Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Towards real-world generalizability of a circuit for action-stopping

Abstract

Two decades of cross-species neuroscience research on rapid action-stopping in the laboratory has provided motivation for an underlying prefrontal–basal ganglia circuit. Here we provide an update of key studies from the past few years. We conclude that this basic neural circuit is on increasingly firm ground, and we move on to consider whether the action-stopping function implemented by this circuit applies beyond the simple laboratory stop signal task. We advance through a series of studies of increasing ‘real-worldness’, starting with laboratory tests of stopping of speech, gait and bodily functions, and then going beyond the laboratory to consider neural recordings and stimulation during moments of control presumably required in everyday activities such as walking and driving. We end by asking whether stopping research has clinical relevance, focusing on movement disorders such as stuttering, tics and freezing of gait. Overall, we conclude there are hints that the prefrontal–basal ganglia action-stopping circuit that is engaged by the basic stop signal task is recruited in myriad scenarios; however, truly proving this for real-world scenarios requires a new generation of studies that will need to overcome substantial technical and inferential challenges.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Cortico–basal ganglia–thalamocortical networks for action control in the stop signal task.
Fig. 2: Timing of events in the action-stopping network.
Fig. 3: From the laboratory to the real-world: gait.

References

  1. 1.

    Diamond, A. Executive functions. Annu. Rev. Psychol. 64, 135–168 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Miyake, A. et al. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cognit. Psychol. https://doi.org/10.1006/cogp.1999.0734 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Guo, Y., Schmitz, T. W., Mur, M., Ferreira, C. S. & Anderson, M. C. A supramodal role of the basal ganglia in memory and motor inhibition: meta-analytic evidence. Neuropsychologia 108, 117–134 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Verbruggen, F. et al. A consensus guide to capturing the ability to inhibit actions and impulsive behaviors in the stop-signal task. eLife 8, e46323 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Logan, G. D. & Cowan, W. B. On the ability to inhibit thought and action: a theory of an act of control. Psychol. Rev. 91, 295–327 (1984).

    Article  Google Scholar 

  6. 6.

    Sebastian, A. et al. Disentangling common and specific neural subprocesses of response inhibition. NeuroImage https://doi.org/10.1016/j.neuroimage.2012.09.020 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Sebastian, A. et al. Differential effects of age on subcomponents of response inhibition. Neurobiol. Aging https://doi.org/10.1016/j.neurobiolaging.2013.03.013 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Raud, L., Westerhausen, R., Dooley, N. & Huster, R. J. Differences in unity: the go/no-go and stop signal tasks rely on different mechanisms. NeuroImage 210, 116582 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Wessel, J. R. & Aron, A. R. On the globality of motor suppression: unexpected events and their influence on behavior and cognition. Neuron 93, 259–280 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Aron, A. R. From reactive to proactive and selective control: developing a richer model for stopping inappropriate responses. Biol. Psychiatry 69, e55–e68 (2011). An earlier influential review of the literature on different modes of action control and their putative neural bases.

    PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Chambers, C. D., Garavan, H. & Bellgrove, M. A. Insights into the neural basis of response inhibition from cognitive and clinical neuroscience. Neurosci. Biobehav. Rev. 33, 631–646 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Bari, A. & Robbins, T. W. Inhibition and impulsivity: behavioral and neural basis of response control. Prog. Neurobiol. 108, 44–79 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Bissett, P. G., Jones, H. M., Poldrack, R. A. & Logan, G. D. Severe violations of independence in response inhibition tasks. Sci. Adv. 7, eabf4355 (2021).

    PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Matzke, D., Love, J. & Heathcote, A. A Bayesian approach for estimating the probability of trigger failures in the stop-signal paradigm. Behav. Res. Methods 49, 267–281 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Jana, S., Hannah, R., Muralidharan, V. & Aron, A. R. Temporal cascade of frontal, motor and muscle processes underlying human action-stopping. eLife 9, e50371 (2020). A multimodal neurophysiological study providing motivation for the temporal ‘flow’ model of processing throughout the stopping network in humans.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Smittenaar, P., Guitart-Masip, M., Lutti, A. & Dolan, R. J. Preparing for selective inhibition within frontostriatal loops. J. Neurosci. 33, 18087–18097 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Wildenberg, W. P. M., van den, Burle, B., Vidal, F., Molen, M. W. van der & Ridderinkhof, K. R. Mechanisms and dynamics of cortical motor inhibition in the stop-signal paradigm: a TMS study. J. Cogn. Neurosci. 22, 225–239 (2009).

    Article  Google Scholar 

  18. 18.

    Aron, A. R., Behrens, T. E., Smith, S., Frank, M. J. & Poldrack, R. A. Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. J. Neurosci. 27, 3743–3752 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Aron, A. R., Robbins, T. W. & Poldrack, R. A. Inhibition and the right inferior frontal cortex: One decade on. Trends Cognit. Sci. 18, 177–185 (2014).

    Article  Google Scholar 

  20. 20.

    Aron, A. R. & Poldrack, R. A. Cortical and subcortical contributions to stop signal response inhibition: role of the subthalamic nucleus. J. Neurosci. 26, 2424–2433 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Konishi, S., Nakajima, K., Uchida, I., Sekihara, K. & Miyashita, Y. No-go dominant brain activity in human inferior prefrontal cortex revealed by functional magnetic resonance imaging. Eur. J. Neurosci. https://doi.org/10.1046/j.1460-9568.1998.00167.x (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Konishi, S. et al. Common inhibitory mechanism in human inferior prefrontal cortex revealed by event-related functional MRI. Brain https://doi.org/10.1093/brain/122.5.981 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Garavan, H., Ross, T. J. & Stein, E. A. Right hemispheric dominance of inhibitory control: An event-related functional MRI study. Proc. Natl Acad. Sci. USA 96, 8301–8306 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J. & Robbins, T. W. Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nat. Neurosci. 6, 115–116 (2003). A classic study of patients with brain lesions showing that the rIFC is crucial for action-stopping.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Chambers, C. D. et al. Executive “brake failure” following deactivation of human frontal lobe. J. Cognit. Neurosci. 18, 444–455 (2006).

    Google Scholar 

  26. 26.

    Verbruggen, F., Aron, A. R., Stevens, M. A. & Chambers, C. D. Theta burst stimulation dissociates attention and action updating in human inferior frontal cortex. Proc. Natl Acad. Sci. USA 107, 13966–13971 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Swann, N. C. et al. Roles for the pre-supplementary motor area and the right inferior frontal gyrus in stopping action: electrophysiological responses and functional and structural connectivity. NeuroImage 59, 2860–2870 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Madsen, K. S. et al. Response inhibition is associated with white matter microstructure in children. Neuropsychologia 48, 854–862 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Bartoli, E., Aron, A. R. & Tandon, N. Topography and timing of activity in right inferior frontal cortex and anterior insula for stopping movement. Hum. Brain Mapp. 39, 189–203 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Suda, A. et al. Functional organization for response inhibition in the right inferior frontal cortex of individual human brains. Cereb. Cortex 30, 6325–6335 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Hannah, R., Muralidharan, V., Sundby, K. K. & Aron, A. R. Temporally-precise disruption of prefrontal cortex informed by the timing of beta bursts impairs human action-stopping. NeuroImage https://doi.org/10.1016/j.neuroimage.2020.117222 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Sundby, K. K., Jana, S. & Aron, A. R. Double blind disruption of right inferior frontal cortex with TMS reduces right frontal beta power for action-stopping. J. Neurophysiol. https://doi.org/10.1152/jn.00459.2020 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Swann, N. et al. Intracranial EEG reveals a time- and frequency-specific role for the right inferior frontal gyrus and primary motor cortex in stopping initiated responses. J. Neurosci. 29, 12675–12685 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Schaum, M. et al. Right inferior frontal gyrus implements motor inhibitory control via beta-band oscillations in humans. eLife 10, 1–28 (2021).

    Article  Google Scholar 

  35. 35.

    Swick, D. & Chatham, C. H. Ten years of inhibition revisited. Front. Hum. Neurosci. 8, 115–116 (2014).

    Article  Google Scholar 

  36. 36.

    Chen, W. et al. Prefrontal-subthalamic hyperdirect pathway modulates movement inhibition in humans. Neuron 106, 579–588.e3 (2020). A study in individuals with Parkinson disease supporting the existence of a functional connection between the rIFC and the STN that is relevant to stopping.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Aron, A. R., Herz, D. M., Brown, P., Forstmann, B. U. & Zaghloul, K. Frontosubthalamic circuits for control of action and cognition. J. Neurosci. 36, 11489–11495 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Rae, C. L., Hughes, L. E., Weaver, C., Anderson, M. C. & Rowe, J. B. Selection and stopping in voluntary action: a meta-analysis and combined fMRI study. NeuroImage 86, 381–391 (2014).

    PubMed  Article  Google Scholar 

  39. 39.

    Watanabe, T. et al. Effects of rTMS of pre-supplementary motor area on fronto basal ganglia network activity during stop-signal task. J. Neurosci. 35, 4813–4823 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Floden, D. & Stuss, D. T. Inhibitory control is slowed in patients with right superior medial frontal damage. J. Cognit. Neurosci. 18, 1843–1849 (2006).

    Article  Google Scholar 

  41. 41.

    Roberts, R. E. & Husain, M. A dissociation between stopping and switching actions following a lesion of the pre-supplementary motor area. Cortex 63, 184–195 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Kohl, S. et al. Cortical paired associative stimulation influences response inhibition: cortico-cortical and cortico-subcortical networks. Biol. Psychiatry 85, 355–363 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Cai, W., George, J. S., Verbruggen, F., Chambers, C. D. & Aron, A. R. The role of the right presupplementary motor area in stopping action: two studies with event-related transcranial magnetic stimulation. J. Neurophysiol. 108, 380–389 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Nachev, P., Kennard, C. & Husain, M. Functional role of the supplementary and pre-supplementary motor areas. Nat. Rev. Neurosci. 9, 856–869 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Thiebaut de Schotten, M., Dell’Acqua, F., Valabregue, R. & Catani, M. Monkey to human comparative anatomy of the frontal lobe association tracts. Cortex 48, 82–96 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Rae, C. L., Hughes, L. E., Anderson, M. C. & Rowe, J. B. The prefrontal cortex achieves inhibitory control by facilitating subcortical motor pathway connectivity. J. Neurosci. 35, 786–794 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Inase, M., Tokuno, H., Nambu, A., Akazawa, T. & Takada, M. Corticostriatal and corticosubthalamic input zones from the presupplementary motor area in the macaque monkey: comparison with the input zones from the supplementary motor area. Brain Res. 833, 191–201 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Isoda, M. & Hikosaka, O. Role for subthalamic nucleus neurons in switching from automatic to controlled eye movement. J. Neurosci. 28, 7209–7218 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Allen, C., Singh, K. D., Verbruggen, F. & Chambers, C. D. Evidence for parallel activation of the pre-supplementary motor area and inferior frontal cortex during response inhibition: a combined MEG and TMS study. R. Soc. Open Sci. 5, 171369 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Wessel, J. R. β-Bursts reveal the trial-to-trial dynamics of movement initiation and cancellation. J. Neurosci. 40, 411–423 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Errington, S. P., Woodman, G. F. & Schall, J. D. Dissociation of medial frontal β-bursts and executive control. J. Neurosci. 40, 9272–9282 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Li, B., Nguyen, T. P., Ma, C. & Dan, Y. Inhibition of impulsive action by projection-defined prefrontal pyramidal neurons. Proc. Natl Acad. Sci. USA 117, 202000523 (2020). A rodent optogenetic study confirming the importance of a dmPFC–STN pathway for action control.

    Google Scholar 

  53. 53.

    Fife, K. H. et al. Causal role for the subthalamic nucleus in interrupting behavior. eLife 6, e27689 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Cavanagh, J. F. et al. Subthalamic nucleus stimulation reverses mediofrontal influence over decision threshold. Nat. Neurosci. 14, 1462–1467 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Herz, D. M. et al. Mechanisms underlying decision-making as revealed by deep-brain stimulation in patients with Parkinson’s disease. Curr. Biol. 28, 1169–1178.e6 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Wiecki, T. V. & Frank, M. J. A computational model of inhibitory control in frontal cortex and basal ganglia. Psychol. Rev. 120, 329–355 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    de Hollander, G., Keuken, M. C., van der Zwaag, W., Forstmann, B. U. & Trampel, R. Comparing functional MRI protocols for small, iron-rich basal ganglia nuclei such as the subthalamic nucleus at 7 T and 3 T. Hum. Brain Mapp. 38, 3226–3248 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Swann, N. et al. Deep brain stimulation of the subthalamic nucleus alters the cortical profile of response inhibition in the beta frequency band: a scalp EEG study in Parkinson’s disease. J. Neurosci. 31, 5721–5729 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Ray, N. J. et al. The role of the subthalamic nucleus in response inhibition: evidence from deep brain stimulation for Parkinson’s disease. Neuropsychologia 47, 2828–2834 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Mirabella, G. et al. Deep brain stimulation of subthalamic nuclei affects arm response inhibition in Parkinson’s patients. Cereb. Cortex 22, 1124–1132 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    van den Wildenberg, W. P. M. et al. Stimulation of the subthalamic region facilitates the selection and inhibition of motor responses in Parkinson’s disease. J. Cognit. Neurosci. 18, 626–636 (2006).

    Article  Google Scholar 

  62. 62.

    Bastin, J. et al. Inhibitory control and error monitoring by human subthalamic neurons. Transl. Psychiatry 4, e439–e439 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Benis, D. et al. Response inhibition rapidly increases single-neuron responses in the subthalamic nucleus of patients with Parkinson’s disease. Cortex 84, 111–123 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Wessel, J. R. et al. Stop-related subthalamic beta activity indexes global motor suppression in Parkinson’s disease. Mov. Disord. 31, 1846–1853 (2016). A study of individuals with Parkinson disease supporting the idea that the global motor system suppression is related to basal ganglia (STN) output.

    PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Benis, D. et al. Subthalamic nucleus activity dissociates proactive and reactive inhibition in patients with Parkinson’s disease. NeuroImage 91, 273–281 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Badry, R. et al. Suppression of human cortico-motoneuronal excitability during the stop-signal task. Clin. Neurophysiol. 120, 1717–1723 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  67. 67.

    Hazrati, L. N. & Parent, A. Convergence of subthalamic and striatal efferents at pallidal level in primates: an anterograde double-labeling study with biocytin and PHA-L. Brain Res. 569, 336–340 (1992).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Miyachi, S. et al. Somatotopically arranged inputs from putamen and subthalamic nucleus to primary motor cortex. Neurosci. Res. 56, 300–308 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  69. 69.

    Kelly, R. M. & Strick, P. L. Macro-architecture of basal ganglia loops with the cerebral cortex: Use of rabies virus to reveal multisynaptic circuits. Prog. Brain Res. 143, 447–459 (2004).

    Article  Google Scholar 

  70. 70.

    Pasquereau, B. & Turner, R. S. A selective role for ventromedial subthalamic nucleus in inhibitory control. eLife 6, e31627 (2017). A non-human primate study supporting the idea that the ventral portion of the STN is specifically involved in action-stopping, consistent with this region receiving inputs from the lateral PFC.

    PubMed  PubMed Central  Article  Google Scholar 

  71. 71.

    Ye, Z. et al. Predicting beneficial effects of atomoxetine and citalopram on response inhibition in Parkinson’s disease with clinical and neuroimaging measures. Hum. Brain Mapp. 37, 1026–1037 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Zandbelt, B. B., Bloemendaal, M., Neggers, S. F. W., Kahn, R. S. & Vink, M. Expectations and violations: delineating the neural network of proactive inhibitory control. Hum. Brain Mapp. 34, 2015–2024 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Zandbelt, B. B., Bloemendaal, M., Hoogendam, J. M., Kahn, R. S. & Vink, M. Transcranial magnetic stimulation and functional MRI reveal cortical and subcortical interactions during stop-signal response inhibition. J. Cogn. Neurosci. 25, 157–174 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Majid, D. S. A., Cai, W., Corey-Bloom, J. & Aron, A. R. Proactive selective response suppression is implemented via the basal ganglia. J. Neurosci. 33, 13259–13269 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Rao, J. A. et al. Disruption of response inhibition circuits in prodromal Huntington disease. Cortex 58, 72–85 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Jahfari, S., Stinear, C. M., Claffey, M., Verbruggen, F. & Aron, A. R. Responding with restraint: what are the neurocognitive mechanisms? J. Cognit. Neurosci. 22, 1479–1492 (2010).

    Article  Google Scholar 

  77. 77.

    Terra, H. et al. Prefrontal cortical projection neurons targeting dorsomedial striatum control behavioral inhibition. Curr. Biol. 30, 4188–4200.e5 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. 78.

    Gu, B.-M., Schmidt, R. & Berke, J. D. Globus pallidus dynamics reveal covert strategies for behavioral inhibition. eLife 9, 1–19 (2020).

    Article  Google Scholar 

  79. 79.

    Klaus, A. et al. The spatiotemporal organization of the striatum encodes action space. Neuron 95, 1171–1180.e7 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Jin, X., Tecuapetla, F. & Costa, R. M. Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat. Neurosci. 17, 423–430 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Mink, J. W. The basal ganglia: focused selection and inhibition of competing motor programs. Prog. Neurobiol. 50, 381–425 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  82. 82.

    Coxon, J. P., Stinear, C. M. & Byblow, W. D. Intracortical inhibition during volitional inhibition of prepared action. J. Neurophysiol. 95, 3371–3383 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  83. 83.

    Cai, W., Oldenkamp, C. L. & Aron, A. R. Stopping speech suppresses the task-irrelevant hand. Brain Lang. 120, 412–415 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  84. 84.

    Pani, P. et al. Visual salience of the stop signal affects the neuronal dynamics of controlled inhibition. Sci. Rep. 8, 1–13 (2018).

    Article  CAS  Google Scholar 

  85. 85.

    Jerjian, S. J., Sahani, M. & Kraskov, A. Movement initiation and grasp representation in premotor and primary motor cortex mirror neurons. eLife 9, 1–26 (2020).

    Article  Google Scholar 

  86. 86.

    Raud, L. & Huster, R. J. The temporal dynamics of response inhibition and their modulation by cognitive control. Brain Topogr. 30, 486–501 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  87. 87.

    Schmidt, R. & Berke, J. D. A pause-then-cancel model of stopping: evidence from basal ganglia neurophysiology. Philos. Trans. R. Soc. B: Biol. Sci. https://doi.org/10.1098/rstb.2016.0202 (2017).

    Article  Google Scholar 

  88. 88.

    Schmidt, R., Leventhal, D. K., Mallet, N., Chen, F. & Berke, J. D. Canceling actions involves a race between basal ganglia pathways. Nat. Neurosci. 16, 1118–1124 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Mallet, N. et al. Arkypallidal cells send a stop signal to striatum. Neuron 89, 308–316 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. 90.

    Frank, M. J., Samanta, J., Moustafa, A. A. & Sherman, S. J. Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science 318, 1309–1312 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  91. 91.

    Heston, J. et al. Activation of subthalamic nucleus stop circuit disrupts cognitive performance. eNeuro https://doi.org/10.1523/ENEURO.0159-20.2020 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Wessel, J. R. et al. Surprise disrupts cognition via a fronto-basal ganglia suppressive mechanism. Nat. Commun. 7, 1–10 (2016).

    Article  CAS  Google Scholar 

  93. 93.

    Ardila, A., Bernal, B. & Rosselli, M. How localized are language brain areas? A review of Brodmann areas involvement in oral language. Arch. Clin. Neuropsychol. 31, 112–122 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  94. 94.

    Stewart, L., Walsh, V., Frith, U. & Rothwell, J. C. TMS produces two dissociable types of speech disruption. NeuroImage 13, 472–478 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  95. 95.

    Xue, G., Aron, A. R. & Poldrack, R. A. Common neural substrates for inhibition of spoken and manual responses. Cereb. Cortex 18, 1923–1932 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  96. 96.

    Wagner, J., Wessel, J. R., Ghahremani, A. & Aron, A. R. Establishing a right frontal beta signature for stopping action in scalp EEG: implications for testing inhibitory control in other task contexts. J. Cognit. Neurosci. 30, 107–118 (2018).

    Article  Google Scholar 

  97. 97.

    Ghahremani, A. et al. Stopping and slowing manual and spoken responses: similar oscillatory signatures recorded from the subthalamic nucleus. Brain Lang. 176, 1–10 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  98. 98.

    Kinoshita, M. et al. Role of fronto-striatal tract and frontal aslant tract in movement and speech: an axonal mapping study. Brain Struct. Funct. 220, 3399–3412 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  99. 99.

    Lüders, H. et al. Localization of cortical function: new information from extraoperative monitoring of patients with epilepsy. Epilepsia 29, S56–S65 (1988).

    PubMed  Article  PubMed Central  Google Scholar 

  100. 100.

    Filevich, E., Kühn, S. & Haggard, P. Negative motor phenomena in cortical stimulation: Implications for inhibitory control of human action. Cortex 48, 1251–1261 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  101. 101.

    Takakusaki, K. Functional neuroanatomy for posture and gait control. J. Mov. Disord. 10, 1–17 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  102. 102.

    Gritton, H. J. et al. Unique contributions of parvalbumin and cholinergic interneurons in organizing striatal networks during movement. Nat. Neurosci. 22, 586–597 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    Rizzi, G. & Tan, K. R. Synergistic nigral output pathways shape movement. Cell Rep. 27, 2184–2198.e4 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  104. 104.

    Pamukcu, A. et al. Parvalbumin+ and Npas1+ pallidal neurons have distinct circuit topology and function. (2020) https://doi.org/10.1523/JNEUROSCI.0361-20.2020.

  105. 105.

    Ebersbach, G., Moreau, C., Gandor, F., Defebvre, L. & Devos, D. Clinical syndromes: parkinsonian gait. Mov. Disord. 28, 1552–1559 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  106. 106.

    Fischer, P. et al. Alternating modulation of subthalamic nucleus beta oscillations during stepping. J. Neurosci. 38, 5111–5121 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. 107.

    Bancroft, M. J. & Day, B. L. The throw-and-catch model of human gait: evidence from coupling of pre-step postural activity and step location. Front. Hum. Neurosci. 10, 635 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  108. 108.

    Potocanac, Z., Pijnappels, M., Verschueren, S., van Dieën, J. & Duysens, J. Two-stage muscle activity responses in decisions about leg movement adjustments during trip recovery. J. Neurophysiol. 115, 143–156 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  109. 109.

    Goode, C., Cole, D. M. & Bolton, D. A. E. Staying upright by shutting down? Evidence for global suppression of the motor system when recovering balance. Gait Posture 70, 260–263 (2019). An innovative study in humans attempting to study the neural basis of action-stopping in a more naturalistic gait-and-balance context.

    PubMed  Article  PubMed Central  Google Scholar 

  110. 110.

    Rydalch, G., Bell, H. B., Ruddy, K. L. & Bolton, D. A. E. Stop-signal reaction time correlates with a compensatory balance response. Gait Posture 71, 273–278 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  111. 111.

    Adam, E., Johns, T. & Sur, M. Cortico-subthalamic projections send brief stop signals to halt visually-guided locomotion. https://doi.org/10.1101/2020.02.05.936443 (2020).

  112. 112.

    van der Salm, S. M. A. et al. Distinctive tics suppression network in Gilles de la Tourette syndrome distinguished from suppression of natural urges using multimodal imaging. NeuroImage Clin. 20, 783–792 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  113. 113.

    Berman, B. D., Horovitz, S. G., Morel, B. & Hallett, M. Neural correlates of blink suppression and the buildup of a natural bodily urge. NeuroImage 59, 1441–1450 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  114. 114.

    Mazzone, S. B., Cole, L. J., Ando, A., Egan, G. F. & Farrell, M. J. Investigation of the neural control of cough and cough suppression in humans using functional brain imaging. J. Neurosci. 31, 2948–2958 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  115. 115.

    Ando, A. et al. Neural correlates of cough hypersensitivity in humans: evidence for central sensitisation and dysfunctional inhibitory control. Thorax 71, 323–329 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  116. 116.

    McKay, L. C., Adams, L., Frackowiak, R. S. J. & Corfield, D. R. A bilateral cortico-bulbar network associated with breath holding in humans, determined by functional magnetic resonance imaging. NeuroImage 40, 1824–1832 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  117. 117.

    Lynn, M. T., Demanet, J., Krebs, R. M., van Dessel, P. & Brass, M. Voluntary inhibition of pain avoidance behavior: an fMRI study. Brain Struct. Funct. 221, 1309–1320 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  118. 118.

    Critchley, H. D. et al. Slow breathing and hypoxic challenge: cardiorespiratory consequences and their central neural substrates. (2015) https://doi.org/10.1371/journal.pone.0127082.

  119. 119.

    Sundby, K. K., Wagner, J. & Aron, A. R. The functional role of response suppression during an urge to relieve pain. J. Cognit. Neurosci. 31, 1404–1421 (2018).

    Article  Google Scholar 

  120. 120.

    Smith, W. K. The representation of respiratory movements in the cerebral cortex. J. Neurophysiol. 1, 55–68 (1938).

    Article  Google Scholar 

  121. 121.

    Schel, M. A. et al. Neural correlates of intentional and stimulus-driven inhibition: a comparison. Front. Hum. Neurosci. 8, 27 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  122. 122.

    Jahanshahi, M. & Rothwell, J. C. Inhibitory dysfunction contributes to some of the motor and non-motor symptoms of movement disorders and psychiatric disorders. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160198 (2017).

    Article  Google Scholar 

  123. 123.

    de Havas, J., Gomi, H. & Haggard, P. Experimental investigations of control principles of involuntary movement: a comprehensive review of the Kohnstamm phenomenon. Exp. Brain Res. 235, 1953–1997 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  124. 124.

    Ghosh, A., Rothwell, J. & Haggard, P. Using voluntary motor commands to inhibit involuntary arm movements. Proc. Biol. Sci. 281, 20141139 (2014).

    PubMed  PubMed Central  Google Scholar 

  125. 125.

    Parkinson, A., McDonagh, M. & Vidyasagar, R. Brain activation in an involuntary human action. Brain Res. 1304, 57–65 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  126. 126.

    de Havas, J., Ghosh, A., Gomi, H. & Haggard, P. Voluntary motor commands reveal awareness and control of involuntary movement. Cognition 155, 155–167 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  127. 127.

    Wessel, J. R. & Aron, A. R. Unexpected events induce motor slowing via a brain mechanism for action-stopping with global suppressive effects. J. Neurosci. 33, 18481–18491 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  128. 128.

    Dutra, I. C., Waller, D. A. & Wessel, J. R. Perceptual surprise improves action stopping by nonselectively suppressing motor activity via a neural mechanism for motor inhibition. J. Neurosci. 38, 1482–1492 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  129. 129.

    Hampshire, A. & Sharp, D. J. Contrasting network and modular perspectives on inhibitory control. Trends Cognit. Sci. 19, 445–452 (2015).

    Article  Google Scholar 

  130. 130.

    Aron, A. R., Robbins, T. W. & Poldrack, R. A. Right inferior frontal cortex: addressing the rebuttals. Front. Hum. Neurosci. 8, 905 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  131. 131.

    Sharp, D. J. et al. Distinct frontal systems for response inhibition, attentional capture, and error processing. Proc. Natl Acad. Sci. USA 107, 6106–6111 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  132. 132.

    Boto, E. et al. Moving magnetoencephalography towards real-world applications with a wearable system. Nature 555, 657–661 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  133. 133.

    Lacerenza, M. et al. Wearable and wireless time-domain near-infrared spectroscopy system for brain and muscle hemodynamic monitoring. Biomed. Opt. Express https://doi.org/10.1364/boe.403327 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  134. 134.

    Topalovic, U. et al. Wireless programmable recording and stimulation of deep brain activity in freely moving humans. Neuron 108, 322–334.e9 (2020). A demonstration of novel technology for wearable devices for recording and perturbing brain activity, and its integration with other behavioural recording devices.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  135. 135.

    Poldrack, R. A. Can cognitive processes be inferred from neuroimaging data? Trends Cognit. Sci. 10, 59–63 (2006).

    Article  Google Scholar 

  136. 136.

    Verbruggen, F. & Logan, G. D. Proactive adjustments of response strategies in the stop-signal paradigm. J. Exp. Psychol. 35, 835–854 (2009).

    Google Scholar 

  137. 137.

    Lee, W.-T. & Kang, M.-S. Electrophysiological evidence for distinct proactive control mechanisms in a stop-signal task: an individual differences approach. Front. Psychol. 11, 1105 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  138. 138.

    Horstmann, G. The surprise-attention link: a review. Ann. N. Y. Acad. Sci. 1339, 106–115 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  139. 139.

    Liang, F. et al. Sensory cortical control of a visually induced arrest behavior via corticotectal projections. Neuron 86, 755–767 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  140. 140.

    Eisenberg, I. W. et al. Uncovering the structure of self-regulation through data-driven ontology discovery. Nat. Commun. 10, 1–13 (2019).

    CAS  Article  Google Scholar 

  141. 141.

    Neef, N. E. et al. Structural connectivity of right frontal hyperactive areas scales with stuttering severity. Brain 141, 191–204 (2018). A neuroimaging study highlighting the relationship between connectivity in right prefrontal regions of the stopping network and stuttering severity.

    PubMed  Article  PubMed Central  Google Scholar 

  142. 142.

    Eggers, K., de Nil, L. F. & van den Bergh, B. R. H. Inhibitory control in childhood stuttering. J. Fluen. Disord. 38, 1–13 (2013).

    Article  Google Scholar 

  143. 143.

    Markett, S. et al. Impaired motor inhibition in adults who stutter – evidence from speech-free stop-signal reaction time tasks. Neuropsychologia 91, 444–450 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  144. 144.

    Treleaven, S. B. & Coalson, G. A. Manual response inhibition and quality of life in adults who stutter. J. Commun. Disord. 88, 106053 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  145. 145.

    Fox, P. T. et al. A PET study of the neural systems of stuttering. Nature 382, 158–162 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  146. 146.

    Belyk, M., Kraft, S. J. & Brown, S. Stuttering as a trait or state - an ALE meta-analysis of neuroimaging studies. Eur. J. Neurosci. 41, 275–284 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  147. 147.

    Kell, C. A. et al. How the brain repairs stuttering. Brain 132, 2747–2760 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  148. 148.

    Preibisch, C. et al. Evidence for compensation for stuttering by the right frontal operculum. NeuroImage 20, 1356–1364 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  149. 149.

    Mink, J. W. Basal ganglia dysfunction in Tourette’s syndrome: a new hypothesis. Pediatric Neurol. 25, 190–198 (2001).

    CAS  Article  Google Scholar 

  150. 150.

    Kataoka, Y. et al. Decreased number of parvalbumin and cholinergic interneurons in the striatum of individuals with Tourette syndrome. J. Comp. Neurol. 518, 277–291 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  151. 151.

    Morand-Beaulieu, S. et al. The puzzling question of inhibitory control in Tourette syndrome: a meta-analysis. Neurosci. Biobehav. Rev. 80, 240–262 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  152. 152.

    Koller, W. C. & Biary, N. M. Volitional control of involuntary movements. Mov. Disord. 4, 153–156 (1989).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  153. 153.

    Kim, S. et al. Tic suppression in children with recent-onset tics predicts 1-year tic outcome. J. Child. Neurol. 34, 757–764 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  154. 154.

    Fründt, O., Woods, D. & Ganos, C. Behavioral therapy for Tourette syndrome and chronic tic disorders. Neurol. Clin. Pract. 7, 148–156 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  155. 155.

    Ganos, C. et al. Motor cortical excitability during voluntary inhibition of involuntary tic movements. Mov. Disord. 33, 1804–1809 (2018). A study in individuals with tics demonstrating that tonic voluntary suppression of tics is associated with a global motor system suppression akin to that seen when stopping voluntary actions.

    PubMed  Article  PubMed Central  Google Scholar 

  156. 156.

    Brandt, V. C. et al. Temporal relationship between premonitory urges and tics in Gilles de la Tourette syndrome. Cortex 77, 24–37 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  157. 157.

    Ganos, C. et al. The neural correlates of tic inhibition in Gilles de la Tourette syndrome. Neuropsychologia 65, 297–301 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  158. 158.

    Peterson, B. S. et al. A functional magnetic resonance imaging study of tic suppression in tourette syndrome. Arch. Gen. Psychiatry 55, 326–333 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  159. 159.

    Zapparoli, L., Macerollo, A., Joyce, E. M., Martino, D. & Kilner, J. M. Voluntary tic suppression and the normalization of motor cortical beta power in Gilles de la Tourette syndrome: an EEG study. Eur. J. Neurosci. https://doi.org/10.1111/ejn.14548 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  160. 160.

    Ehgoetz Martens, K. A. et al. The functional network signature of heterogeneity in freezing of gait. Brain 141, 1145–1160 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  161. 161.

    Lewis, S. J. G. & Shine, J. M. The next step: a common neural mechanism for freezing of gait. Neuroscientist 22, 72–82 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  162. 162.

    Shine, J. M. et al. Abnormal patterns of theta frequency oscillations during the temporal evolution of freezing of gait in Parkinson’s disease. Clin. Neurophysiol. 125, 569–576 (2014).

    CAS  PubMed  Article  Google Scholar 

  163. 163.

    Pozzi, N. G. et al. Freezing of gait in Parkinson’s disease reflects a sudden derangement of locomotor network dynamics. Brain 142, 2037–2050 (2019). A study in individuals with Parkinson disease demonstrating that connectivity in a putative PFC–STN hyperdirect pathway is involved in the freezing of gait.

    PubMed  PubMed Central  Article  Google Scholar 

  164. 164.

    Matar, E. et al. Identifying the neural correlates of doorway freezing in Parkinson’s disease. Hum. Brain Mapp. 40, 2055–2064 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  165. 165.

    Chen, C. C. et al. Subthalamic nucleus oscillations correlate with vulnerability to freezing of gait in patients with Parkinson’s disease. Neurobiol. Dis. 132, 104605 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  166. 166.

    Rubinstein, T. C., Giladi, N. & Hausdorff, J. M. The power of cueing to circumvent dopamine deficits: a review of physical therapy treatment of gait disturbances in Parkinson’s disease. Mov. Disord. 17, 1148–1160 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  167. 167.

    Castiglione, A. & Aron, A. R. Unwanted memory intrusions recruit broad motor suppression. J. Cogn. Neurosci. https://doi.org/10.1162/jocn_a_01642 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  168. 168.

    Castiglione, A., Wagner, J., Anderson, M. & Aron, A. R. Preventing a thought from coming to mind elicits increased right frontal beta just as stopping action does. Cereb. Cortex 29, 2160–2172 (2019). A neurophysiological study showing that stopping an unwanted thought intrusion from coming to mind is associated with a similar prefrontal beta-band signature as stopping an action.

    PubMed  PubMed Central  Article  Google Scholar 

  169. 169.

    Anderson, M. C. & Green, C. Suppressing unwanted memories by executive control. Nature 410, 366–369 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  170. 170.

    Visser, R. M. et al. Neuropsychological Mechanisms of Intrusive Thinking. In: Kalivas P. W. and Paulus M. P. (eds). Vol. 30, 124–184 (The MIT Press, 2020).

  171. 171.

    Skippen, P. et al. Reliability of triggering inhibitory process is a better predictor of impulsivity than SSRT. Acta Psychol. 192, 104–117 (2019).

    Article  Google Scholar 

  172. 172.

    Klaus, A., Alves da Silva, J. & Costa, R. M. What, if, and when to move: basal ganglia circuits and self-paced action initiation. Annu. Rev. Neurosci. 42, 459–483 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  173. 173.

    Nambu, A., Tokuno, H. & Takada, M. Functional significance of the cortico-subthalamo-pallidal “hyperdirect” pathway. Neurosci. Res. 43, 111–117 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  174. 174.

    Osada, T. et al. An essential role of the intraparietal sulcus in response inhibition predicted by parcellation-based network. J. Neurosci. 39, 2509–2521 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  175. 175.

    Hannah, R. & Jana, S. Disentangling the role of posterior parietal cortex in response inhibition. J. Neurosci. 39, 6814–6816 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  176. 176.

    Silsupadol, P., Teja, K. & Lugade, V. Reliability and validity of a smartphone-based assessment of gait parameters across walking speed and smartphone locations: body, bag, belt, hand, and pocket. Gait Posture 58, 516–522 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  177. 177.

    Cai, W., Oldenkamp, C. L. & Aron, A. R. A proactive mechanism for selective suppression of response tendencies. J. Neurosci. 31, 5965–5969 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  178. 178.

    Majid, D. S. A., Cai, W., George, J. S., Verbruggen, F. & Aron, A. R. Transcranial magnetic stimulation reveals dissociable mechanisms for global versus selective corticomotor suppression underlying the stopping of action. Cereb. Cortex 22, 363–371 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  179. 179.

    Jahfari, S. et al. How preparation changes the need for top-down control of the basal ganglia when inhibiting premature actions. J. Neurosci. 32, 10870–10878 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  180. 180.

    Aron, A. R. & Verbruggen, F. Stop the presses: dissociating a selective from a global mechanism for stopping: research article. Psychol. Sci. 19, 1146–1153 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  181. 181.

    Mars, R. B., Piekema, C., Coles, M. G. H., Hulstijn, W. & Toni, I. On the programming and reprogramming of actions. Cereb. Cortex 17, 2972–2979 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  182. 182.

    Boecker, M. et al. When response inhibition is followed by response reengagement: an event-related fMRI study. Hum. Brain Mapp. 32, 94–106 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  183. 183.

    Isoda, M. & Hikosaka, O. Switching from automatic to controlled action by monkey medial frontal cortex. Nat. Neurosci. 10, 240–248 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  184. 184.

    Neubert, F.-X., Mars, R. B., Buch, E. R., Olivier, E. & Rushworth, M. F. S. Cortical and subcortical interactions during action reprogramming and their related white matter pathways. Proc. Natl Acad. Sci. USA 107, 13240–13245 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  185. 185.

    Greenhouse, I. & Wessel, J. R. EEG signatures associated with stopping are sensitive to preparation. Psychophysiology 50, 900–908 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  186. 186.

    Wessel, J. R. & Aron, A. R. It’s not too late: The onset of the frontocentral P3 indexes successful response inhibition in the stop-signal paradigm. Psychophysiology 52, 472–480 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  187. 187.

    Huster, R. J., Messel, M. S., Thunberg, C. & Raud, L. The P300 as marker of inhibitory control – fact or fiction? Cortex 132, 334–348 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  188. 188.

    Atsma, J., Maij, F., Gu, C., Medendorp, W. P. & Corneil, B. D. Active braking of whole-arm reaching movements provides single-trial neuromuscular measures of movement cancellation. J. Neurosci. 38, 4367–4382 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge funding support from the US National Institutes of Health (NS106822 and DA026452) and comments on the manuscript from J. Rothwell.

Author information

Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Ricci Hannah.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neuroscience thanks D. Bolton, S. Konishi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Offline transcranial magnetic stimulation

(TMS). Non-invasive brain stimulation eliciting long-lasting after-effects. Typically delivered before a participant undergoes behavioural testing or neuroimaging.

Electrocorticography

(ECoG). Invasive electrophysiological technique that uses electrodes placed directly on the exposed surface of the brain to record electrical activity from the cerebral cortex.

Hyperdirect pathway

Pathway connecting cortical areas directly to the subthalamic nucleus, bypassing the striatum.

Electromyography

(EMG). Electrophysiological technique that uses electrodes placed on the skin over a muscle to record its electrical activity.

Online TMS

Non-invasive brain stimulation eliciting short-lived after-effects. Typically delivered while a participant undergoes behavioural testing or neuroimaging.

Conflict resolution

In the motor domain, the process of resolving competition between competing action plans.

Go–no-go task

A paradigm where the participant is required to perform speeded responses to a go cue and to withhold a response following a no-go cue.

Global motor system suppression

Suppression of motor system excitability detected in task-irrelevant muscle representations when stopping with another effector. Relies on transcranial magnetic stimulation and electromyography methods.

Premanifest Huntington disease

The presymptomatic phase of the disease in an individual carrying the genetic mutation causing it.

Agonist muscle

The muscles that, when activated, are primarily responsible for causing movement about a joint.

Gait

The normal pattern of limb movements underpinning locomotion.

Kohnstamm phenomenon

A long-lasting (10–60-s) involuntary muscle contraction that develops after a sustained, voluntary isometric contraction: after pushing your arm against a wall for a long period, you experience your arm rising.

Antagonist muscles

The muscles that, when activated, oppose the movement caused by the agonist muscles about a joint.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hannah, R., Aron, A.R. Towards real-world generalizability of a circuit for action-stopping. Nat Rev Neurosci 22, 538–552 (2021). https://doi.org/10.1038/s41583-021-00485-1

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing