Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Roles of RIPK1 as a stress sentinel coordinating cell survival and immunogenic cell death

Abstract

Cell death and inflammation are closely linked arms of the innate immune response to combat infection and tissue malfunction. Recent advancements in our understanding of the intricate signals originating from dying cells have revealed that cell death serves as more than just an end point. It facilitates the exchange of information between the dying cell and cells of the tissue microenvironment, particularly immune cells, alerting and recruiting them to the site of disturbance. Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is emerging as a critical stress sentinel that functions as a molecular switch, governing cellular survival, inflammatory responses and immunogenic cell death signalling. Its tight regulation involves multiple layers of post-translational modifications. In this Review, we discuss the molecular mechanisms that regulate RIPK1 to maintain homeostasis and cellular survival in healthy cells, yet drive cell death in a context-dependent manner. We address how RIPK1 mutations or aberrant regulation is associated with inflammatory and autoimmune disorders and cancer. Moreover, we tease apart what is known about catalytic and non-catalytic roles of RIPK1 and discuss the successes and pitfalls of current strategies that aim to target RIPK1 in the clinic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Regulation of adaptive immune responses by dying cells.
Fig. 2: RIPK1 signalling in cell survival versus cell death.
Fig. 3: RIPK1 in TNFR1 signalling.

Similar content being viewed by others

References

  1. Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428–435 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Meier, P., Finch, A. & Evan, G. Apoptosis in development. Nature 407, 796–801 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Legrand, A. J., Konstantinou, M., Goode, E. F. & Meier, P. The diversification of cell death and immunity: memento mori. Mol. Cell 76, 232–242 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Fuchs, Y. & Steller, H. Programmed cell death in animal development and disease. Cell 147, 742–758 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Morioka, S., Maueroder, C. & Ravichandran, K. S. Living on the edge: efferocytosis at the interface of homeostasis and pathology. Immunity 50, 1149–1162 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ravichandran, K. S. Beginnings of a good apoptotic meal: the find-me and eat-me signaling pathways. Immunity 35, 445–455 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ravichandran, K. S. ‘Recruitment signals’ from apoptotic cells: invitation to a quiet meal. Cell 113, 817 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. McArthur, K. & Kile, B. T. Apoptotic caspases: multiple or mistaken identities? Trends Cell Biol. 28, 475–493 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. McArthur, K. et al. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 359, eaao6047 (2018).

    Article  PubMed  Google Scholar 

  10. Giampazolias, E. et al. Mitochondrial permeabilization engages NF-kappaB-dependent anti-tumour activity under caspase deficiency. Nat. Cell Biol. 19, 1116–1129 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rongvaux, A. et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 159, 1563–1577 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. White, M. J. et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 159, 1549–1562 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yatim, N., Cullen, S. & Albert, M. L. Dying cells actively regulate adaptive immune responses. Nat. Rev. Immunol. 17, 262–275 (2017). This review summarizes what is currently known regarding how cell death can trigger cross-priming of CD8+ T cells.

    Article  CAS  PubMed  Google Scholar 

  14. Peltzer, N. & Walczak, H. Cell Death and inflammation — a vital but dangerous liaison. Trends Immunol. 40, 387–402 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Martin, S. J. Cell death and inflammation: the case for IL-1 family cytokines as the canonical DAMPs of the immune system. FEBS J. 283, 2599–2615 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Lazear, H. M., Schoggins, J. W. & Diamond, M. S. Shared and distinct functions of type I and type III interferons. Immunity 50, 907–923 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Green, D. R. Another face of RIPK1. EMBO Rep. 16, 674–675 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, L. & Lalaoui, N. 25 Years of research put RIPK1 in the clinic. Semin. Cell Dev. Biol. 109, 86–95 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Cho, Y. S. et al. Phosphorylation-driven assembly of the RIP1–RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–1123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Degterev, A. et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol. 1, 112–119 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Sun, L. et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213–227 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Yatim, N. et al. RIPK1 and NF-κB signaling in dying cells determines cross-priming of CD8+ T cells. Science 350, 328–334 (2015). This paper demonstrates that RIPK1-induced cell death and RIPK1-mediated activation of NF-κB (inflammatory signalling) enable dying cells to incite adaptive immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vandenabeele, P., Bultynck, G. & Savvides, S. N. Pore-forming proteins as drivers of membrane permeabilization in cell death pathways. Nat. Rev. Mol. Cell Biol. 24, 312–333 (2023).

    Article  CAS  PubMed  Google Scholar 

  24. Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Kayagaki, N. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666–671 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Orozco, S. L. et al. RIPK3 activation leads to cytokine synthesis that continues after loss of cell membrane integrity. Cell Rep. 28, 2275–2287.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Snyder, A. G. et al. Intratumoral activation of the necroptotic pathway components RIPK1 and RIPK3 potentiates antitumor immunity. Sci. Immunol. 4, eaaw2004 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Workenhe, S. T. et al. De novo necroptosis creates an inflammatory environment mediating tumor susceptibility to immune checkpoint inhibitors. Commun. Biol. 3, 645 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Aaes, T. L. et al. Vaccination with necroptotic cancer cells induces efficient anti-tumor immunity. Cell Rep. 15, 274–287 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Vandenabeele, P., Vandecasteele, K., Bachert, C., Krysko, O. & Krysko, D. V. Immunogenic apoptotic cell death and anticancer immunity. Adv. Exp. Med. Biol. 930, 133–149 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Annibaldi, A. & Meier, P. Checkpoints in TNF-induced cell death: implications in inflammation and cancer. Trends Mol. Med. 24, 49–65 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Mifflin, L., Ofengeim, D. & Yuan, J. Receptor-interacting protein kinase 1 (RIPK1) as a therapeutic target. Nat. Rev. Drug Discov. 19, 553–571 (2020). This review explores diseases associated with RIPK1 and its regulators, discusses RIPK1 as a therapeutic target and the development and outcome of clinical grade RIPK1 inhibitors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dannappel, M. et al. RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature 513, 90–94 (2014). This study demonstrates that the kinase-independent function of RIPK1 is essential for intestinal and skin homeostasis by preventing epithelial cell apoptosis and necroptosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dillon, C. P. et al. RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell 157, 1189–1202 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kelliher, M. A. et al. The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity 8, 297 (1998). This paper shows that the scaffold function of RIPK1 is important in mediating NF-κB activation required for survival.

    Article  CAS  PubMed  Google Scholar 

  36. Rickard, J. A. et al. RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis. Cell 157, 1175–1188 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Takahashi, N. et al. RIPK1 ensures intestinal homeostasis by protecting the epithelium against apoptosis. Nature 513, 95–99 (2014). This study shows that the kinase-independent function of RIPK1 prevents apoptosis of IECs.

    Article  CAS  PubMed  Google Scholar 

  38. Lin, J. et al. RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation. Nature 540, 124–128 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Newton, K. et al. RIPK1 inhibits ZBP1-driven necroptosis during development. Nature 540, 129–133 (2016). Together with Lin et al. (2016), this study demonstrates that RIPK1 acts as a negative regulator of ZBP1-mediated necroptosis.

    Article  CAS  PubMed  Google Scholar 

  40. Huyghe, J. et al. ATG9A prevents TNF cytotoxicity by an unconventional lysosomal targeting pathway. Science 378, 1201–1207 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Sun, X., Yin, J., Starovasnik, M. A., Fairbrother, W. J. & Dixit, V. M. Identification of a novel homotypic interaction motif required for the phosphorylation of receptor-interacting protein (RIP) by RIP3. J. Biol. Chem. 277, 9505–9511 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Meylan, E. et al. RIP1 is an essential mediator of toll-like receptor 3-induced NF-kappa B activation. Nat. Immunol. 5, 503–507 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Kaiser, W. J. & Offermann, M. K. Apoptosis induced by the toll-like receptor adaptor TRIF is dependent on its receptor interacting protein homotypic interaction motif. J. Immunol. 174, 4942–4952 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Kaiser, W. J., Upton, J. W. & Mocarski, E. S. Receptor-interacting protein homotypic interaction motif-dependent control of NF-kappa B activation via the DNA-dependent activator of IFN regulatory factors. J. Immunol. 181, 6427–6434 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Degterev, A., Ofengeim, D. & Yuan, J. Targeting RIPK1 for the treatment of human diseases. Proc. Natl Acad. Sci. USA 116, 9714–9722 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kondylis, V. & Pasparakis, M. RIP kinases in liver cell death, inflammation and cancer. Trends Mol. Med. 25, 47–63 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Pasparakis, M. & Vandenabeele, P. Necroptosis and its role in inflammation. Nature 517, 311–320 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Laurien, L. et al. Autophosphorylation at serine 166 regulates RIP kinase 1-mediated cell death and inflammation. Nat. Commun. 11, 1747 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kaiser, W. J. et al. RIP1 suppresses innate immune necrotic as well as apoptotic cell death during mammalian parturition. Proc. Natl Acad. Sci. USA 111, 7753–7758 (2014). Together with Dillon et al. (2014) and Rikard et al. (2014), this study shows that early-postnatal lethality of RIPK1-deficient mice is rescued by double knockout of caspase8 and RIPK3 and that caspase 8-dependent apoptosis and RIPK3–MLKL-mediated necroptosis differentially contribute to tissue pathologies in RIPK1-deficient pups.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Amin, P. et al. Regulation of a distinct activated RIPK1 intermediate bridging complex I and complex II in TNFalpha-mediated apoptosis. Proc. Natl Acad. Sci. USA 115, E5944–E5953 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Newton, K. et al. Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Science 343, 1357–1360 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Polykratis, A. et al. Cutting edge: RIPK1 kinase inactive mice are viable and protected from TNF-induced necroptosis in vivo. J. Immunol. 193, 1539–1543 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Berger, S. B. et al. Cutting edge: RIP1 kinase activity is dispensable for normal development but is a key regulator of inflammation in SHARPIN-deficient mice. J. Immunol. 192, 5476–5480 (2014). Together with Newton et al. (2014) and Polykratis et al. (2014), this study shows that knock-in mice expressing kinase-inactive Ripk1 alleles are viable and protected from TNF-induced SIRS.

    Article  CAS  PubMed  Google Scholar 

  54. Micheau, O. & Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114, 181–190 (2003). This study shows that TNFR1-induced inflammatory and apoptotic signalling is mediated by two different signalling complexes that form sequentially at the cell membrane and in the cytoplasm.

    Article  CAS  PubMed  Google Scholar 

  55. Hsu, H., Huang, J., Shu, H. B., Baichwal, V. & Goeddel, D. V. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4, 387–396 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Haas, T. L. et al. Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol. Cell 36, 831–844 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Hsu, H., Shu, H. B., Pan, M. G. & Goeddel, D. V. TRADD–TRAF2 and TRADD–FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84, 299–308 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Gyrd-Hansen, M. & Meier, P. IAPs: from caspase inhibitors to modulators of NF-kappaB, inflammation and cancer. Nat. Rev. Cancer 10, 561–574 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Annibaldi, A. et al. Ubiquitin-mediated regulation of RIPK1 kinase activity independent of IKK and MK2. Mol. Cell 69, 566–580.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kanayama, A. et al. TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains. Mol. Cell 15, 535–548 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Rahighi, S. et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation. Cell 136, 1098–1109 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Ciuffa, R. et al. Novel biochemical, structural, and systems insights into inflammatory signaling revealed by contextual interaction proteomics. Proc. Natl Acad. Sci. USA 119, e2117175119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lafont, E. et al. TBK1 and IKKepsilon prevent TNF-induced cell death by RIPK1 phosphorylation. Nat. Cell Biol. 20, 1389–1399 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Xu, D. et al. TBK1 suppresses RIPK1-driven apoptosis and inflammation during development and in aging. Cell 174, 1477–1491.e19 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ea, C. K., Deng, L., Xia, Z. P., Pineda, G. & Chen, Z. J. Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol. Cell 22, 245–257 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Dondelinger, Y. et al. NF-κB-independent role of IKKα/IKKβ in preventing RIPK1 kinase-dependent apoptotic and necroptotic cell death during TNF signaling. Mol. Cell 60, 63–76 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Boland, A. & Cornelis, G. R. Role of YopP in suppression of tumor necrosis factor alpha release by macrophages during Yersinia infection. Infect. Immun. 66, 1878–1884 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ruckdeschel, K. et al. Yersinia enterocolitica impairs activation of transcription factor NF-kappaB: involvement in the induction of programmed cell death and in the suppression of the macrophage tumor necrosis factor alpha production. J. Exp. Med. 187, 1069–1079 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Palmer, L. E., Pancetti, A. R., Greenberg, S. & Bliska, J. B. YopJ of Yersinia spp. is sufficient to cause downregulation of multiple mitogen-activated protein kinases in eukaryotic cells. Infect. Immun. 67, 708–716 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang, Y., Ting, A. T., Marcu, K. B. & Bliska, J. B. Inhibition of MAPK and NF-kappa B pathways is necessary for rapid apoptosis in macrophages infected with Yersinia. J. Immunol. 174, 7939–7949 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Mittal, R., Peak-Chew, S. Y. & McMahon, H. T. Acetylation of MEK2 and I kappa B kinase (IKK) activation loop residues by YopJ inhibits signaling. Proc. Natl Acad. Sci. USA 103, 18574–18579 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mukherjee, S. et al. Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science 312, 1211–1214 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Paquette, N. et al. Serine/threonine acetylation of TGFbeta-activated kinase (TAK1) by Yersinia pestis YopJ inhibits innate immune signaling. Proc. Natl Acad. Sci. USA 109, 12710–12715 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Peterson, L. W. et al. RIPK1-dependent apoptosis bypasses pathogen blockade of innate signaling to promote immune defense. J. Exp. Med. 214, 3171–3182 (2017). This article shows the first demonstration of RIPK1 kinase activity-dependent apoptosis promoting immune defence against pathogens that have highjacked NF-κB and MAPK innate signalling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jaco, I. et al. MK2 phosphorylates RIPK1 to prevent TNF-induced cell death. Mol. Cell 66, 698–710.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dondelinger, Y. et al. MK2 phosphorylation of RIPK1 regulates TNF-mediated cell death. Nat. Cell Biol. 19, 1237–1247 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Menon, M. B. et al. p38(MAPK)/MK2-dependent phosphorylation controls cytotoxic RIPK1 signalling in inflammation and infection. Nat. Cell Biol. 19, 1248–1259 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Feltham, R. et al. Mind bomb regulates cell death during TNF signaling by suppressing RIPK1’s cytotoxic potential. Cell Rep. 23, 470–484 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lork, M., Verhelst, K. & Beyaert, R. CYLD, A20 and OTULIN deubiquitinases in NF-kappaB signaling and cell death: so similar, yet so different. Cell Death Differ. 24, 1172–1183 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Martens, A. & van Loo, G. A20 at the crossroads of cell death, inflammation, and autoimmunity. Cold Spring Harb. Perspect. Biol. 12, a036418 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Priem, D., van Loo, G. & Bertrand, M. J. M. A20 and cell death-driven inflammation. Trends Immunol. 41, 421–435 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. Wertz, I. E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 430, 694–699 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Wertz, I. E. et al. Phosphorylation and linear ubiquitin direct A20 inhibition of inflammation. Nature 528, 370–375 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Draber, P. et al. LUBAC-recruited CYLD and A20 regulate gene activation and cell death by exerting opposing effects on linear ubiquitin in signaling complexes. Cell Rep. 13, 2258–2272 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Priem, D. et al. A20 protects cells from TNF-induced apoptosis through linear ubiquitin-dependent and -independent mechanisms. Cell Death Dis. 10, 692 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Polykratis, A. et al. A20 prevents inflammasome-dependent arthritis by inhibiting macrophage necroptosis through its ZnF7 ubiquitin-binding domain. Nat. Cell Biol. 21, 731–742 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. Elliott, P. R. et al. SPATA2 links CYLD to LUBAC, activates CYLD, and controls LUBAC signaling. Mol. Cell 63, 990–1005 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wei, R. et al. SPATA2 regulates the activation of RIPK1 by modulating linear ubiquitination. Genes Dev. 31, 1162–1176 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Moquin, D. M., McQuade, T. & Chan, F. K. CYLD deubiquitinates RIP1 in the TNFalpha-induced necrosome to facilitate kinase activation and programmed necrosis. PLoS ONE 8, e76841 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Newton, K. et al. Cleavage of RIPK1 by caspase-8 is crucial for limiting apoptosis and necroptosis. Nature 574, 428–431 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Oberst, A. et al. Catalytic activity of the caspase-8–FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471, 363–367 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dillon, C. P. et al. Survival function of the FADD–CASPASE-8–cFLIP(L) complex. Cell Rep. 1, 401–407 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kaiser, W. J. et al. RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471, 368–372 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lin, Y., Devin, A., Rodriguez, Y. & Liu, Z. G. Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev. 13, 2514–2526 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kataoka, T. & Tschopp, J. N-terminal fragment of c-FLIP(L) processed by caspase 8 specifically interacts with TRAF2 and induces activation of the NF-kappaB signaling pathway. Mol. Cell Biol. 24, 2627–2636 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tenev, T. et al. The ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol. Cell 43, 432–448 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Tummers, B. et al. Caspase-8-dependent inflammatory responses are controlled by its adaptor, FADD, and necroptosis. Immunity 52, 994–1006.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gitlin, A. D. et al. Integration of innate immune signalling by caspase-8 cleavage of N4BP1. Nature 587, 275–280 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Shi, H. et al. N4BP1 negatively regulates NF-kappaB by binding and inhibiting NEMO oligomerization. Nat. Commun. 12, 1379 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fritsch, M. et al. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature 575, 683–687 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Newton, K. et al. Activity of caspase-8 determines plasticity between cell death pathways. Nature 575, 679–682 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Broz, P. & Dixit, V. M. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16, 407–420 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Bedoui, S., Herold, M. J. & Strasser, A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat. Rev. Mol. Cell Biol. 21, 678–695 (2020).

    Article  CAS  PubMed  Google Scholar 

  104. Ivanisenko, N. V. et al. Regulation of extrinsic apoptotic signaling by c-FLIP: towards targeting cancer networks. Trends Cancer 8, 190–209 (2022).

    Article  CAS  PubMed  Google Scholar 

  105. Smyth, P., Sessler, T., Scott, C. J. & Longley, D. B. FLIP(L): the pseudo-caspase. FEBS J. 287, 4246–4260 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Heger, K. et al. OTULIN limits cell death and inflammation by deubiquitinating LUBAC. Nature 559, 120–124 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Peltzer, N., Darding, M. & Walczak, H. Holding RIPK1 on the ubiquitin leash in TNFR1 signaling. Trends Cell Biol. 26, 445–461 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Gerlach, B. et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471, 591–596 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Delanghe, T., Dondelinger, Y. & Bertrand, M. J. M. RIPK1 kinase-dependent death: a symphony of phosphorylation events. Trends Cell Biol. 30, 189–200 (2020).

    Article  CAS  PubMed  Google Scholar 

  110. Hitomi, J. et al. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135, 1311–1323 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bonnet, M. C. et al. The adaptor protein FADD protects epidermal keratinocytes from necroptosis in vivo and prevents skin inflammation. Immunity 35, 572–582 (2011). This paper shows for the first time that RIPK3-dependent epithelial cell necroptosis triggers inflammation in the intestine and the skin.

    Article  CAS  PubMed  Google Scholar 

  112. Cusson-Hermance, N., Khurana, S., Lee, T. H., Fitzgerald, K. A. & Kelliher, M. A. Rip1 mediates the Trif-dependent toll-like receptor 3- and 4-induced NF-{kappa}B activation but does not contribute to interferon regulatory factor 3 activation. J. Biol. Chem. 280, 36560–36566 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Kaiser, W. J. et al. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J. Biol. Chem. 288, 31268–31279 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Rebsamen, M. et al. DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NF-kappaB. EMBO Rep. 10, 916–922 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Peng, R. et al. Human ZBP1 induces cell death-independent inflammatory signaling via RIPK3 and RIPK1. EMBO Rep. 23, e55839 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Jiao, H. et al. Z-nucleic-acid sensing triggers ZBP1-dependent necroptosis and inflammation. Nature 580, 391–395 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Baker, M. et al. The RHIM of the immune adaptor protein TRIF forms hybrid amyloids with other necroptosis-associated proteins. Molecules 27, 3382 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Michallet, M. C. et al. TRADD protein is an essential component of the RIG-like helicase antiviral pathway. Immunity 28, 651–661 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Rajput, A. et al. RIG-I RNA helicase activation of IRF3 transcription factor is negatively regulated by caspase-8-mediated cleavage of the RIP1 protein. Immunity 34, 340–351 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Zhou, Q. et al. Target protease specificity of the viral serpin CrmA. Analysis of five caspases. J. Biol. Chem. 272, 7797–7800 (1997).

    Article  CAS  PubMed  Google Scholar 

  121. Udawatte, D. J. & Rothman, A. L. Viral suppression of RIPK1-mediated signaling. mBio 12, e0172321 (2021).

    Article  PubMed  Google Scholar 

  122. Upton, J. W., Kaiser, W. J. & Mocarski, E. S. Cytomegalovirus M45 cell death suppression requires receptor-interacting protein (RIP) homotypic interaction motif (RHIM)-dependent interaction with RIP1. J. Biol. Chem. 283, 16966–16970 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Liu, X. et al. Epstein–Barr virus encoded latent membrane protein 1 suppresses necroptosis through targeting RIPK1/3 ubiquitination. Cell Death Dis. 9, 53 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Liu, Z. et al. A class of viral inducer of degradation of the necroptosis adaptor RIPK3 regulates virus-induced inflammation. Immunity 54, 247–258.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Pearson, J. S. et al. EspL is a bacterial cysteine protease effector that cleaves RHIM proteins to block necroptosis and inflammation. Nat. Microbiol. 2, 16258 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Malireddi, R. K. S. et al. Innate immune priming in the absence of TAK1 drives RIPK1 kinase activity-independent pyroptosis, apoptosis, necroptosis, and inflammatory disease. J. Exp. Med. 217, jem.20191644 (2020).

    Article  PubMed  Google Scholar 

  127. Kang, S. et al. Caspase-8 scaffolding function and MLKL regulate NLRP3 inflammasome activation downstream of TLR3. Nat. Commun. 6, 7515 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Lawlor, K. E. et al. RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nat. Commun. 6, 6282 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Wang, X. et al. RNA viruses promote activation of the NLRP3 inflammasome through a RIP1–RIP3–DRP1 signaling pathway. Nat. Immunol. 15, 1126–1133 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Conos, S. A. et al. Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner. Proc. Natl Acad. Sci. USA 114, E961–E969 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gutierrez, K. D. et al. MLKL activation triggers NLRP3-mediated processing and release of IL-1β independently of gasdermin-D. J. Immunol. 198, 2156–2164 (2017).

    Article  CAS  PubMed  Google Scholar 

  132. Philip, N. H. et al. Caspase-8 mediates caspase-1 processing and innate immune defense in response to bacterial blockade of NF-κB and MAPK signaling. Proc. Natl Acad. Sci. USA 111, 7385–7390 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Weng, D. et al. Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death. Proc. Natl Acad. Sci. USA 111, 7391–7396 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kondylis, V. et al. NEMO prevents steatohepatitis and hepatocellular carcinoma by inhibiting RIPK1 kinase activity-mediated hepatocyte apoptosis. Cancer Cell 28, 830 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Vlantis, K. et al. NEMO prevents RIP kinase 1-mediated epithelial cell death and chronic intestinal inflammation by NF-kappaB-dependent and -independent functions. Immunity 44, 553–567 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Duprez, L. et al. RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity 35, 908–918 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. van Loo, G. & Bertrand, M. J. M. Death by TNF: a road to inflammation. Nat. Rev. Immunol. 23, 289–303 (2022).

    PubMed  PubMed Central  Google Scholar 

  138. Rickard, J. A. et al. TNFR1-dependent cell death drives inflammation in Sharpin-deficient mice. eLife 3, e03464 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Dondelinger, Y. et al. Serine 25 phosphorylation inhibits RIPK1 kinase-dependent cell death in models of infection and inflammation. Nat. Commun. 10, 1729 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Speir, M., Djajawi, T. M., Conos, S. A., Tye, H. & Lawlor, K. E. Targeting RIP kinases in chronic inflammatory disease. Biomolecules 11, 646 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Yuan, J., Amin, P. & Ofengeim, D. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat. Rev. Neurosci. 20, 19–33 (2019). This review summarizes what is currently known about the role of RIPK1 in neurological diseases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Martens, A. et al. A20 controls RANK-dependent osteoclast formation and bone physiology. EMBO Rep. 23, e55233 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Martens, A. et al. Two distinct ubiquitin-binding motifs in A20 mediate its anti-inflammatory and cell-protective activities. Nat. Immunol. 21, 381–387 (2020).

    Article  CAS  PubMed  Google Scholar 

  144. Garcia-Carbonell, R. et al. Elevated A20 promotes TNF-induced and RIPK1-dependent intestinal epithelial cell death. Proc. Natl Acad. Sci. USA 115, E9192–E9200 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ito, Y. et al. RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS. Science 353, 603–608 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ofengeim, D. et al. Activation of necroptosis in multiple sclerosis. Cell Rep. 10, 1836–1849 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ofengeim, D. et al. RIPK1 mediates a disease-associated microglial response in Alzheimer’s disease. Proc. Natl Acad. Sci. USA 114, E8788–E8797 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Cuchet-Lourenco, D. et al. Biallelic RIPK1 mutations in humans cause severe immunodeficiency, arthritis, and intestinal inflammation. Science 361, 810–813 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Li, Y. et al. Human RIPK1 deficiency causes combined immunodeficiency and inflammatory bowel diseases. Proc. Natl Acad. Sci. USA 116, 970–975 (2019). Together with Cuchet-Lourenco et al. (2018), this study identifies the first biallelic loss-of-function mutations in RIPK1 as the driver for primary immunodeficiency and intestinal inflammation in humans.

    Article  CAS  PubMed  Google Scholar 

  150. Tao, P. et al. A dominant autoinflammatory disease caused by non-cleavable variants of RIPK1. Nature 577, 109–114 (2020).

    Article  CAS  PubMed  Google Scholar 

  151. Lalaoui, N. et al. Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease. Nature 577, 103–108 (2020). Together with Tao et al. (2020), this study discovers non-cleavable RIPK1 mutations as the driver of dominant autoinflammatory disease in patients.

    Article  CAS  PubMed  Google Scholar 

  152. Sultan, M. et al. RIPK1 mutations causing infantile-onset IBD with inflammatory and fistulizing features. Front. Immunol. 13, 1041315 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Zhang, X., Dowling, J. P. & Zhang, J. RIPK1 can mediate apoptosis in addition to necroptosis during embryonic development. Cell Death Dis. 10, 245 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Karin, M., Lawrence, T. & Nizet, V. Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell 124, 823–835 (2006).

    Article  CAS  PubMed  Google Scholar 

  155. Gong, Y. et al. The role of necroptosis in cancer biology and therapy. Mol. Cancer 18, 100 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Yin, Z. et al. RIPK1 is a negative mediator in Aquaporin 1-driven triple-negative breast carcinoma progression and metastasis. npj Breast Cancer 7, 53 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Moriwaki, K., Bertin, J., Gough, P. J., Orlowski, G. M. & Chan, F. K. Differential roles of RIPK1 and RIPK3 in TNF-induced necroptosis and chemotherapeutic agent-induced cell death. Cell Death Dis. 6, e1636 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. McCormick, K. D. et al. Innate immune signaling through differential RIPK1 expression promote tumor progression in head and neck squamous cell carcinoma. Carcinogenesis 37, 522–529 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Park, J. E. et al. Expression of key regulatory genes in necroptosis and its effect on the prognosis in non-small cell lung cancer. J. Cancer 11, 5503–5510 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Park, S. et al. The receptor interacting protein 1 inhibits p53 induction through NF-kappaB activation and confers a worse prognosis in glioblastoma. Cancer Res. 69, 2809–2816 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Seifert, L. et al. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature 532, 245–249 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Wang, W. et al. RIP1 kinase drives macrophage-mediated adaptive immune tolerance in pancreatic cancer. Cancer Cell 34, 757–774.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Zhu, G. et al. Receptor-interacting protein-1 promotes the growth and invasion in gastric cancer. Int. J. Oncol. 48, 2387–2398 (2016).

    Article  CAS  PubMed  Google Scholar 

  164. Liu, X. Y. et al. RIP1 kinase is an oncogenic driver in melanoma. Cancer Res. 75, 1736–1748 (2015).

    Article  CAS  PubMed  Google Scholar 

  165. Zhu, G. et al. Expression of the RIP-1 gene and its role in growth and invasion of human gallbladder carcinoma. Cell Physiol. Biochem. 34, 1152–1165 (2014).

    Article  CAS  PubMed  Google Scholar 

  166. Nicole, L. et al. Necroptosis-driving genes RIPK1, RIPK3 and MLKL-p are associated with intratumoral CD3+ and CD8+ T cell density and predict prognosis in hepatocellular carcinoma. J. Immunother. Cancer 10, e004031 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Schneider, A. T. et al. RIPK1 suppresses a TRAF2-dependent pathway to liver cancer. Cancer Cell 31, 94–109 (2017).

    Article  CAS  PubMed  Google Scholar 

  168. Chae, Y. S. et al. RIPK1 and CASP7 polymorphism as prognostic markers for survival in patients with colorectal cancer after complete resection. J. Cancer Res. Clin. Oncol. 137, 705–713 (2011).

    Article  CAS  PubMed  Google Scholar 

  169. Yang, S. et al. Single-nucleotide polymorphism rs17548629 in RIPK1 gene may be associated with lung cancer in a young and middle-aged Han Chinese population. Cancer Cell Int. 20, 143 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Yao, C. et al. Expression and genetic polymorphism of necroptosis related protein RIPK1 is correlated with severe hepatic ischemia–reperfusion injury and prognosis after hepatectomy in hepatocellular carcinoma patients. Cancer Biomark. 20, 23–29 (2017).

    Article  CAS  PubMed  Google Scholar 

  171. Tuoheti, Z. et al. RIPK1 polymorphisms alter the susceptibility to cervical cancer among the Uyghur population in China. BMC Cancer 20, 299 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Tate, J. G. et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 47, D941–D947 (2019).

    Article  CAS  PubMed  Google Scholar 

  173. Della Torre, L. et al. The role of necroptosis: biological relevance and its involvement in cancer. Cancers 13, 684 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Xie, T. et al. Structural basis of RIP1 inhibition by necrostatins. Structure 21, 493–499 (2013).

    Article  CAS  PubMed  Google Scholar 

  175. Degterev, A. et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat. Chem. Biol. 4, 313–321 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Vissers, M. et al. Safety, pharmacokinetics and target engagement of novel RIPK1 inhibitor SAR443060 (DNL747) for neurodegenerative disorders: randomized, placebo-controlled, double-blind phase I/Ib studies in healthy subjects and patients. Clin. Transl. Sci. 15, 2010–2023 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Zhang, H. et al. Functional complementation between FADD and RIP1 in embryos and lymphocytes. Nature 471, 373–376 (2011). Together with Oberst et al. (2011) and Kaiser et al. (2011), this study shows that Ripk3 knockout prevents embryonic lethality of caspase 8 and FADD, revealing the important role of RIPK3 during development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Smith, H. G. et al. RIPK1-mediated immunogenic cell death promotes anti-tumour immunity against soft-tissue sarcoma. EMBO Mol. Med. 12, e10979 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Weisel, K. et al. A randomized, placebo-controlled experimental medicine study of RIPK1 inhibitor GSK2982772 in patients with moderate to severe rheumatoid arthritis. Arthritis Res. Ther. 23, 85 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Weisel, K. et al. A randomised, placebo-controlled study of RIPK1 inhibitor GSK2982772 in patients with active ulcerative colitis. BMJ Open Gastroenterol. 8, e000680 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Weisel, K. et al. Response to inhibition of receptor-interacting protein kinase 1 (RIPK1) in active plaque psoriasis: a randomized placebo-controlled study. Clin. Pharmacol. Ther. 108, 808–816 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Newton, K. Multitasking kinase RIPK1 regulates cell death and inflammation. Cold Spring Harb. Perspect. Biol. 12, a036368 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Shutinoski, B. et al. K45A mutation of RIPK1 results in poor necroptosis and cytokine signaling in macrophages, which impacts inflammatory responses in vivo. Cell Death Differ. 23, 1628–1637 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Cao, M. et al. Dectin-1-induced RIPK1 and RIPK3 activation protects host against Candida albicans infection. Cell Death Differ. 26, 2622–2636 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Kitur, K. et al. Necroptosis promotes Staphylococcus aureus clearance by inhibiting excessive inflammatory signaling. Cell Rep. 16, 2219–2230 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science 348, 56–61 (2015).

    Article  CAS  PubMed  Google Scholar 

  187. Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).

    Article  PubMed  Google Scholar 

  188. Motzer, R. J. et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1803–1813 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Garon, E. B. et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med. 372, 2018–2028 (2015).

    Article  PubMed  Google Scholar 

  190. Fehrenbacher, L. et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet 387, 1837–1846 (2016).

    Article  CAS  PubMed  Google Scholar 

  191. Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Cucolo, L. et al. The interferon-stimulated gene RIPK1 regulates cancer cell intrinsic and extrinsic resistance to immune checkpoint blockade. Immunity 55, 671–685.e10 (2022).

    Article  CAS  PubMed  Google Scholar 

  193. Manguso, R. T. et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547, 413–418 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Patel, S. et al. RIP1 inhibition blocks inflammatory diseases but not tumor growth or metastases. Cell Death Differ. 27, 161–175 (2020).

    Article  CAS  PubMed  Google Scholar 

  195. Kearney, C. J. et al. Tumor immune evasion arises through loss of TNF sensitivity. Sci. Immunol. 3, eaar3451 (2018).

    Article  PubMed  Google Scholar 

  196. Vredevoogd, D. W. et al. Augmenting immunotherapy impact by lowering tumor TNF cytotoxicity threshold. Cell 180, 404–405 (2020).

    Article  CAS  PubMed  Google Scholar 

  197. Roderick, J. E. et al. Hematopoietic RIPK1 deficiency results in bone marrow failure caused by apoptosis and RIPK3-mediated necroptosis. Proc. Natl Acad. Sci. USA 111, 14436–14441 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Sun, Y. et al. Targeting TBK1 to overcome resistance to cancer immunotherapy. Nature 615, 158–167 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Zhang, X. et al. Ubiquitination of RIPK1 suppresses programmed cell death by regulating RIPK1 kinase activation during embryogenesis. Nat. Commun. 10, 4158 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Tu, H., Xiong, W., Zhang, J., Zhao, X. & Lin, X. Tyrosine phosphorylation regulates RIPK1 activity to limit cell death and inflammation. Nat. Commun. 13, 6603 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Taylor, S. S. & Kornev, A. P. Protein kinases: evolution of dynamic regulatory proteins. Trends Biochem. Sci. 36, 65–77 (2011).

    Article  CAS  PubMed  Google Scholar 

  202. Shaw, A. S., Kornev, A. P., Hu, J., Ahuja, L. G. & Taylor, S. S. Kinases and pseudokinases: lessons from RAF. Mol. Cell Biol. 34, 1538–1546 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Kornev, A. P., Taylor, S. S. & Ten Eyck, L. F. A helix scaffold for the assembly of active protein kinases. Proc. Natl Acad. Sci. USA 105, 14377–14382 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Pellegrini, E., Signor, L., Singh, S., Boeri Erba, E. & Cusack, S. Structures of the inactive and active states of RIP2 kinase inform on the mechanism of activation. PLoS ONE 12, e0177161 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors apologize to all the authors whose work we could not cite in this Review owing to space limitations. The authors thank T. Kaserer and E. Stefan for discussions and the design of Fig. 3. Furthermore, the authors thank members of the Meier Laboratory for helpful discussions and critical reading of the manuscript. Particularly, the authors would like to thank A. Legrand for discussion and input. J.C. is funded by Breast Cancer Now, Catalyst Grant Research Funding Scheme, which is supported by Pfizer (2017JulyPCC004) and Cancer Research UK (A24399). P.M. is supported by Cancer Research UK (A24399) and Breast Cancer Now (CTR-R14–007). The authors acknowledge NHS funding to the NIHR biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Pascal Meier.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

COSMIC database: https://cancer.sanger.ac.uk/cosmic

Glossary

Alarmins

A specific class of danger signals or damage-associated molecular patterns (DAMPs) that are released during immunogenic cell death.

Cyclic GMP–AMP synthase

A cytosolic DNA sensor that is involved in the detection of viral and cellular DNA.

Damage-associated molecular patterns

(DAMPs). Molecules that are released by cells when they are damaged or stressed and function to alert the immune system to the presence of danger.

Immune checkpoint blockade

(ICB). A type of immunotherapy that targets and prevents immune checkpoint proteins from inactivating an immune response against cancer cells.

Immunogenic cell death

A type of cell death that results in the release of specific molecules (called ‘danger signals’ or ‘damage-associated molecular patterns (DAMPs)) that can activate the immune system.

Interferon

(IFN). A group of antiviral glycoprotein cytokines that provide host protection by inducing expression of antiviral effector molecules that are encoded by IFN-stimulated genes.

Mitogen-activated protein kinases

(MAPKs). A family of serine and threonine protein kinases that have a critical role in intracellular signalling pathways that control cell growth, differentiation and survival.

NOD-like receptors

(NLRs). Highly conserved cytoplasmic receptors containing a nucleotide-binding and oligomerization domain and belong to the pattern recognition receptor (PRR) family and have a key role in innate immunity by detecting intracellular microbial breach intracellularly.

Nuclear factor-κB

(NF-κB). A transcription factor that has a critical role in regulating the immune and inflammatory response.

Toll-like receptors

(TLRs). A group of transmembrane receptors that act as a first line of defence against microorganisms by recognizing pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) and subsequently inducing pro-inflammatory responses. TLR2 belongs to the pattern recognition receptor (PRR) family.

Z-RNA-binding protein 1

(ZBP1, also known as DAI). A nucleic acid sensor that detects Z-DNA and Z-RNA and mediates pro-inflammatory responses and programmed cell death.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clucas, J., Meier, P. Roles of RIPK1 as a stress sentinel coordinating cell survival and immunogenic cell death. Nat Rev Mol Cell Biol 24, 835–852 (2023). https://doi.org/10.1038/s41580-023-00623-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-023-00623-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing