Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Cellular and molecular mechanisms of Hedgehog signalling

Abstract

The Hedgehog signalling pathway has crucial roles in embryonic tissue patterning, postembryonic tissue regeneration, and cancer, yet aspects of Hedgehog signal transmission and reception have until recently remained unclear. Biochemical and structural studies surprisingly reveal a central role for lipids in Hedgehog signalling. The signal — Hedgehog protein — is modified by cholesterol and palmitate during its biogenesis, thereby necessitating specialized proteins such as the transporter Dispatched and several lipid-binding carriers for cellular export and receptor engagement. Additional lipid transactions mediate response to the Hedgehog signal, including sterol activation of the transducer Smoothened. Access of sterols to Smoothened is regulated by the apparent sterol transporter and Hedgehog receptor Patched, whose activity is blocked by Hedgehog binding. Alongside these lipid-centric mechanisms and their relevance to pharmacological pathway modulation, we discuss emerging roles of Hedgehog pathway activity in stem cells or their cellular niches, with translational implications for regeneration and restoration of injured or diseased tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of mammalian Hedgehog signalling.
Fig. 2: Lipid modification of Hedgehog.
Fig. 3: The ligand-binding pockets of Smoothened.
Fig. 4: Sterol transport by Patched.
Fig. 5: Dispatched release of Hedgehog from the cell membrane is driven by Na+ flux.
Fig. 6: Model of Hedgehog signal transduction at the cell surface.
Fig. 7: Hedgehog signalling has context-dependent roles in tissues.

Similar content being viewed by others

References

  1. Ives, P. T. New mutants report. Drosoph. Inf. Serv. 24, 58 (1950).

    Google Scholar 

  2. Lee, J. J., von Kessler, D. P., Parks, S. & Beachy, P. A. Secretion and localized transcription suggest a role in positional signaling for products of the segmentation gene hedgehog. Cell 71, 33–50 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Nusslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980).

    Article  CAS  PubMed  Google Scholar 

  4. Dessaud, E., McMahon, A. P. & Briscoe, J. Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network. Development 135, 2489–2503 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Ingham, P. W. & McMahon, A. P. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 15, 3059–3087 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Goodrich, L. V., Milenkovic, L., Higgins, K. M. & Scott, M. P. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277, 1109–1113 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Roberts, K. J., Kershner, A. M. & Beachy, P. A. The stromal niche for epithelial stem cells: a template for regeneration and a brake on malignancy. Cancer Cell 32, 404–410 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Muenke, M. & Beachy, P. A. Genetics of ventral forebrain development and holoprosencephaly. Curr. Opin. Genet. Dev. 10, 262–269 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Niedermaier, M. et al. An inversion involving the mouse Shh locus results in brachydactyly through dysregulation of Shh expression. J. Clin. Invest. 115, 900–909 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Johnston, J. J. et al. Molecular and clinical analyses of Greig cephalopolysyndactyly and Pallister-Hall syndromes: robust phenotype prediction from the type and position of GLI3 mutations. Am. J. Hum. Genet. 76, 609–622 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lettice, L. A. et al. A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum. Mol. Genet. 12, 1725–1735 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Johnson, R. L. et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272, 1668–1671 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Toftgard, R. Hedgehog signalling in cancer. Cell Mol. Life Sci. 57, 1720–1731 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Teglund, S. & Toftgard, R. Hedgehog beyond medulloblastoma and basal cell carcinoma. Biochim. Biophys. Acta 1805, 181–208 (2010).

    CAS  PubMed  Google Scholar 

  15. Taipale, J. & Beachy, P. A. The Hedgehog and Wnt signalling pathways in cancer. Nature 411, 349–354 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Tashiro, S. et al. Structure and expression of hedgehog, a Drosophila segment-polarity gene required for cell-cell communication. Gene 124, 183–189 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Tabata, T., Eaton, S. & Kornberg, T. B. The Drosophila hedgehog gene is expressed specifically in posterior compartment cells and is a target of engrailed regulation. Genes Dev. 6, 2635–2645 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Mohler, J. & Vani, K. Molecular organization and embryonic expression of the hedgehog gene involved in cell-cell communication in segmental patterning of Drosophila. Development 115, 957–971 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Varjosalo, M. & Taipale, J. Hedgehog: functions and mechanisms. Genes Dev. 22, 2454–2472 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Mann, R. K. & Beachy, P. A. Novel lipid modifications of secreted protein signals. Annu. Rev. Biochem. 73, 891–923 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Lum, L. & Beachy, P. A. The Hedgehog response network: sensors, switches, and routers. Science 304, 1755–1759 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Rohatgi, R. & Scott, M. P. Patching the gaps in Hedgehog signalling. Nat. Cell Biol. 9, 1005–1009 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Rogers, H. W., Weinstock, M. A., Feldman, S. R. & Coldiron, B. M. Incidence estimate of nonmelanoma skin cancer (keratinocyte carcinomas) in the US population, 2012. JAMA Dermatol. 151, 1081–1086 (2015).

    Article  PubMed  Google Scholar 

  24. Lum, L. et al. Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science 299, 2039–2045 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Yao, S., Lum, L. & Beachy, P. The Ihog cell-surface proteins bind Hedgehog and mediate pathway activation. Cell 125, 343–357 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Camp, D., Currie, K., Labbe, A., van Meyel, D. J. & Charron, F. Ihog and Boi are essential for Hedgehog signaling in Drosophila. Neural Dev. 5, 28 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hsia, E. Y. C. et al. Hedgehog mediated degradation of Ihog adhesion proteins modulates cell segregation in Drosophila wing imaginal discs. Nat. Commun. 8, 1275 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zheng, X., Mann, R. K., Sever, N. & Beachy, P. A. Genetic and biochemical definition of the Hedgehog receptor. Genes Dev. 24, 57–71 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Okada, A. et al. Boc is a receptor for sonic hedgehog in the guidance of commissural axons. Nature 444, 369–373 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Allen, B. L. et al. Overlapping roles and collective requirement for the coreceptors GAS1, CDO, and BOC in SHH pathway function. Dev. Cell 20, 775–787 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Izzi, L. et al. Boc and Gas1 each form distinct Shh receptor complexes with Ptch1 and are required for Shh-mediated cell proliferation. Dev. Cell 20, 788–801 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ma, Y. et al. Hedgehog-mediated patterning of the mammalian embryo requires transporter-like function of Dispatched. Cell 111, 63–75 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, X. M., Ramalho-Santos, M. & McMahon, A. P. Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R asymmetry by the mouse node. Cell 105, 781–792 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Kim, M. S., Saunders, A. M., Hamaoka, B. Y., Beachy, P. A. & Leahy, D. J. Structure of the protein core of the glypican Dally-like and localization of a region important for hedgehog signaling. Proc. Natl Acad. Sci. USA 108, 13112–13117 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Williams, E. H. et al. Dally-like core protein and its mammalian homologues mediate stimulatory and inhibitory effects on Hedgehog signal response. Proc. Natl Acad. Sci. USA 107, 5869–5874 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yan, D. et al. The cell-surface proteins Dally-like and Ihog differentially regulate Hedgehog signaling strength and range during development. Development 137, 2033–2044 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hui, C. C. & Angers, S. Gli proteins in development and disease. Annu. Rev. Cell Dev. Biol. 27, 513–537 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Matise, M. P. & Joyner, A. L. Gli genes in development and cancer. Oncogene 18, 7852–7859 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Aza-Blanc, P., Ramirez-Weber, F. A., Laget, M. P., Schwartz, C. & Kornberg, T. B. Proteolysis that is inhibited by hedgehog targets Cubitus interruptus protein to the nucleus and converts it to a repressor. Cell 89, 1043–1053 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Wang, B., Fallon, J. F. & Beachy, P. A. Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell 100, 423–434 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Cherry, A. L. et al. Structural basis of SUFU-GLI interaction in human Hedgehog signalling regulation. Acta Crystallogr. D 69, 2563–2579 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Oh, S., Kato, M., Zhang, C., Guo, Y. & Beachy, P. A. A comparison of Ci/Gli activity as regulated by Sufu in Drosophila and mammalian Hedgehog response. PLoS ONE 10, e0135804 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhang, Y. et al. Structural insight into the mutual recognition and regulation between suppressor of fused and Gli/Ci. Nat. Commun. 4, 2608 (2013).

    Article  PubMed  Google Scholar 

  44. Hallikas, O. et al. Genome-wide prediction of mammalian enhancers based on analysis of transcription-factor binding affinity. Cell 124, 47–59 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Huangfu, D. et al. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426, 83–87 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Corbit, K. C. et al. Vertebrate Smoothened functions at the primary cilium. Nature 437, 1018–1021 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Rohatgi, R., Milenkovic, L. & Scott, M. P. Patched1 regulates hedgehog signaling at the primary cilium. Science 317, 372–376 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Chen, M. H. et al. Cilium-independent regulation of Gli protein function by Sufu in Hedgehog signaling is evolutionarily conserved. Genes Dev. 23, 1910–1928 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim, J., Kato, M. & Beachy, P. A. Gli2 trafficking links Hedgehog-dependent activation of Smoothened in the primary cilium to transcriptional activation in the nucleus. Proc. Natl Acad. Sci. USA 106, 21666–21671 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Milenkovic, L. et al. Single-molecule imaging of Hedgehog pathway protein Smoothened in primary cilia reveals binding events regulated by Patched1. Proc. Natl Acad. Sci. USA 112, 8320–8325 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim, J. et al. The role of ciliary trafficking in Hedgehog receptor signaling. Sci. Signal. 8, ra55 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Nachury, M. V. & Mick, D. U. Establishing and regulating the composition of cilia for signal transduction. Nat. Rev. Mol. Cell Biol. 20, 389–405 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Anvarian, Z., Mykytyn, K., Mukhopadhyay, S., Pedersen, L. B. & Christensen, S. T. Cellular signalling by primary cilia in development, organ function and disease. Nat. Rev. Nephrol. 15, 199–219 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bangs, F. & Anderson, K. V. Primary cilia and mammalian Hedgehog signaling. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a028175 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Porter, J. A., Young, K. E. & Beachy, P. A. Cholesterol modification of hedgehog signaling proteins in animal development. Science 274, 255–259 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Porter, J. A. et al. Hedgehog patterning activity: role of a lipophilic modification mediated by the carboxy-terminal autoprocessing domain. Cell 86, 21–34 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Porter, J. A. et al. The product of hedgehog autoproteolytic cleavage active in local and long-range signalling. Nature 374, 363–366 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Maity, T., Fuse, N. & Beachy, P. A. Molecular mechanisms of Sonic hedgehog mutant effects in holoprosencephaly. Proc. Natl Acad. Sci. USA 102, 17026–17031 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chamoun, Z. et al. Skinny hedgehog, an acyltransferase required for palmitoylation and activity of the hedgehog signal. Science 293, 2080–2084 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Pepinsky, R. B. et al. Identification of a palmitic acid-modified form of human Sonic hedgehog. J. Biol. Chem. 273, 14037–14045 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Lee, J. D. et al. An acylatable residue of Hedgehog is differentially required in Drosophila and mouse limb development. Dev. Biol. 233, 122–136 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Amanai, K. & Jiang, J. Distinct roles of Central missing and Dispatched in sending the Hedgehog signal. Development 128, 5119–5127 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Jiang, Y., Benz, T. L. & Long, S. B. Substrate and product complexes reveal mechanisms of Hedgehog acylation by HHAT. Science 372, 1215–1219 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jakobs, P. et al. Scube2 enhances proteolytic Shh processing from the surface of Shh-producing cells. J. Cell Sci. 127, 1726–1737 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Ehring, K. et al. Conserved cholesterol-related activities of Dispatched 1 drive Sonic hedgehog shedding from the cell membrane. J. Cell Sci. https://doi.org/10.1242/jcs.258672 (2022).

    Article  PubMed  Google Scholar 

  66. Kastl, P. et al. Disrupting Hedgehog Cardin-Weintraub sequence and positioning changes cellular differentiation and compartmentalization in vivo. Development https://doi.org/10.1242/dev.167221 (2018).

    Article  PubMed  Google Scholar 

  67. Lee, J. D. & Treisman, J. E. Sightless has homology to transmembrane acyltransferases and is required to generate active Hedgehog protein. Curr. Biol. 11, 1147–1152 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Petrova, E., Rios-Esteves, J., Ouerfelli, O., Glickman, J. F. & Resh, M. D. Inhibitors of Hedgehog acyltransferase block Sonic Hedgehog signaling. Nat. Chem. Biol. 9, 247–249 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rodgers, U. R. et al. Characterization of Hedgehog acyltransferase inhibitors identifies a small molecule probe for Hedgehog signaling by cancer cells. ACS Chem. Biol. 11, 3256–3262 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Williams, K. P. et al. Functional antagonists of sonic hedgehog reveal the importance of the N terminus for activity. J. Cell Sci. 112, 4405–4414 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Taylor, F. R. et al. Enhanced potency of human Sonic hedgehog by hydrophobic modification. Biochemistry 40, 4359–4371 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Qi, X., Schmiege, P., Coutavas, E. & Li, X. Two Patched molecules engage distinct sites on Hedgehog yielding a signaling-competent complex. Science https://doi.org/10.1126/science.aas8843 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Qi, X., Schmiege, P., Coutavas, E., Wang, J. & Li, X. Structures of human Patched and its complex with native palmitoylated sonic hedgehog. Nature https://doi.org/10.1038/s41586-018-0308-7 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zhang, Y. et al. Structural basis for cholesterol transport-like activity of the Hedgehog receptor Patched. Cell 175, 1352–1364 e1314 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Qian, H. et al. Inhibition of tetrameric Patched1 by Sonic Hedgehog through an asymmetric paradigm. Nat. Commun. 10, 2320 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Burke, R. et al. Dispatched, a novel sterol-sensing domain protein dedicated to the release of cholesterol-modified Hedgehog from signaling cells. Cell 99, 803–815 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Caspary, T. et al. Mouse Dispatched homolog1 is required for long-range, but not juxtacrine, Hh signaling. Curr. Biol. 12, 1628–1632 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Kawakami, T. et al. Mouse dispatched mutants fail to distribute hedgehog proteins and are defective in hedgehog signaling. Development 129, 5753–5765 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Kawakami, A. et al. The zebrafish-secreted matrix protein You/Scube2 is implicated in long-range regulation of Hedgehog signaling. Curr. Biol. 15, 480–488 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Woods, I. G. & Talbot, W. S. The you gene encodes an EGF-CUB protein essential for Hedgehog signaling in zebrafish. PLoS Biol. 3, e66 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Hollway, G. E. et al. Scube2 mediates Hedgehog signalling in the zebrafish embryo. Dev. Biol. 294, 104–118 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Creanga, A. et al. Scube/You activity mediates release of dually lipid-modified Hedgehog signal in soluble form. Genes Dev. 26, 1312–1325 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tukachinsky, H., Kuzmickas, R. P., Jao, C. Y., Liu, J. & Salic, A. Dispatched and Scube mediate the efficient secretion of the cholesterol-modified Hedgehog ligand. Cell Rep. 2, 308–320 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nikaido, H. & Takatsuka, Y. Mechanisms of RND multidrug efflux pumps. Biochim. Biophys. Acta 1794, 769–781 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Yamaguchi, A., Nakashima, R. & Sakurai, K. Structural basis of RND-type multidrug exporters. Front. Microbiol. 6, 327 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Carstea, E. D. et al. Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 277, 228–231 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. Winkler, M. B. L. et al. Structural insight into eukaryotic sterol transport through Niemann-Pick type C proteins. Cell 179, 485–497 e418 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Qian, H. et al. Structural basis of low-pH-dependent lysosomal cholesterol egress by NPC1 and NPC2. Cell 182, 98–111 e118 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. Cannac, F. et al. Cryo-EM structure of the Hedgehog release protein Dispatched. Sci. Adv. 6, eaay7928 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chen, H., Liu, Y. & Li, X. Structure of human Dispatched-1 provides insights into Hedgehog ligand biogenesis. Life Sci. Alliance https://doi.org/10.26508/lsa.202000776 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wang, Q. et al. Dispatched uses Na+ flux to power release of lipid-modified Hedgehog. Nature 599, 320–324 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Li, W. et al. Structural insights into proteolytic activation of the human Dispatched1 transporter for Hedgehog morphogen release. Nat. Commun. 12, 6966 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Stewart, D. P. et al. Cleavage activates Dispatched for Sonic Hedgehog ligand release. Elife https://doi.org/10.7554/eLife.31678 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Beachy, P. A., Hymowitz, S. G., Lazarus, R. A., Leahy, D. J. & Siebold, C. Interactions between Hedgehog proteins and their binding partners come into view. Genes Dev. 24, 2001–2012 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. McLellan, J. S. et al. Structure of a heparin-dependent complex of Hedgehog and Ihog. Proc. Natl Acad. Sci. USA 103, 17208–17213 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. McLellan, J. S. et al. The mode of Hedgehog binding to Ihog homologues is not conserved across different phyla. Nature 455, 979–983 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wierbowski, B. M. et al. Hedgehog pathway activation requires coreceptor-catalyzed, lipid-dependent relay of the Sonic hedgehog ligand. Dev. Cell 55, 450–467 e458 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Huang, P. et al. Structural basis for catalyzed assembly of the Sonic hedgehog-Patched1 signaling complex. Dev. Cell 57, 670–685 e678 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. McGough, I. J. et al. Glypicans shield the Wnt lipid moiety to enable signalling at a distance. Nature 585, 85–90 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Brownell, I., Guevara, E., Bai, C. B., Loomis, C. A. & Joyner, A. L. Nerve-derived sonic hedgehog defines a niche for hair follicle stem cells capable of becoming epidermal stem cells. Cell Stem Cell 8, 552–565 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Daniele, J. R., Baqri, R. M. & Kunes, S. Analysis of axonal trafficking via a novel live-imaging technique reveals distinct hedgehog transport kinetics. Biol. Open 6, 714–721 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Huang, Z. & Kunes, S. Hedgehog, transmitted along retinal axons, triggers neurogenesis in the developing visual centers of the Drosophila brain. Cell 86, 411–422 (1996).

    Article  CAS  PubMed  Google Scholar 

  103. Lu, W. J. et al. Neuronal delivery of Hedgehog directs spatial patterning of taste organ regeneration. Proc. Natl Acad. Sci. USA 115, E200–E209 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Xiao, Y. et al. Neural Hedgehog signaling maintains stem cell renewal in the sensory touch dome epithelium. Proc. Natl Acad. Sci. USA 112, 7195–7200 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bischoff, M. et al. Cytonemes are required for the establishment of a normal hedgehog morphogen gradient in Drosophila epithelia. Nat. Cell Biol. 15, 1269–1281 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Daly, C. A., Hall, E. T. & Ogden, S. K. Regulatory mechanisms of cytoneme-based morphogen transport. Cell Mol. Life Sci. 79, 119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hall, E. T. et al. Cytoneme delivery of Sonic hHedgehog from ligand-producing cells requires myosin 10 and a Dispatched-BOC/CDON co-receptor complex. Elife https://doi.org/10.7554/eLife.61432 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Kornberg, T. B. Distributing signaling proteins in space and time: the province of cytonemes. Curr. Opin. Genet. Dev. 45, 22–27 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ramirez-Weber, F. A. & Kornberg, T. B. Cytonemes: cellular processes that project to the principal signaling center in Drosophila imaginal discs. Cell 97, 599–607 (1999).

    Article  CAS  PubMed  Google Scholar 

  110. Sanders, T. A., Llagostera, E. & Barna, M. Specialized filopodia direct long-range transport of SHH during vertebrate tissue patterning. Nature 497, 628–632 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Stapornwongkul, K. S. & Vincent, J. P. Generation of extracellular morphogen gradients: the case for diffusion. Nat. Rev. Genet. 22, 393–411 (2021).

    Article  CAS  PubMed  Google Scholar 

  112. Gradilla, A. C. et al. Exosomes as Hedgehog carriers in cytoneme-mediated transport and secretion. Nat. Commun. 5, 5649 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Matusek, T. et al. The ESCRT machinery regulates the secretion and long-range activity of Hedgehog. Nature 516, 99–103 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Bilioni, A. et al. Balancing Hedgehog, a retention and release equilibrium given by Dally, Ihog, Boi and shifted/DmWif. Dev. Biol. 376, 198–212 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Zhang, Z. et al. Optogenetic manipulation of cellular communication using engineered myosin motors. Nat. Cell Biol. 23, 198–208 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Taipale, J., Cooper, M. K., Maiti, T. & Beachy, P. A. Patched acts catalytically to suppress the activity of Smoothened. Nature 418, 892–897 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Cooper, M. K. et al. A defective response to Hedgehog signaling in disorders of cholesterol biosynthesis. Nat. Genet. 33, 508–513 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Cooper, M. K., Porter, J. A., Young, K. E. & Beachy, P. A. Teratogen-mediated inhibition of target tissue response to Shh signaling. Science 280, 1603–1607 (1998).

    Article  CAS  PubMed  Google Scholar 

  119. Luchetti, G. et al. Cholesterol activates the G-protein coupled receptor Smoothened to promote Hedgehog signaling. Elife https://doi.org/10.7554/eLife.20304 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Myers, B. R. et al. Hedgehog pathway modulation by multiple lipid binding sites on the Smoothened effector of signal response. Dev. Cell 26, 346–357 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Sever, N. et al. Endogenous B-ring oxysterols inhibit the Hedgehog component Smoothened in a manner distinct from cyclopamine or side-chain oxysterols. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1604984113 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Weiss, L. E., Milenkovic, L., Yoon, J., Stearns, T. & Moerner, W. E. Motional dynamics of single Patched1 molecules in cilia are controlled by Hedgehog and cholesterol. Proc. Natl Acad. Sci. USA 116, 5550–5557 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Huang, P. et al. Cellular cholesterol directly activates Smoothened in Hedgehog signaling. Cell 166, 1176–1187 e1114 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kinnebrew, M. et al. Cholesterol accessibility at the ciliary membrane controls Hedgehog signaling. Elife https://doi.org/10.7554/eLife.50051 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Qi, X. et al. Cryo-EM structure of oxysterol-bound human Smoothened coupled to a heterotrimeric G. Nature 571, 279–283 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Deshpande, I. et al. Smoothened stimulation by membrane sterols drives Hedgehog pathway activity. Nature 571, 284–288 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Manglik, A. & Kruse, A. C. Structural basis for G protein-coupled receptor activation. Biochemistry 56, 5628–5634 (2017).

    Article  CAS  PubMed  Google Scholar 

  128. Myers, B. R., Neahring, L., Zhang, Y., Roberts, K. J. & Beachy, P. A. Rapid, direct activity assays for Smoothened reveal Hedgehog pathway regulation by membrane cholesterol and extracellular sodium. Proc. Natl Acad. Sci. USA 114, E11141–E11150 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Incardona, J. P., Gaffield, W., Kapur, R. P. & Roelink, H. The teratogenic Veratrum alkaloid cyclopamine inhibits sonic hedgehog signal transduction. Development 125, 3553–3562 (1998).

    Article  CAS  PubMed  Google Scholar 

  130. Chen, J. K. I only have eye for ewe: the discovery of cyclopamine and development of hedgehog pathway-targeting drugs. Nat. Prod. Rep. 33, 595–601 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Keeler, R. F. Teratogenic compounds of Veratrum californicum (Durand) - VI. Structure of cyclopamine. Phytochemistry 8, 223–225 (1969).

    Article  CAS  Google Scholar 

  132. Taipale, J. et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 406, 1005–1009 (2000).

    Article  CAS  PubMed  Google Scholar 

  133. Chen, J. K., Taipale, J., Cooper, M. K. & Beachy, P. A. Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev. 16, 2743–2748 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Chen, J. K., Taipale, J., Young, K. E., Maiti, T. & Beachy, P. A. Small molecule modulation of Smoothened activity. Proc. Natl Acad. Sci. USA 99, 14071–14076 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wang, C. et al. Structural basis for Smoothened receptor modulation and chemoresistance to anticancer drugs. Nat. Commun. 5, 4355 (2014).

    Article  CAS  PubMed  Google Scholar 

  136. Fan, C. W. et al. The Hedgehog pathway effector Smoothened exhibits signaling competency in the absence of ciliary accumulation. Chem. Biol. 21, 1680–1689 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Yauch, R. L. et al. Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma. Science 326, 572–574 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Buonamici, S. et al. Interfering with resistance to Smoothened antagonists by inhibition of the PI3K pathway in medulloblastoma. Sci. Transl. Med. 2, 51ra70 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Dijkgraaf, G. J. et al. Small molecule inhibition of GDC-0449 refractory Smoothened mutants and downstream mechanisms of drug resistance. Cancer Res. 71, 435–444 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Del Valle, P. L. Pharmacology/Toxicology NDA Review and Evaluation for Daurismo (Pfizer); https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210656Orig1s000PharmR.pdf (2018).

  141. Nachtergaele, S. et al. Oxysterols are allosteric activators of the oncoprotein Smoothened. Nat. Chem. Biol. 8, 211–220 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Nachtergaele, S. et al. Structure and function of the Smoothened extracellular domain in vertebrate Hedgehog signaling. Elife 2, e01340 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Nedelcu, D., Liu, J., Xu, Y., Jao, C. & Salic, A. Oxysterol binding to the extracellular domain of Smoothened in Hedgehog signaling. Nat. Chem. Biol. 9, 557–564 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Dwyer, J. R. et al. Oxysterols are novel activators of the Hedgehog signaling pathway in pluripotent mesenchymal cells. J. Biol. Chem. 282, 8959–8968 (2007).

    Article  CAS  PubMed  Google Scholar 

  145. Corcoran, R. B. & Scott, M. P. Oxysterols stimulate Sonic hedgehog signal transduction and proliferation of medulloblastoma cells. Proc. Natl Acad. Sci. USA 103, 8408–8413 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Shouhed, D. et al. Osteogenic oxysterols inhibit the adverse effects of oxidative stress on osteogenic differentiation of marrow stromal cells. J. Cell Biochem. 95, 1276–1283 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Raleigh, D. R. et al. Cilia-associated oxysterols activate Smoothened. Mol. Cell 72, 316–327.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Findakly, S. et al. Sterol and oxysterol synthases near the ciliary base activate the Hedgehog pathway. J. Cell Biol. https://doi.org/10.1083/jcb.202002026 (2021).

    Article  PubMed  Google Scholar 

  149. Janda, C. Y., Waghray, D., Levin, A. M., Thomas, C. & Garcia, K. C. Structural basis of Wnt recognition by Frizzled. Science 337, 59–64 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hu, A. et al. Cholesterylation of Smoothened is a calcium-accelerated autoreaction involving an intramolecular ester intermediate. Cell Res. 32, 288–301 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Xiao, X. et al. Cholesterol modification of Smoothened is required for Hedgehog signaling. Mol. Cell 66, 154–162 e110 (2017).

    Article  CAS  PubMed  Google Scholar 

  152. Gong, X. et al. Structural basis for the recognition of Sonic Hedgehog by human Patched1. Science https://doi.org/10.1126/science.aas8935 (2018).

    Article  PubMed  Google Scholar 

  153. Hausmann, G., von Mering, C. & Basler, K. The Hedgehog signaling pathway: where did it come from. PLoS Biol. 7, e1000146 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Kumar, N. et al. Crystal structures of the Burkholderia multivorans hopanoid transporter HpnN. Proc. Natl Acad. Sci. USA 114, 6557–6562 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Liu, S. L. et al. Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol. Nat. Chem. Biol. 13, 268–274 (2017).

    Article  CAS  PubMed  Google Scholar 

  156. Liu, S. L. et al. Simultaneous in situ quantification of two cellular lipid pools using orthogonal fluorescent sensors. Angew. Chem. Int. Ed. Engl. 53, 14387–14391 (2014).

    Article  CAS  PubMed  Google Scholar 

  157. Maza, N. et al. Ptchd1 mediates opioid tolerance via cholesterol-dependent effects on mu-opioid receptor trafficking. Nat. Neurosci. 25, 1179–1190 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kinnebrew, M. et al. Patched 1 reduces the accessibility of cholesterol in the outer leaflet of membranes. Elife https://doi.org/10.7554/eLife.70504 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Zhang, Y. et al. Hedgehog pathway activation through nanobody-mediated conformational blockade of the Patched sterol conduit. Proc. Natl Acad. Sci. USA 117, 28838–28846 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Buwaneka, P., Ralko, A., Liu, S. L. & Cho, W. Evaluation of the available cholesterol concentration in the inner leaflet of the plasma membrane of mammalian cells. J. Lipid Res. 62, 100084 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Tukachinsky, H., Petrov, K., Watanabe, M. & Salic, A. Mechanism of inhibition of the tumor suppressor patched by sonic hedgehog. Proc. Natl Acad. Sci. USA 113, E5866–E5875 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Zheng, H. et al. CheckMyMetal: a macromolecular metal-binding validation tool. Acta Crystallogr. D 73, 223–233 (2017).

    Article  CAS  Google Scholar 

  163. Petrov, K., Wierbowski, B. M., Liu, J. & Salic, A. Distinct cation gradients power cholesterol transport at different key points in the Hedgehog signaling pathway. Dev. Cell 55, 314–327 e317 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Forrest, L. R., Kramer, R. & Ziegler, C. The structural basis of secondary active transport mechanisms. Biochim. Biophys. Acta 1807, 167–188 (2011).

    Article  CAS  PubMed  Google Scholar 

  165. Long, T. et al. Structural basis for itraconazole-mediated NPC1 inhibition. Nat. Commun. 11, 152 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Chang, T. Y., Chang, C. C., Ohgami, N. & Yamauchi, Y. Cholesterol sensing, trafficking, and esterification. Annu. Rev. Cell Dev. Biol. 22, 129–157 (2006).

    Article  CAS  PubMed  Google Scholar 

  167. Wang, X. et al. TPC proteins are phosphoinositide- activated sodium-selective ion channels in endosomes and lysosomes. Cell 151, 372–383 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Yue, S. et al. Requirement of Smurf-mediated endocytosis of Patched1 in sonic hedgehog signal reception. Elife https://doi.org/10.7554/eLife.02555 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Arveseth, C. D. et al. Smoothened transduces Hedgehog signals via activity-dependent sequestration of PKA catalytic subunits. PLoS Biol. 19, e3001191 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Happ, J. T. et al. A PKA inhibitor motif within SMOOTHENED controls hedgehog signal transduction. Nat. Struct. Mol. Biol. 29, 990–999 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Briscoe, J. & Small, S. Morphogen rules: design principles of gradient-mediated embryo patterning. Development 142, 3996–4009 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ekker, S. C. et al. Patterning activities of vertebrate hedgehog proteins in the developing eye and brain. Curr. Biol. 5, 944–955 (1995).

    Article  CAS  PubMed  Google Scholar 

  173. Roelink, H. et al. Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of sonic hedgehog autoproteolysis. Cell 81, 445–455 (1995).

    Article  CAS  PubMed  Google Scholar 

  174. Briscoe, J. & Therond, P. P. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat. Rev. Mol. Cell Biol. 14, 416–429 (2013).

    Article  PubMed  Google Scholar 

  175. Gerling, M. et al. Stromal Hedgehog signalling is downregulated in colon cancer and its restoration restrains tumour growth. Nat. Commun. 7, 12321 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Rhim, A. D. et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25, 735–747 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Lee, J. J. et al. Stromal response to Hedgehog signaling restrains pancreatic cancer progression. Proc. Natl Acad. Sci. USA 111, E3091–E3100 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Yang, Z. et al. Stromal Hedgehog signaling maintains smooth muscle and hampers micro-invasive prostate cancer. Dis. Model. Mech. 10, 39–52 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Shin, K. et al. Hedgehog signaling restrains bladder cancer progression by eliciting stromal production of urothelial differentiation factors. Cancer Cell 26, 521–533 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Lee, J. J. et al. Control of inflammation by stromal Hedgehog pathway activation restrains colitis. Proc. Natl Acad. Sci. USA 113, E7545–E7553 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Castillo-Azofeifa, D. et al. Sonic hedgehog from both nerves and epithelium is a key trophic factor for taste bud maintenance. Development 144, 3054–3065 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Ermilov, A. N. et al. Maintenance of taste organs is strictly dependent on epithelial hedgehog/GLI signaling. PLoS Genet. 12, e1006442 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Mukherjee, N. & Delay, E. R. Cyclophosphamide-induced disruption of umami taste functions and taste epithelium. Neuroscience 192, 732–745 (2011).

    Article  CAS  PubMed  Google Scholar 

  184. Epstein, J. B., Smutzer, G. & Doty, R. L. Understanding the impact of taste changes in oncology care. Support. Care Cancer 24, 1917–1931 (2016).

    Article  PubMed  Google Scholar 

  185. Kronenberg, H. M. Developmental regulation of the growth plate. Nature 423, 332–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  186. Tevlin, R. et al. Pharmacological rescue of diabetic skeletal stem cell niches. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aag2809 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Shin, K. et al. Hedgehog/Wnt feedback supports regenerative proliferation of epithelial stem cells in bladder. Nature 472, 110–114 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Zhao, C. et al. Stromal Gli2 activity coordinates a niche signaling program for mammary epithelial stem cells. Science https://doi.org/10.1126/science.aal3485 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Berman, D. M. et al. Medulloblastoma growth inhibition by Hedgehog pathway blockade. Science 297, 1559–1561 (2002).

    Article  CAS  PubMed  Google Scholar 

  190. Rudin, C. M. et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N. Engl. J. Med. 361, 1173–1178 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Basset-Séguin, N. et al. Vismodegib in patients with advanced basal cell carcinoma: primary analysis of STEVIE, an international, open-label trial. Eur. J. Cancer 86, 334–348 (2017).

    Article  PubMed  Google Scholar 

  192. Cortes, J. E., Gutzmer, R., Kieran, M. W. & Solomon, J. A. Hedgehog signaling inhibitors in solid and hematological cancers. Cancer Treat. Rev. 76, 41–50 (2019).

    Article  CAS  PubMed  Google Scholar 

  193. Dierks, C. et al. Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell 14, 238–249 (2008).

    Article  CAS  PubMed  Google Scholar 

  194. Zhao, C. et al. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature 458, 776–779 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Gilbane, A. J., Denton, C. P. & Holmes, A. M. Scleroderma pathogenesis: a pivotal role for fibroblasts as effector cells. Arthritis Res. Ther. 15, 215 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Edeling, M., Ragi, G., Huang, S., Pavenstädt, H. & Susztak, K. Developmental signalling pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog. Nat. Rev. Nephrol. 12, 426–439 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Machado, M. V. & Diehl, A. M. Hedgehog signalling in liver pathophysiology. J. Hepatol. 68, 550–562 (2018).

    Article  CAS  PubMed  Google Scholar 

  198. Pereira, T. A. et al. Macrophage-derived Hedgehog ligands promotes fibrogenic and angiogenic responses in human schistosomiasis mansoni. Liver Int. 33, 149–161 (2013).

    Article  CAS  PubMed  Google Scholar 

  199. Henderson, N. C., Rieder, F. & Wynn, T. A. Fibrosis: from mechanisms to medicines. Nature 587, 555–566 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Han, B. et al. FOXC1 activates Smoothened-independent Hedgehog signaling in basal-like breast cancer. Cell Rep. 13, 1046–1058 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Pietrobono, S., Gagliardi, S. & Stecca, B. Non-canonical Hedgehog signaling pathway in cancer: activation of GLI transcription factors beyond Smoothened. Front. Genet. 10, 556 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Li, X. et al. Importance of hedgehog interacting protein and other lung function genes in asthma. J. Allergy Clin. Immunol. 127, 1457–1465 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Pillai, S. G. et al. A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS Genet. 5, e1000421 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Repapi, E. et al. Genome-wide association study identifies five loci associated with lung function. Nat. Genet. 42, 36–44 (2010).

    Article  CAS  PubMed  Google Scholar 

  205. Van Durme, Y. M. et al. Hedgehog-interacting protein is a COPD susceptibility gene: the Rotterdam study. Eur. Respir. J. 36, 89–95 (2010).

    Article  PubMed  Google Scholar 

  206. Chuang, P. T., Kawcak, T. & McMahon, A. P. Feedback control of mammalian Hedgehog signaling by the Hedgehog-binding protein, Hip1, modulates Fgf signaling during branching morphogenesis of the lung. Genes Dev. 17, 342–347 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Chuang, P. T. & McMahon, A. P. Vertebrate Hedgehog signalling modulated by induction of a Hedgehog-binding protein. Nature 397, 617–621 (1999).

    Article  CAS  PubMed  Google Scholar 

  208. Bishop, B. et al. Structural insights into hedgehog ligand sequestration by the human hedgehog-interacting protein HHIP. Nat. Struct. Mol. Biol. 16, 698–703 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Griffiths, S. C. et al. Hedgehog-interacting protein is a multimodal antagonist of Hedgehog signalling. Nat. Commun. 12, 7171 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Bosanac, I. et al. The structure of SHH in complex with HHIP reveals a recognition role for the Shh pseudo active site in signaling. Nat. Struct. Mol. Biol. 16, 691–697 (2009).

    Article  CAS  PubMed  Google Scholar 

  211. Lao, T. et al. Haploinsufficiency of Hedgehog interacting protein causes increased emphysema induced by cigarette smoke through network rewiring. Genome Med. 7, 12 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Wang, C. et al. Expansion of hedgehog disrupts mesenchymal identity and induces emphysema phenotype. J. Clin. Invest. 128, 4343–4358 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Lu, F. Y., Chen, R., Zhou, M. & Guo, Y. Hedgehog signaling modulates cigarette-induced COPD development. Exp. Ther. Med. 22, 729 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank W. Kong for advice and K. Ding for assistance with Fig. 5. Work in P.A.B.’s laboratory is supported by NIH grant R01GM102498, the Department of Urology of Stanford University School of Medicine and the Ludwig Cancer Institute. Y.Z. is a Merck Fellow of the Damon Runyon Cancer Research Foundation (DRG-2405-20). This article is dedicated to the memory of Dr. Jynho Kim (1964–2016).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Philip A. Beachy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Alanine scanning

An experimental approach in which each amino acid within a domain of interest of a studied protein is replaced by alanine and the protein’s function is tested.

Cyclopia

The development of a single eye in the midline of the face — an extreme form of a congenital malformation known as holoprosencephaly. Cyclopia and holoprosencephaly are associated with loss of Hedgehog signalling and can be caused in grazing animals by ingestion of Veratrum californicum (corn lily), which contains the Hedgehog pathway inhibitor cyclopamine.

Cytonemes

Specialized projections from cell bodies that may function in long-range delivery of responses to signalling molecules.

Glypicans

A family of heparan sulfate proteoglycans anchored to the cell surface through a glycosylphosphatidylinositol related to Dally and Dally-like (Dlp) proteins in fruitflies. These heparan sulfate proteoglycans interact with and can affect cellular responses to signalling molecules, including Hedgehog.

Morphogen

An extracellular signal produced at a particular location within a developing embryo that specifies the pattern of differentiation and proliferation in surrounding cells. The Hedgehog protein signal acts as a morphogen in developing tissues of many multicellular animals.

Organizers

A group of morphogen-producing cells that specifies the pattern of cell differentiation within adjacent structures during embryonic development. Graded Hedgehog signalling is responsible for the activity of well-studied organizers such as the notochord in its patterning of the neural tube and of the somites, and the zone of polarizing activity (ZPA) in limb development.

Oxysterols

Oxidized cholesterol derivatives that can result from enzymatic synthesis or chemical oxidation.

Protein self-splicing

In a class of autoprocessing proteins, removal of a middle segment, encoded by a mobile element, followed by ligation of the amino and carboxy termini through formation of a new peptide bond. The protein self-splicing reaction shares its initiating mechanism and a thioester intermediate with Hedgehog autoprocessing.

Resistance–nodulation–division (RND) transporters

A diverse family of transporters of substrates across cell membranes using chemiosmotic force, usually a proton gradient in prokaryotes and a Na+ gradient in eukaryotes. The family includes Patched and Dispatched of Hedgehog signalling.

SHH-N

The native N-terminal signalling domain of the Sonic hedgehog protein, modified by palmitoyl and cholesteryl lipid adducts at its N and C termini when produced in vivo by auto-processing (cholesteryl adduct) and enzymatic acylation (palmitoyl adduct).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Beachy, P.A. Cellular and molecular mechanisms of Hedgehog signalling. Nat Rev Mol Cell Biol 24, 668–687 (2023). https://doi.org/10.1038/s41580-023-00591-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-023-00591-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing