and perspectives. Mol Neurodegener. 2021;16:76.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. D’Souza A, Nozohouri S, Bleier BS, Amiji MM. CNS Delivery of Nucleic Acid Therapeutics: Beyond the Blood–Brain Barrier and Towards Specific Cellular Targeting. Pharm Res. 2023;40:77–105.

    PubMed  Google Scholar 

  162. Nafee N, Gouda N. Nucleic Acids-based Nanotherapeutics Crossing the Blood Brain Barrier. Curr Gene Ther. 2017;17:154–69.

    CAS  PubMed  Google Scholar 

  163. Liufu Z, Zhao Y, Guo L, Miao G, Xiao J, Lyu Y, et al. Redundant and incoherent regulations of multiple phenotypes suggest microRNAs’ role in stability control. Genome Res. 2017;27:1665–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Bassett AR, Azzam G, Wheatley L, Tibbit C, Rajakumar T, McGowan S, et al. Understanding functional miRNA–target interactions in vivo by site-specific genome engineering. Nat Commun. 2014;5:4640.

    CAS  PubMed  Google Scholar 

  165. Lam JKW, Chow MYT, Zhang Y, Leung SWS. siRNA Versus miRNA as Therapeutics for Gene Silencing. Mol Ther - Nucleic Acids. 2015;4:e252.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Kanninen KM, Bister N, Koistinaho J, Malm T. Exosomes as new diagnostic tools in CNS diseases. Biochim Biophys Acta - Mol Basis Dis. 2016;1862:403–10.

    CAS  Google Scholar 

  167. Gurung S, Perocheau D, Touramanidou L, Baruteau J. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun Signal. 2021;19:47.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Hu Q, Su H, Li J, Lyon C, Tang W, Wan M, et al. Clinical applications of exosome membrane proteins. Precis Clin Med. 2020;3:54–66.

    PubMed  PubMed Central  Google Scholar 

  169. Nasca C, Dobbin J, Bigio B, Watson K, de Angelis P, Kautz M, et al. Insulin receptor substrate in brain-enriched exosomes in subjects with major depression: on the path of creation of biosignatures of central insulin resistance. Mol Psychiatry. 2021;26:5140–9.

    CAS  PubMed  Google Scholar 

  170. Wei Z-X, Xie G-J, Mao X, Zou X-P, Liao Y-J, Liu Q-S, et al. Exosomes from patients with major depression cause depressive-like behaviors in mice with involvement of miR-139-5p-regulated neurogenesis. Neuropsychopharmacology 2020;45:1050–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Sung M, Sung S-E, Kang K-K, Choi J-H, Lee S, Kim K, et al. Serum-Derived Neuronal Exosomal miRNAs as Biomarkers of Acute Severe Stress. Int J Mol Sci. 2021;22:9960.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Schumacher F, Carpinteiro A, Edwards MJ, Wilson GC, Keitsch S, Soddemann M, et al. Stress induces major depressive disorder by a neutral sphingomyelinase 2-mediated accumulation of ceramide-enriched exosomes in the blood plasma. J Mol Med. 2022;100:1493–508.

    CAS  PubMed  Google Scholar 

  173. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science (80-). 2020;367:eaau6977.

    CAS  Google Scholar 

  174. Guo H, Huang B, Wang Y, Zhang Y, Ma Q, Ren Y. Bone marrow mesenchymal stem cells-derived exosomes improve injury of hippocampal neurons in rats with depression by upregulating microRNA-26a expression. Int Immunopharmacol. 2020;82:106285.

    CAS  PubMed  Google Scholar 

  175. Li D, Wang Y, Jin X, Hu D, Xia C, Xu H, et al. NK cell-derived exosomes carry miR-207 and alleviate depression-like symptoms in mice. J Neuroinflammation. 2020;17:126.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. He J, Ren W, Wang W, Han W, Jiang L, Zhang D, et al. Exosomal targeting and its potential clinical application. Drug Deliv Transl Res. 2022;12:2385–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Tian T, Zhang H-X, He C-P, Fan S, Zhu Y-L, Qi C, et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials 2018;150:137–49.

    CAS  PubMed  Google Scholar 

  178. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJA. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29:341–5.

    CAS  PubMed  Google Scholar 

  179. Liu Y, Li D, Liu Z, Zhou Y, Chu D, Li X, et al. Targeted exosome-mediated delivery of opioid receptor Mu siRNA for the treatment of morphine relapse. Sci Rep. 2015;5:17543.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Paolo Martini for bioinformatic analysis.

Author information

Authors and Affiliations

Authors

Contributions

LM, JM, AI, AB, and MP wrote and edited the manuscript.

Corresponding author

Correspondence to Maurizio Popoli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musazzi, L., Mingardi, J., Ieraci, A. et al. Stress, microRNAs, and stress-related psychiatric disorders: an overview. Mol Psychiatry 28, 4977–4994 (2023). https://doi.org/10.1038/s41380-023-02139-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02139-3

This article is cited by

Search

Quick links