Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of mitochondrial respiratory adaptation

Abstract

Mitochondrial energetic adaptations encompass a plethora of conserved processes that maintain cell and organismal fitness and survival in the changing environment by adjusting the respiratory capacity of mitochondria. These mitochondrial responses are governed by general principles of regulatory biology exemplified by changes in gene expression, protein translation, protein complex formation, transmembrane transport, enzymatic activities and metabolite levels. These changes can promote mitochondrial biogenesis and membrane dynamics that in turn support mitochondrial respiration. The main regulatory components of mitochondrial energetic adaptation include: the transcription coactivator peroxisome proliferator-activated receptor-γ (PPARγ) coactivator 1α (PGC1α) and associated transcription factors; mTOR and endoplasmic reticulum stress signalling; TOM70-dependent mitochondrial protein import; the cristae remodelling factors, including mitochondrial contact site and cristae organizing system (MICOS) and OPA1; lipid remodelling; and the assembly and metabolite-dependent regulation of respiratory complexes. These adaptive molecular and structural mechanisms increase respiration to maintain basic processes specific to cell types and tissues. Failure to execute these regulatory responses causes cell damage and inflammation or senescence, compromising cell survival and the ability to adapt to energetically demanding conditions. Thus, mitochondrial adaptive cellular processes are important for physiological responses, including to nutrient availability, temperature and physical activity, and their failure leads to diseases associated with mitochondrial dysfunction such as metabolic and age-associated diseases and cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Regulation of mitochondrial respiratory capacity.
Fig. 2: Transcriptional control of mitochondrial biogenesis through PGC1α.
Fig. 3: Translational control of mitochondrial respiratory chain assembly.
Fig. 4: Post-translational mechanisms governing respiratory control and the role of mitochondrial membrane dynamics.

Similar content being viewed by others

References

  1. Gilkerson, R. W., Selker, J. M. L. & Capaldi, R. A. The cristal membrane of mitochondria is the principal site of oxidative phosphorylation. FEBS Lett. 546, 355–358 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Deshpande, O. A. & Mohiuddin, S. S. Biochemistry, Oxidative Phophorylation (StatPearls, 2020).

  3. Walker, J. E. The ATP synthase: the understood, the uncertain and the unknown. Biochem. Soc. Trans. 41, 1–16 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Enerbäck, S. et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387, 90–94 (1997).

    Article  PubMed  Google Scholar 

  5. Kazak, L. et al. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163, 643–655 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nedergaard, J. & Cannon, B. Brown adipose tissue as a heat-producing thermoeffector. Handb. Clin. Neurol. 156, 137–152 (2018).

    Article  PubMed  Google Scholar 

  7. Lowell, B. B. & Spiegelman, B. M. Towards a molecular understanding of adaptive thermogenesis. Nature 404, 652–660 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Chouchani, E. T. et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515, 431–435 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Granger, D. N. & Kvietys, P. R. Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biol. 6, 524–551 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chouchani, E. T. et al. Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1. Nature 532, 112–116 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bock, F. J. & Tait, S. W. G. Mitochondria as multifaceted regulators of cell death. Nat. Rev. Mol. Cell Biol. 21, 85–100 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Giorgi, C., Marchi, S. & Pinton, P. The machineries, regulation and cellular functions of mitochondrial calcium. Nat. Rev. Mol. Cell Biol. 19, 713–730 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Spinelli, J. B. & Haigis, M. C. The multifaceted contributions of mitochondria to cellular metabolism. Nat. Cell Biol. 20, 745–754 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stephan, T. et al. MICOS assembly controls mitochondrial inner membrane remodeling and crista junction redistribution to mediate cristae formation. EMBO J. 39, e104105 (2020). This article, along with Kondadi et al. (2020), dissects the involvement of several MICOS subunits in cristae remodelling and dynamics using advanced microscopy techniques.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Frezza, C. et al. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126, 177–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Civiletto, G. et al. Opa1 overexpression ameliorates the phenotype of two mitochondrial disease mouse models. Cell Metab. 21, 845–854 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sustarsic, E. G. et al. Cardiolipin synthesis in brown and beige fat mitochondria is essential for systemic energy homeostasis. Cell Metab. 28, 159–174.e11 (2018). This work uncovers the lipidomic alterations in beige and brown adipose tissues essential for thermogenesis in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bennett, C. F. et al. Peroxisomal-derived ether phospholipids link nucleotides to respirasome assembly. Nat. Chem. Biol. 17, 703–710 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kondadi, A. K. et al. Cristae undergo continuous cycles of membrane remodelling in a MICOS -dependent manner. EMBO Rep. 21, e49776 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Balsa, E. et al. ER and nutrient stress promote assembly of respiratory chain supercomplexes through the PERK-eIF2α axis. Mol. Cell 74, 877–890.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Latorre-Muro, P. et al. A cold-stress-inducible PERK/OGT axis controls TOM70-assisted mitochondrial protein import and cristae formation. Cell Metab. 33, 598–614.e7 (2021). This article describes regulation of cristae formation by ER stress responses, along with Kato et al. (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Giacomello, M., Pyakurel, A., Glytsou, C. & Scorrano, L. The cell biology of mitochondrial membrane dynamics. Nat. Rev. Mol. Cell Biol. 21, 204–224 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839 (1998). This is the initial report detailing PGC1α as a transcriptional coactivator that binds nuclear receptors and promotes expression of mitochondrial genes.

    Article  CAS  PubMed  Google Scholar 

  24. Wu, Z. et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115–124 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Holloszy, J. O. Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J. Biol. Chem. 242, 2278–2282 (1967).

    Article  CAS  PubMed  Google Scholar 

  26. Handschin, C. et al. Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1α muscle-specific knock-out animals. J. Biol. Chem. 282, 30014–30021 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Couvillion, M. T., Soto, I. C., Shipkovenska, G. & Churchman, L. S. Synchronized mitochondrial and cytosolic translation programs. Nature 533, 499–503 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Soto, I. et al. Balanced mitochondrial and cytosolic translatomes underlie the biogenesis of human respiratory complexes. Preprint at bioRxiv https://doi.org/10.1101/2021.05.31.446345 (2021).

    Article  Google Scholar 

  29. Wang, C. et al. MITRAC15/COA1 promotes mitochondrial translation in a ND2 ribosome–nascent chain complex. EMBO Rep 21, e48833 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Richter-Dennerlein, R. et al. Mitochondrial protein synthesis adapts to influx of nuclear-encoded protein. Cell 167, 471–483.e10 (2016). This article describes plasticity in translational rate from membrane-associated human mitochondrial ribosome–mRNA complexes depending on the import of nuclear-encoded complex IV subunits.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mick, D. U. et al. MITRAC links mitochondrial protein translocation to respiratory-chain assembly and translational regulation. Cell 151, 1528–1541 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Rath, S. et al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 49, D1541–D1547 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Rensvold, J. W. et al. Complementary RNA and protein profiling identifies iron as a key regulator of mitochondrial biogenesis. Cell Rep. 3, 237–245 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Holloszy, J. O. Regulation by exercise of skeletal muscle content of mitochondria and GLUT4. J. Physiol. Pharmacol. 59, 5–18 (2008).

    PubMed  Google Scholar 

  35. Lin, J. et al. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 418, 797–801 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Lai, L. et al. Transcriptional coactivators PGC-lα and PGC-lβ control overlapping programs required for perinatal maturation of the heart. Genes Dev. 22, 1948–1961 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ciron, C. et al. PGC-1α activity in nigral dopamine neurons determines vulnerability to α-synuclein. Acta Neuropathol. Commun. 3, 16 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jiang, H. et al. Adult conditional knockout of PGC-1α leads to loss of dopamine neurons. eNeuro 3, ENEURO.0183-16.2016 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tran, M. T. et al. PGC1α drives NAD biosynthesis linking oxidative metabolism to renal protection. Nature 531, 528–532 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mutlu, B. & Puigserver, P. GCN5 acetyltransferase in cellular energetic and metabolic processes. Biochim. Biophys. Acta Gene Regul. Mech. 1864, 194626 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Luo, C., Widlund, H. R. & Puigserver, P. PGC-1 coactivators: shepherding the mitochondrial biogenesis of tumors. Trends Cancer 2, 619–631 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dominy, J. E. & Puigserver, P. Mitochondrial biogenesis through activation of nuclear signaling proteins. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a015008 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Virbasius, J. V. & Scarpulla, R. C. Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: A potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc. Natl Acad. Sci. USA 91, 1309–1313 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Brown, E. L. et al. PGC-1α and PGC-1β increase protein synthesis via ERRα in C2C12 myotubes. Front. Physiol. 9, 1336 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Handschin, C. et al. Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC-1α. Cell 122, 505–515 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Yoon, J. C. et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413, 131–138 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Blättler, S. M. et al. Defective mitochondrial morphology and bioenergetic function in mice lacking the transcription factor Yin Yang 1 in skeletal muscle. Mol. Cell. Biol. 32, 3333–3346 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Scarpulla, R. C., Vega, R. B. & Kelly, D. P. Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol. Metab. 23, 459–466 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tavares, C. D. J. et al. Transcriptome-wide analysis of PGC-1α-binding RNAs identifies genes linked to glucagon metabolic action. Proc. Natl Acad. Sci. USA 117, 22204–22213 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schreiber, S. N. et al. The estrogen-related receptor α (ERRα) functions in PPARγ coactivator 1α (PGC-1α)-induced mitochondrial biogenesis. Proc. Natl Acad. Sci. USA 101, 6472–6477 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cunningham, J. T. et al. mTOR controls mitochondrial oxidative function through a YY1-PGC-1α transcriptional complex. Nature 450, 736–740 (2007). This article describes mTORC1-dependent regulation of the transcriptional mitochondrial biogenesis programme by directing interaction of the transcription factor YY1 with PGC1α.

    Article  CAS  PubMed  Google Scholar 

  52. Puigserver, P. et al. Activation of PPARγ coactivator-1 through transcription factor docking. Science 286, 1368–1371 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Wallberg, A. E., Yamamura, S., Malik, S., Spiegelman, B. M. & Roeder, R. G. Coordination of p300-mediated chromatin remodeling and TRAP/mediator function through coactivator PGC-1α. Mol. Cell 12, 1137–1149 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Brandt, N., Dethlefsen, M. M., Bangsbo, J. & Pilegaard, H. PGC-1α and exercise intensity dependent adaptations in mouse skeletal muscle. PLoS ONE 12, e0185993 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Aguilo, F. et al. Deposition of 5-methylcytosine on enhancer RNAs enables the coactivator function of PGC-1α. Cell Rep. 14, 479–492 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Desautels, M. & Himms-Hagen, J. Parallel regression of cold-induced changes in ultrastructure, composition, and properties of brown adipose tissue mitochondria during recovery of rats from acclimation to cold. Can. J. Biochem. 58, 1057–1068 (1980).

    Article  CAS  PubMed  Google Scholar 

  57. Chouchani, E. T., Kazak, L. & Spiegelman, B. M. New advances in adaptive thermogenesis: UCP1 and beyond. Cell Metab. 29, 27–37 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Perry, C. G. R. & Hawley, J. A. Molecular basis of exercise-induced skeletal muscle mitochondrial biogenesis: historical advances, current knowledge, and future challenges. Cold Spring Harb. Perspect. Med. 8, a029686 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Liu, D. et al. Activation of mTORC1 is essential for β-adrenergic stimulation of adipose browning. J. Clin. Invest. 126, 1704–1716 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Mulligan, J. D., Gonzalez, A. A., Stewart, A. M., Carey, H. V. & Saupe, K. W. Upregulation of AMPK during cold exposure occurs via distinct mechanisms in brown and white adipose tissue of the mouse. J. Physiol. 580, 677–684 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kato, H. et al. ER-resident sensor PERK is essential for mitochondrial thermogenesis in brown adipose tissue. Life Sci. Alliance 3, e201900576 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lu, X. et al. Mitophagy controls beige adipocyte maintenance through a Parkin-dependent and UCP1-independent mechanism. Sci. Signal. 11, eaap8526 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Reznick, R. M. & Shulman, G. I. The role of AMP-activated protein kinase in mitochondrial biogenesis. J. Physiol. 574, 33–39 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Popov, D. V. Adaptation of skeletal muscles to contractile activity of varying duration and intensity: the role of PGC-1α. Biochemistry (Mosc.) 83, 613–628 (2018).

    Article  CAS  Google Scholar 

  65. Spiegelman, B. Hormones, Metabolisme and the Benefits of Exercise. Trends in Molecular Medicine vol. 7 (Springer International Publishing, 2001).

  66. Wu, H. et al. Regulation of mitochondrial biogenesis in skeletal muscle by caMK. Science 296, 349–352 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Gwinn, D. M. et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214–226 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Inoki, K., Zhu, T. & Guan, K. L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577–590 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Sancak, Y. et al. The rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496–1501 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sancak, Y. et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290–303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nandagopal, N. & Roux, P. P. Regulation of global and specific mRNA translation by the mTOR signaling pathway. Translation 3, e983402 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Roux, P. P. & Topisirovic, I. Regulation of mRNA translation by signaling pathways. Cold Spring Harb. Perspect. Biol. 4, a012252 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Shirokikh, N. E. & Preiss, T. Translation initiation by cap-dependent ribosome recruitment: Recent insights and open questions. Wiley Interdiscip. Rev. RNA 9, e1473 (2018).

    Article  PubMed  Google Scholar 

  74. Hsieh, A. C. et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 485, 55–61 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Thoreen, C. C. et al. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485, 109–113 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Morita, M. et al. MTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation. Cell Metab. 18, 698–711 (2013). This work discovers mTORC1 regulates the translation of numerous mitochondrial genes through phosphorylation of 4E-BP1/2, which promotes mitochondrial respiratory activity and ATP production.

    Article  CAS  PubMed  Google Scholar 

  77. Larsson, O. et al. Distinct perturbation of the translatome by the antidiabetic drug metformin. Proc. Natl Acad. Sci. USA 109, 8977–8982 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gandin, V. et al. NanoCAGE reveals 5’ UTR features that define specific modes of translation of functionally related MTOR-sensitive mRNAs. Genome Res. 26, 636–648 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Elfakess, R. et al. Unique translation initiation of mRNAs-containing TISU element. Nucleic Acids Res. 39, 7598–7609 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sinvani, H. et al. Translational tolerance of mitochondrial genes to metabolic energy stress involves TISU and eIF1-eIF4GI cooperation in start codon selection. Cell Metab. 21, 479–492 (2015). This article establishes that mitochondrial genes remain translationally active under nutrient deprivation, but not rapamycin treatment, owing to enrichment of TISU elements within their 5′ UTRs.

    Article  CAS  PubMed  Google Scholar 

  81. Elfakess, R. & Dikstein, R. A translation initiation element specific to mRNAs with very short 5′UTR that also regulates transcription. PLoS ONE 3, e3094 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Morita, M. et al. mTOR controls mitochondrial dynamics and cell survival via MTFP1. Mol. Cell 67, 922–935.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Dumesic, P. A. et al. An evolutionarily conserved uORF regulates PGC1α and oxidative metabolism in mice, flies, and bluefin tuna. Cell Metab. 30, 190–200.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. McGillivray, P. et al. A comprehensive catalog of predicted functional upstream open reading frames in humans. Nucleic Acids Res. 46, 3326–3338 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Johnstone, T. G., Bazzini, A. A. & Giraldez, A. J. Upstream ORF s are prevalent translational repressors in vertebrates. EMBO J. 35, 706–723 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lynch, M. R., Tran, M. T. & Parikh, S. M. PGC1α in the kidney. Am. J. Physiol. Ren. Physiol 314, F1–F8 (2018).

    Article  Google Scholar 

  87. Han, S. H. et al. PGC-1a protects from notch-induced kidney fibrosis development. J. Am. Soc. Nephrol. 28, 3312–3322 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pla-Martín, D. et al. CLUH granules coordinate translation of mitochondrial proteins with mTORC1 signaling and mitophagy. EMBO J. 39, e102731 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Gao, J. et al. CLUH regulates mitochondrial biogenesis by binding mRNAs of nuclear-encoded mitochondrial proteins. J. Cell Biol. 207, 213–223 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Schatton, D. et al. CLUH regulates mitochondrial metabolism by controlling translation and decay of target mRNAs. J. Cell Biol. 216, 675–693 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sen, A. & Cox, R. T. Clueless is a conserved ribonucleoprotein that binds the ribosome at the mitochondrial outer membrane. Biol. Open 5, 195–203 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sen, A., Kalvakuri, S., Bodmer, R. & Cox, R. T. Clueless, a protein required for mitochondrial function, interacts with the PINK1-Parkin complex in Drosophila. DMM Dis. Model. Mech. 8, 577–589 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Cannavino, J. et al. Regulation of cold-induced thermogenesis by the RNA binding protein FAM195A. Proc. Natl Acad. Sci. USA 118, e2104650118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Molliex, A. et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123–133 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kummer, E. & Ban, N. Mechanisms and regulation of protein synthesis in mitochondria. Nat. Rev. Mol. Cell Biol. 22, 307–325 (2021).

    Article  CAS  PubMed  Google Scholar 

  96. Montoya, J., Ojala, D. & Attardi, G. Distinctive features of the 5′-terminal sequences of the human mitochondrial mRNAs. Nature 290, 465–470 (1981).

    Article  CAS  PubMed  Google Scholar 

  97. Richman, T. R. et al. Loss of the RNA-binding protein TACO1 causes late-onset mitochondrial dysfunction in mice. Nat. Commun. 7, 11884 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Weraarpachai, W. et al. Mutation in TACO1, encoding a translational activator of COX I, results in cytochrome c oxidase deficiency and late-onset Leigh syndrome. Nat. Genet. 41, 833–837 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Taggart, J. C. & Li, G. W. Production of protein-complex components is stoichiometric and lacks general feedback regulation in eukaryotes. Cell Syst. 7, 580–589.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Liu, L. et al. Nutrient sensing by the mitochondrial transcription machinery dictates oxidative phosphorylation. J. Clin. Invest. 124, 768–784 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Mukaneza, Y. et al. MTORC1 is required for expression of LRPPRC and cytochrome-c oxidase but not HIF-1α in leigh syndrome French Canadian type patient fibroblasts. Am. J. Physiol. Cell Physiol 317, C58–C67 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Weraarpachai, W. et al. Mutations in C12orf62, a factor that couples COX I synthesis with cytochrome c oxidase assembly, cause fatal neonatal lactic acidosis. Am. J. Hum. Genet. 90, 142–151 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Vance, J. E. MAM (mitochondria-associated membranes) in mammalian cells: lipids and beyond. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1841, 595–609 (2014).

    Article  CAS  Google Scholar 

  104. Hornbeck, P. V. et al. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 43, D512–D520 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Kampjut, D. & Sazanov, L. A. The coupling mechanism of mammalian respiratory complex I. Science 370, eabc4209 (2020). This is one of the most extensive high-resolution studies of the regulation and mechanism of action of respiratory complex I.

    Article  CAS  PubMed  Google Scholar 

  106. Friedkin, M. & Lehninger, A. L. Oxidation-coupled incorporation of inorganic radiophosphate into phospholipide and nucleic acid in a cell-free system. J. Biol. Chem. 177, 775–788 (1949).

    Article  CAS  PubMed  Google Scholar 

  107. Akabane, S. et al. PKA Regulates PINK1 stability and parkin recruitment to damaged mitochondria through phosphorylation of MIC60. Mol. Cell 62, 371–384 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Yadava, N., Potluri, P. & Scheffler, I. E. Investigations of the potential effects of phosphorylation of the MWFE and ESSS subunits on complex I activity and assembly. Int. J. Biochem. Cell Biol. 40, 447–460 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Rasmo, D. D. et al. Phosphorylation pattern of the NDUFS4 subunit of complex I of the mammalian respiratory chain. Mitochondrion 10, 464–471 (2010).

    Article  PubMed  Google Scholar 

  110. Samavati, L., Lee, I., Mathes, I., Lottspeich, F. & Hüttemann, M. Tumor necrosis factor α inhibits oxidative phosphorylation through tyrosine phosphorylation at subunit I of cytochrome c oxidase. J. Biol. Chem. 283, 21134–21144 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Acin-Perez, R., Gatti, D. L., Bai, Y. & Manfredi, G. Protein phosphorylation and prevention of cytochrome oxidase inhibition by ATP: coupled mechanisms of energy metabolism regulation. Cell Metab. 13, 712–719 (2011). This is the first and one of the most mechanistically detailed articles on the effect of PTMs on OXPHOS activity, together with Acin-Perez and Enriquez (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. De Rasmo, D., Panelli, D., Sardanelli, A. M. & Papa, S. cAMP-dependent protein kinase regulates the mitochondrial import of the nuclear encoded NDUFS4 subunit of complex I. Cell. Signal. 20, 989–997 (2008).

    Article  PubMed  Google Scholar 

  113. Srinivasan, S. et al. Oxidative stress induced mitochondrial protein kinase A mediates cytochrome C oxidase dysfunction. PLoS ONE 8, e77129 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wang, Z. et al. Cyclin B1/Cdk1 coordinates mitochondrial respiration for cell-cycle G2/M progression. Dev. Cell 29, 217–232 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Morais, V. A. et al. PINK1 loss-of-function mutations affect mitochondrial complex I activity via NdufA10 ubiquinone uncoupling. Science 344, 203–207 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Ogura, M., Yamaki, J., Homma, M. K. & Homma, Y. Mitochondrial c-Src regulates cell survival through phosphorylation of respiratory chain components. Biochem. J. 447, 281–289 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Salvi, M., Morrice, N. A., Brunati, A. M. & Toninello, A. Identification of the flavoprotein of succinate dehydrogenase and aconitase as in vitro mitochondrial substrates of Fgr tyrosine kinase. FEBS Lett. 581, 5579–5585 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Acín-Pérez, R. et al. ROS-triggered phosphorylation of complex II by Fgr kinase regulates cellular adaptation to fuel use. Cell Metab. 19, 1020–1033 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Baeza, J., Smallegan, M. J. & Denu, J. M. Site-specific reactivity of nonenzymatic lysine acetylation. ACS Chem. Biol. 10, 122–128 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Narita, T., Weinert, B. T. & Choudhary, C. Functions and mechanisms of non-histone protein acetylation. Nat. Rev. Mol. Cell Biol. 20, 156–174 (2019).

    Article  CAS  PubMed  Google Scholar 

  121. Yang, W. et al. Mitochondrial sirtuin network reveals dynamic SIRT3-dependent deacetylation in response to membrane depolarization. Cell 167, 985–1000.e21 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ahn, B. H. et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl Acad. Sci. USA 105, 14447–14452 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Porter, G. A., Urciuoli, W. R., Brookes, P. S. & Nadtochiy, S. M. SIRT3 deficiency exacerbates ischemia-reperfusion injury: implication for aged hearts. Am. J. Physiol. Hear. Circ. Physiol 306, H1602–H1609 (2014).

    Article  CAS  Google Scholar 

  124. Koentges, C. et al. SIRT3 deficiency impairs mitochondrial and contractile function in the heart. Basic. Res. Cardiol. 110, 1–20 (2015).

    Article  Google Scholar 

  125. Parodi-Rullán, R. M., Chapa-Dubocq, X., Rullán, P. J., Jang, S. & Javadov, S. High sensitivity of SIRT3 deficient hearts to ischemia-reperfusion is associated with mitochondrial abnormalities. Front. Pharmacol. 8, 275 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Finley, L. W. S. et al. Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity. PLoS ONE 6, e23295 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chen, Y. et al. Sirtuin-3 (SIRT3), a therapeutic target with oncogenic and tumor-suppressive function in cancer. Cell Death Dis 5, e1047 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Xiao, H. et al. A quantitative tissue-specific landscape of protein redox regulation during aging. Cell 180, 968–983.e24 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Mills, E. L. et al. Cysteine 253 of UCP1 regulates energy expenditure and sex-dependent adipose tissue inflammation. Cell Metab. 34, 140–157.e8 (2022).

    Article  CAS  PubMed  Google Scholar 

  130. Chouchani, E. T. et al. Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat. Med. 19, 753–759 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Yin, Z. et al. Structural basis for a complex I mutation that blocks pathological ROS production. Nat. Commun. 12, 707 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Burger, N. et al. ND3 Cys39 in complex I is exposed during mitochondrial respiration. Cell Chem. Biol. 29, 636–649.e14 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Araiso, Y. et al. Structure of the mitochondrial import gate reveals distinct preprotein paths. Nature 575, 395–401 (2019).

    Article  CAS  PubMed  Google Scholar 

  134. Tucker, K. & Park, E. Cryo-EM structure of the mitochondrial protein-import channel TOM complex at near-atomic resolution. Nat. Struct. Mol. Biol. 26, 1158–1166 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Roise, D. et al. Amphiphilicity is essential for mitochondrial presequence function. EMBO J. 7, 649–653 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Allison, D. S. & Schatz, G. Artificial mitochondrial presequences. Proc. Natl Acad. Sci. USA 83, 9011–9015 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Schmidt, O. et al. Regulation of mitochondrial protein import by cytosolic kinases. Cell 144, 227–239 (2011). This is the first report on the effect of PTMs on import machinery function.

    Article  CAS  PubMed  Google Scholar 

  138. Pfanner, N. & Neupert, W. Distinct steps in the import of ADP/ATP carrier into mitochondria. J. Biol. Chem. 262, 7528–7536 (1987).

    Article  CAS  PubMed  Google Scholar 

  139. Pfanner, N., Tropschug, M. & Neupert, W. Mitochondrial protein import: nucleoside triphosphates are involved in conferring import-competence to precursors. Cell 49, 815–823 (1987).

    Article  CAS  PubMed  Google Scholar 

  140. Young, J. C., Hoogenraad, N. J. & Hartl, F. U. Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112, 41–50 (2003). This work provides the first evidence connecting cytosolic chaperones with the import of mitochondrial proteins through the receptor TOM70.

    Article  CAS  PubMed  Google Scholar 

  141. Bhangoo, M. K. et al. Multiple 40-kDa heat-shock protein chaperones function in Tom70-dependent mitochondrial import. Mol. Biol. Cell 18, 3414–3428 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Rampelt, H. et al. The mitochondrial carrier pathway transports non-canonical substrates with an odd number of transmembrane segments. BMC Biol. 18, 2 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Yamamoto, H. et al. Roles of Tom70 in import of presequence-containing mitochondrial proteins. J. Biol. Chem. 284, 31635–31646 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Backes, S. et al. Tom70 enhances mitochondrial preprotein import efficiency by binding to internal targeting sequences. J. Cell Biol. 217, 1369–1382 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Fan, A. C. Y. et al. Interaction between the human mitochondrial import receptors Tom20 and Tom70 in vitro suggests a chaperone displacement mechanism. J. Biol. Chem. 286, 32208–32219 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wei, X. et al. Mutations in TOMM70 lead to multi-OXPHOS deficiencies and cause severe anemia, lactic acidosis, and developmental delay. J. Hum. Genet. 65, 231–240 (2020).

    Article  CAS  PubMed  Google Scholar 

  147. Brix, J., Dietmeier, K. & Pfanner, N. Differential recognition of preproteins by the purified cytosolic domains of the mitochondrial import receptors Tom20, Tom22, and Tom70. J. Biol. Chem. 272, 20730–20735 (1997).

    Article  CAS  PubMed  Google Scholar 

  148. Kreimendahl, S., Schwichtenberg, J., Günnewig, K., Brandherm, L. & Rassow, J. The selectivity filter of the mitochondrial protein import machinery. BMC Biol. 18, 1–23 (2020).

    Article  Google Scholar 

  149. Tripathi, A., Mandon, E. C., Gilmore, R. & Rapoport, T. A. Two alternative binding mechanisms connect the protein translocation Sec71-Sec72 complex with heat shock proteins. J. Biol. Chem. 292, 8007–8018 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Gordon, D. E. et al. Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms. Science 370, eabe9403 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Liu, X. Y., Wei, B., Shi, H. X., Shan, Y. F. & Wang, C. Tom70 mediates activation of interferon regulatory factor 3 on mitochondria. Cell Res. 20, 994–1011 (2010).

    Article  CAS  PubMed  Google Scholar 

  152. Filadi, R. et al. TOM70 sustains cell bioenergetics by promoting IP3R3-mediated ER to mitochondria Ca2+transfer. Curr. Biol. 28, 369–382.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  153. An, Y. A. et al. Dysregulation of amyloid precursor protein impairs adipose tissue mitochondrial function and promotes obesity. Nat. Metab. 1, 1243–1257 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Leney, A. C., El Atmioui, D., Wu, W., Ovaa, H. & Heck, A. J. R. Elucidating crosstalk mechanisms between phosphorylation and O-GlcNAcylation. Proc. Natl Acad. Sci. USA 114, E7255–E7261 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Tarrant, M. K. et al. Regulation of CK2 by phosphorylation and O-GlcNAcylation revealed by semisynthesis. Nat. Chem. Biol. 8, 262–269 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Shinoda, K. et al. Phosphoproteomics identifies CK2 as a negative regulator of beige adipocyte thermogenesis and energy expenditure. Cell Metab. 22, 997–1008 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Manni, S. et al. Protein kinase CK2 protects multiple myeloma cells from ER stress-induced apoptosis and from the cytotoxic effect of HSP90 inhibition through regulation of the unfolded protein response. Clin. Cancer Res. 18, 1888–1900 (2012).

    Article  CAS  PubMed  Google Scholar 

  158. Hessenauer, A., Schneider, C. C., Götz Claudia, C. & Montenarh, M. CK2 inhibition induces apoptosis via the ER stress response. Cell. Signal. 23, 145–151 (2011).

    Article  CAS  PubMed  Google Scholar 

  159. Voos, W. Chaperone-protease networks in mitochondrial protein homeostasis. Biochim. Biophys. Acta Mol. Cell Res. 1833, 388–399 (2013).

    Article  CAS  Google Scholar 

  160. Matsushima, Y. et al. Mitochondrial Lon protease is a gatekeeper for proteins newly imported into the matrix. Commun. Biol. 4, 974 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Shin, C. S. et al. LONP1 and mtHSP70 cooperate to promote mitochondrial protein folding. Nat. Commun. 12, 265 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Rep, M. et al. Promotion of mitochondrial membrane complex assembly by a proteolytically inactive yeast Lon. Science 274, 103–106 (1996).

    Article  CAS  PubMed  Google Scholar 

  163. Ghosh, J. C. et al. Akt phosphorylation of mitochondrial Lonp1 protease enables oxidative metabolism and advanced tumor traits. Oncogene 38, 6926–6939 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. MacVicar, T. et al. Lipid signalling drives proteolytic rewiring of mitochondria by YME1L. Nature 575, 361–365 (2019).

    Article  CAS  PubMed  Google Scholar 

  165. Pfanner, N., Warscheid, B. & Wiedemann, N. Mitochondrial proteins: from biogenesis to functional networks. Nat. Rev. Mol. Cell Biol. 20, 267–284 (2019). This is one of the most compelling reviews that discusses the mechanisms and roles of import machineries in organizing mitochondrial function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Priesnitz, C., Pfanner, N. & Becker, T. Studying Protein Import into Mitochondria. Methods in Cell Biology vol. 155 (Elsevier, 2020).

  167. Guerrero-Castillo, S. et al. The assembly pathway of mitochondrial respiratory chain complex I. Cell Metab. 25, 128–139 (2017).

    Article  CAS  PubMed  Google Scholar 

  168. Vercellino, I. & Sazanov, L. A. The assembly, regulation and function of the mitochondrial respiratory chain. Nat. Rev. Mol. Cell Biol. 23, 141–161 (2022).

    Article  CAS  PubMed  Google Scholar 

  169. Schägger, H. & Pfeiffer, K. The ratio of oxidative phosphorylation complexes I-V in Bovine heart mitochondria and the composition of respiratory chain supercomplexes. J. Biol. Chem. 276, 37861–37867 (2001).

    Article  Google Scholar 

  170. Greggio, C. et al. Enhanced respiratory chain supercomplex formation in response to exercise in human skeletal muscle. Cell Metab. 25, 301–311 (2017).

    Article  CAS  PubMed  Google Scholar 

  171. Schägger, H. & Pfeiffer, K. Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J. 19, 1777–1783 (2000). This article overturns the paradigm on respiratory chain complex organization. Using blue native PAGE, the authors establish that yeast and mammalian respiratory chain complexes superassemble.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Acin-Perez, R. & Enriquez, J. A. The function of the respiratory supercomplexes: the plasticity model. Biochim. Biophys. Acta Bioenerg. 1837, 444–450 (2014).

    Article  CAS  Google Scholar 

  173. Acín-Pérez, R., Fernández-Silva, P., Peleato, M. L., Pérez-Martos, A. & Enriquez, J. A. Respiratory active mitochondrial supercomplexes. Mol. Cell 32, 529–539 (2008).

    Article  PubMed  Google Scholar 

  174. Gonzalez-Franquesa, A. et al. Mass-spectrometry-based proteomics reveals mitochondrial supercomplexome plasticity. Cell Rep. 35, 109180 (2021).

    Article  CAS  PubMed  Google Scholar 

  175. Lapuente-Brun, E. et al. Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 340, 1567–1570 (2013).

    Article  CAS  PubMed  Google Scholar 

  176. Lopez-Fabuel, I. et al. Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes. Proc. Natl Acad. Sci. USA 113, 13063–13068 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Calvo, E. et al. Functional role of respiratory supercomplexes in mice: SCAF1 relevance and segmentation of the Qpool. Sci. Adv. 6, eaba7509 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Vercellino, I. & Sazanov, L. A. Structure and assembly of the mammalian mitochondrial supercomplex CIII2CIV. Nature 598, 364–367 (2021). This article provides the first published structure of mammalian supercomplex III2 + IV and characterization of SCAF1-dependent superassembly and kinetic activity.

    Article  CAS  PubMed  Google Scholar 

  179. Moe, A., Trani, J. D., Rubinstein, J. L. & Brzezinski, P. Cryo-EM structure and kinetics reveal electron transfer by 2D diffusion of cytochrome c in the yeast III-IV respiratory supercomplex. Proc. Natl Acad. Sci. USA 118, e2021157118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Berndtsson, J. et al. Respiratory supercomplexes enhance electron transport by decreasing cytochrome c diffusion distance. EMBO Rep 21, e51015 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Blanchi, C., Genova, M. L., Castelli, G. P. & Lenaz, G. The mitochondrial respiratory chain is partially organized in a supercomplex assembly: kinetic evidence using flux control analysis. J. Biol. Chem. 279, 36562–36569 (2004).

    Article  Google Scholar 

  182. Acín-Pérez, R. et al. Respiratory complex III is required to maintain complex I in mammalian mitochondria. Mol. Cell 13, 805–815 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Calvaruso, M. A. et al. Mitochondrial complex III stabilizes complex I in the absence of NDUFS4 to provide partial activity. Hum. Mol. Genet. 21, 115–120 (2012).

    Article  PubMed  Google Scholar 

  184. Schägger, H. et al. Significance of respirasomes for the assembly/stability of human respiratory chain complex I. J. Biol. Chem. 279, 36349–36353 (2004).

    Article  PubMed  Google Scholar 

  185. Protasoni, M. et al. Respiratory supercomplexes act as a platform for complex III -mediated maturation of human mitochondrial complexes I and IV. EMBO J. 39, e102817 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Blaza, J. N., Serreli, R., Jones, A. J. Y., Mohammed, K. & Hirst, J. Kinetic evidence against partitioning of the ubiquinone pool and the catalytic relevance of respiratory-chain supercomplexes. Proc. Natl Acad. Sci. USA 111, 15735–15740 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Lobo-Jarne, T. et al. Human COX7A2L regulates complex III biogenesis and promotes supercomplex organization remodeling without affecting mitochondrial bioenergetics. Cell Rep. 25, 1786–1799.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Cogliati, S. et al. Mechanism of super-assembly of respiratory complexes III and IV. Nature 539, 579–582 (2016).

    Article  CAS  PubMed  Google Scholar 

  189. Pérez-Pérez, R. et al. COX7A2L is a mitochondrial complex III binding protein that stabilizes the III2+IV supercomplex without affecting respirasome formation. Cell Rep. 16, 2387–2398 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Ikeda, K. et al. Mitochondrial supercomplex assembly promotes breast and endometrial tumorigenesis by metabolic alterations and enhanced hypoxia tolerance. Nat. Commun. 10, 4108 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Hollinshead, K. E. R. et al. Respiratory supercomplexes promote mitochondrial efficiency and growth in severely hypoxic pancreatic cancer. Cell Rep. 33, 108231 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Mirali, S. et al. The mitochondrial peptidase, neurolysin, regulates respiratory chain supercomplex formation and is necessary for AML viability. Sci. Transl. Med. 12, eaaz8264 (2020).

    Article  CAS  PubMed  Google Scholar 

  193. García-Poyatos, C. et al. Scaf1 promotes respiratory supercomplexes and metabolic efficiency in zebrafish. EMBO Rep. 21, e50287 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Chan, D. C. Mitochondrial dynamics and its involvement in disease. Annu. Rev. Pathol. Mech. Dis. 15, 235–259 (2020).

    Article  CAS  Google Scholar 

  195. Friedman, J. R. & Nunnari, J. Mitochondrial form and function. Nature 505, 335–343 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Friedman, J. R. et al. ER tubules mark sites of mitochondrial division. Science 334, 358–362 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Rambold, A. S., Kostelecky, B., Elia, N. & Lippincott-Schwartz, J. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc. Natl Acad. Sci. USA 108, 10190–10195 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Gomes, L. C., Benedetto, G. D. & Scorrano, L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 13, 589–598 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Kim, H. et al. Fine-tuning of Drp1/Fis1 availability by AKAP121/Siah2 regulates mitochondrial adaptation to hypoxia. Mol. Cell 44, 532–544 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Yao, C. H. et al. Mitochondrial fusion supports increased oxidative phosphorylation during cell proliferation. eLife 8, e41351 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Wikstrom, J. D. et al. Hormone-induced mitochondrial fission is utilized by brown adipocytes as an amplification pathway for energy expenditure. EMBO J. 33, 418–436 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Coronado, M. et al. Physiological mitochondrial fragmentation is a normal cardiac adaptation to increased energy demand. Circ. Res. 122, 282–295 (2018).

    Article  CAS  PubMed  Google Scholar 

  203. Waters, L. R., Ahsan, F. M., Wolf, D. M., Shirihai, O. & Teitell, M. A. Initial B cell activation induces metabolic reprogramming and mitochondrial remodeling. iScience 5, 99–109 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Ron-Harel, N. et al. Mitochondrial biogenesis and proteome remodeling promote one-carbon metabolism for T cell activation. Cell Metab. 24, 104–117 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Cogliati, S. et al. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155, 160–171 (2013). This article establishes the connection between cristae morphology and respiratory chain complex assembly and function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Bal, N. C. et al. Both brown adipose tissue and skeletal muscle thermogenesis processes are activated during mild to severe cold adaptation in mice. J. Biol. Chem. 292, 16616–16625 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Kondadi, A. K. et al. Cristae undergo continuous cycles of fusion and fission in a MICOS-dependent manner. Preprint at bioRxiv https://doi.org/10.1101/654541 (2019).

    Article  Google Scholar 

  208. Patten, D. A. et al. OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand. EMBO J. 33, 2676–2691 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Tang, J. et al. Sam50–Mic19–Mic60 axis determines mitochondrial cristae architecture by mediating mitochondrial outer and inner membrane contact. Cell Death Differ. 27, 146–160 (2020).

    Article  CAS  PubMed  Google Scholar 

  210. Ott, C., Dorsch, E., Fraunholz, M., Straub, S. & Kozjak-Pavlovic, V. Detailed analysis of the human mitochondrial contact site complex indicate a hierarchy of subunits. PLoS ONE 10, 1–15 (2015).

    Article  Google Scholar 

  211. Li, H. et al. Mic60/Mitofilin determines MICOS assembly essential for mitochondrial dynamics and mtDNA nucleoid organization. Cell Death Differ. 23, 380–392 (2016).

    Article  CAS  PubMed  Google Scholar 

  212. Friedman, J. R., Mourier, A., Yamada, J., Michael McCaffery, J. & Nunnari, J. MICOS coordinates with respiratory complexes and lipids to establish mitochondrial inner membrane architecture. eLife 2015, 1–61 (2015).

    Google Scholar 

  213. Strauss, M., Hofhaus, G., Schröder, R. R. & Kühlbrandt, W. Dimer ribbons of ATP synthase shape the inner mitochondrial membrane. EMBO J. 27, 1154–1160 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Daum, B., Walter, A., Horst, A., Osiewacz, H. D. & Kühlbrandt, W. Age-dependent dissociation of ATP synthase dimers and loss of inner-membrane cristae in mitochondria. Proc. Natl Acad. Sci. USA 110, 15301–15306 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Paumard, P. The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO J. 21, 221–230 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Blum, T. B., Hahn, A., Meier, T., Davies, K. M. & Kühlbrandt, W. Dimers of mitochondrial ATP synthase induce membrane curvature and self-assemble into rows. Proc. Natl Acad. Sci. USA 116, 4250–4255 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Anand, R. et al. MIC26 and MIC27 cooperate to regulate cardiolipin levels and the landscape of OXPHOS complexes. Life Sci. Alliance 3, 1–17 (2020).

    Article  Google Scholar 

  218. Pfeiffer, K. et al. Cardiolipin stabilizes respiratory chain supercomplexes. J. Biol. Chem. 278, 52873–52880 (2003).

    Article  CAS  PubMed  Google Scholar 

  219. Kramarova, T. V. et al. Mitochondrial ATP synthase levels in brown adipose tissue are governed by the c-Fo subunit P1 isoform. FASEB J. 22, 55–63 (2008).

    Article  CAS  PubMed  Google Scholar 

  220. Rampelt, H., Zerbes, R. M., van der Laan, M. & Pfanner, N. Role of the mitochondrial contact site and cristae organizing system in membrane architecture and dynamics. Biochim. Biophys. Acta Mol. Cell Res. 1864, 737–746 (2017).

    Article  CAS  PubMed  Google Scholar 

  221. Banci, L. et al. Structural characterization of CHCHD5 and CHCHD7: two atypical human twin CX9C proteins. J. Struct. Biol. 180, 190–200 (2012).

    Article  CAS  PubMed  Google Scholar 

  222. Sakowska, P. et al. The oxidation status of Mic19 regulates MICOS assembly. Mol. Cell. Biol. 35, 4222–4237 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Zhou, Z. D., Saw, W. T. & Tan, E. K. Mitochondrial CHCHD-containing proteins: physiologic functions and link with neurodegenerative diseases. Mol. Neurobiol. 54, 5534–5546 (2017).

    Article  CAS  PubMed  Google Scholar 

  224. Ueda, E. et al. Myristoyl group-aided protein import into the mitochondrial intermembrane space. Sci. Rep. 9, 1185 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Tsai, P. I. et al. PINK1 Phosphorylates MIC60/mitofilin to control structural plasticity of mitochondrial crista junctions. Mol. Cell 69, 744–756.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  226. Kawano, S. et al. Structure-function insights into direct lipid transfer between membranes by Mmm 1-Mdm 12 of ERMES. J. Cell Biol. 217, 959–974 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Guillén-Samander, A. et al. VPS13D bridges the ER to mitochondria and peroxisomes via Miro. J. Cell Biol. 220, e202010004 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Koob, S., Barrera, M., Anand, R. & Reichert, A. S. The non-glycosylated isoform of MIC26 is a constituent of the mammalian MICOS complex and promotes formation of crista junctions. Biochim. Biophys. Acta Mol. Cell Res. 1853, 1551–1563 (2015).

    Article  CAS  Google Scholar 

  229. Van Den Brink-Van Der Laan, E., Antoinette Killian, J. & De Kruijff, B. Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. Biochim. Biophys. Acta Biomembr. 1666, 275–288 (2004).

    Article  Google Scholar 

  230. Mejia, E. M. & Hatch, G. M. Mitochondrial phospholipids: role in mitochondrial function. J. Bioenerg. Biomembr. 48, 99–112 (2016).

    Article  CAS  PubMed  Google Scholar 

  231. Osman, C., Voelker, D. R. & Langer, T. Making heads or tails of phospholipids in mitochondria. J. Cell Biol. 192, 7–16 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Böttinger, L. et al. Phosphatidylethanolamine and cardiolipin differentially affect the stability of mitochondrial respiratory chain supercomplexes. J. Mol. Biol. 423, 677–686 (2012).

    Article  PubMed  Google Scholar 

  233. Tasseva, G. et al. Phosphatidylethanolamine deficiency in mammalian mitochondria impairs oxidative phosphorylation and alters mitochondrial morphology. J. Biol. Chem. 288, 4158–4173 (2013).

    Article  CAS  PubMed  Google Scholar 

  234. Das, S. et al. ATP citrate lyase improves mitochondrial function in skeletal muscle. Cell Metab. 21, 868–876 (2015).

    Article  CAS  PubMed  Google Scholar 

  235. Lynes, M. D. et al. Cold-activated lipid dynamics in adipose tissue highlights a role for cardiolipin in thermogenic metabolism. Cell Rep. 24, 781–790 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. May, F. J. et al. Lipidomic adaptations in white and brown adipose tissue in response to exercise demonstrate molecular species-specific remodeling. Cell Rep. 18, 1558–1572 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Marcher, A. B. et al. RNA-seq and mass-spectrometry-based lipidomics reveal extensive changes of glycerolipid pathways in brown adipose tissue in response to cold. Cell Rep. 13, 2000–2013 (2015).

    Article  CAS  PubMed  Google Scholar 

  238. Jain, I. H. et al. Genetic screen for cell fitness in high or low oxygen highlights mitochondrial and lipid metabolism. Cell 181, 716–727.e11 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Baker, C. D., Ball, W. B., Pryce, E. N. & Gohil, V. M. Specific requirements of nonbilayer phospholipids in mitochondrial respiratory chain function and formation. Mol. Biol. Cell 27, 2161–2171 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Tuller, G., Nemec, T., Hrastnik, C. & Daum, G. Lipid composition of subcellular membranes of an FY1679-derived haploid yeast wild-type strain grown on different carbon sources. Yeast 15, 1555–1564 (1999).

    Article  CAS  PubMed  Google Scholar 

  241. Yan, F., Zhao, H. & Zeng, Y. Lipidomics: a promising cancer biomarker. Clin. Transl. Med. 7, 21 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Dean, J. M. & Lodhi, I. J. Structural and functional roles of ether lipids. Protein Cell 9, 196–206 (2018).

    Article  CAS  PubMed  Google Scholar 

  243. Park, H. et al. Peroxisome-derived lipids regulate adipose thermogenesis by mediating cold-induced mitochondrial fission. J. Clin. Invest. 129, 694–711 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Kimura, T. et al. Substantial decrease in plasmalogen in the heart associated with tafazzin deficiency. Biochemistry 57, 2162–2175 (2018).

    Article  CAS  PubMed  Google Scholar 

  245. Kimura, T. et al. Plasmalogen loss caused by remodeling deficiency in mitochondria. Life Sci. Alliance 2, e201900348 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Zhu, Y. et al. Alkylglyceronephosphate synthase (AGPS) alters lipid signaling pathways and supports chemotherapy resistance of glioma and hepatic carcinoma cell lines. Asian Pac. J. Cancer Prev. 15, 3219–3226 (2014).

    Article  PubMed  Google Scholar 

  247. Benjamin, D. I. et al. Ether lipid generating enzyme AGPS alters the balance of structural and signaling lipids to fuel cancer pathogenicity. Proc. Natl Acad. Sci. USA 110, 14912–14917 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Messias, M. C. F., Mecatti, G. C., Priolli, D. G. & De Oliveira Carvalho, P. Plasmalogen lipids: Functional mechanism and their involvement in gastrointestinal cancer. Lipids Health Dis. 17, 41 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Wu, M., Gu, J., Guo, R., Huang, Y. & Yang, M. Structure of mammalian respiratory supercomplex I1III2IV1. Cell 167, 1598–1609.e10 (2016).

    Article  CAS  PubMed  Google Scholar 

  250. Sun, F. et al. Crystal structure of mitochondrial respiratory membrane protein complex II. Cell 121, 1043–1057 (2005).

    Article  CAS  PubMed  Google Scholar 

  251. Spikes, T. E., Montgomery, M. G. & Walker, J. E. Structure of the dimeric ATP synthase from bovine mitochondria. Proc. Natl Acad. Sci. USA 117, 23519–23526 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Pebay-Peyroula, E. et al. Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature 426, 39–44 (2003).

    Article  CAS  PubMed  Google Scholar 

  253. Berardi, M. J., Shih, W. M., Harrison, S. C. & Chou, J. J. Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature 476, 109–113 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Park, Y., Reyna-Neyra, A., Philippe, L. & Thoreen, C. C. mTORC1 balances cellular amino acid supply with demand for protein synthesis through post-transcriptional control of ATF4. Cell Rep. 19, 1083–1090 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Davies, K. M., Anselmi, C., Wittig, I., Faraldo-Gómez, J. D. & Kühlbrandt, W. Structure of the yeast F1Fo-ATP synthase dimer and its role in shaping the mitochondrial cristae. Proc. Natl Acad. Sci. USA 109, 13602–13607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Nicholls, D. G. & Ferguson, S. J. Respiratory chains. in Bioenergetics 91–157 (Elsevier, 2013).

  257. Guo, R., Gu, J., Zong, S., Wu, M. & Yang, M. Structure and mechanism of mitochondrial electron transport chain. Biomed. J. 41, 9–20 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  258. Letts, J. A. & Sazanov, L. A. Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain. Nat. Struct. Mol. Biol. 24, 800–808 (2017).

    Article  CAS  PubMed  Google Scholar 

  259. Sousa, J. S., Mills, D. J., Vonck, J. & Kühlbrandt, W. Functional asymmetry and electron flow in the bovine respirasome. eLife 5, e21290 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  260. Gu, J. et al. The architecture of the mammalian respirasome. Nature 537, 639–643 (2016).

    Article  CAS  PubMed  Google Scholar 

  261. Letts, J. A., Fiedorczuk, K. & Sazanov, L. A. The architecture of respiratory supercomplexes. Nature 537, 644–648 (2016).

    Article  CAS  PubMed  Google Scholar 

  262. Martínez-Reyes, I. & Chandel, N. S. Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 11, 102 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Arnold, S. & Kadenbach, B. Cell respiration is controlled by ATP, an allosteric inhibitor of cytochrome-c oxidase. Eur. J. Biochem. 249, 350–354 (1997).

    Article  CAS  PubMed  Google Scholar 

  264. Schneeberger, M. et al. Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance. Cell 155, 172–187 (2013).

    Article  CAS  PubMed  Google Scholar 

  265. Tubbs, E. et al. Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance. Diabetes 63, 3279–3294 (2014).

    Article  CAS  PubMed  Google Scholar 

  266. De Brito, O. M. & Scorrano, L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456, 605–610 (2008).

    Article  PubMed  Google Scholar 

  267. Muñoz, J. P. et al. Mfn2 modulates the UPR and mitochondrial function via repression of PERK. EMBO J. 32, 2348–2361 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Abrisch, R. G., Gumbin, S. C., Wisniewski, B. T., Lackner, L. L. & Voeltz, G. K. Fission and fusion machineries converge at ER contact sites to regulate mitochondrial morphology. J. Cell Biol. 219, e201911122 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Bravo, R. et al. Increased ER-mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress. J. Cell Sci. 124, 2143–2152 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Basso, V., Marchesan, E. & Ziviani, E. A trio has turned into a quartet: DJ-1 interacts with the IP3R-Grp75-VDAC complex to control ER-mitochondria interaction. Cell Calcium 87, 102186 (2020).

    Article  CAS  PubMed  Google Scholar 

  271. De vos, K. J. et al. VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis. Hum. Mol. Genet. 21, 1299–1311 (2012).

    Article  PubMed  Google Scholar 

  272. Stoica, R. et al. ER-mitochondria associations are regulated by the VAPB-PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43. Nat. Commun. 5, 3996 (2014).

    Article  CAS  PubMed  Google Scholar 

  273. Stoica, R. et al. ALS/FTD-associated FUS activates GSK-3β to disrupt the VAPB–PTPIP51 interaction and ER–mitochondria associations. EMBO Rep. 17, 1326–1342 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Naon, D. et al. Critical reappraisal confirms that mitofusin 2 is an endoplasmic reticulum-mitochondria tether. Proc. Natl Acad. Sci. USA 113, 11249–11254 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Mancuso, M. et al. Fatigue and exercise intolerance in mitochondrial diseases. Literature revision and experience of the Italian Network of Mitochondrial Diseases. Neuromuscul. Disord. 22, S226–S229 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  276. Mito, T. et al. Mosaic dysfunction of mitophagy in mitochondrial muscle disease. Cell Metab. 34, 197–208.e5 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Kleiner, S. et al. Development of insulin resistance in mice lacking PGC-1α in adipose tissues. Proc. Natl Acad. Sci. USA 109, 9635–9640 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Cohen, P. et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 156, 304–316 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Lehman, J. J. & Kelly, D. P. Transcriptional activation of energy metabolic switches in the developing and hypertrophied heart. Clin. Exp. Pharmacol. Physiol. 29, 339–345 (2002).

    Article  CAS  PubMed  Google Scholar 

  280. Chambers, J. M. & Wingert, R. A. PGC-1α in disease: recent renal insights into a versatile metabolic regulator. Cells 9, 2234 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  281. Zhang, L., Liu, J., Zhou, F., Wang, W. & Chen, N. PGC-1α ameliorates kidney fibrosis in mice with diabetic kidney disease through an antioxidative mechanism. Mol. Med. Rep. 17, 4490–4498 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  282. Piccinin, E. et al. PGC-1s in the spotlight with Parkinson’s disease. Int. J. Mol. Sci. 22, 3487 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Kumar, M. et al. Defects in mitochondrial biogenesis drive mitochondrial alterations in PARKIN-deficient human dopamine neurons. Stem Cell Rep. 15, 629–645 (2020).

    Article  CAS  Google Scholar 

  284. Lv, J. et al. PGC-1α sparks the fire of neuroprotection against neurodegenerative disorders. Ageing Res. Rev. 44, 8–21 (2018).

    Article  CAS  PubMed  Google Scholar 

  285. Dumauthioz, N. et al. Enforced PGC-1α expression promotes CD8 T cell fitness, memory formation and antitumor immunity. Cell. Mol. Immunol. 18, 1761–1771 (2021).

    Article  CAS  PubMed  Google Scholar 

  286. Gerbec, Z. J. et al. Conditional deletion of PGC-1α results in energetic and functional defects in NK cells. iScience 23, 101454 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Bertero, E., Kutschka, I., Maack, C. & Dudek, J. Cardiolipin remodeling in Barth syndrome and other hereditary cardiomyopathies. Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165803 (2020).

    Article  CAS  PubMed  Google Scholar 

  288. MacKenzie, J. A. & Payne, R. M. Mitochondrial protein import and human health and disease. Biochim. Biophys. Acta Mol. Basis Dis. 1772, 509–523 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by grants from the US National Institutes of Health R01 DK089883 (NIDDK), R01 DK081418 (NIDDK), R01 DK117655 (NIDDK), R01 CA181217 (NCI), 9R56 AG074527 (NIA), R01 GM121452 (NIGMS), and the Claudia Adams Barr Award to P.P. F32 GM125243 (NIGMS) and the Charles A. King Trust Postdoctoral Fellowship Program were awarded to C.F.B. P.L.-M. is supported by the Human Frontier Science Program (LT-000033/2019-L).

Author information

Authors and Affiliations

Authors

Contributions

C.F.B., P.L.-M. and P.P. contributed substantially to discussion of the content, writing of the article and editing of the manuscript before submission.

Corresponding author

Correspondence to Pere Puigserver.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Luca Scorrano and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Cristae

Invaginations of the inner mitochondrial membrane that increase the surface area of respiratory reactions and harbour the respiratory complexes.

Brown and beige adipose tissues

Thermogenic fat cells with abundant mitochondria that oxidize glucose, fatty acids and branched-chain amino acids to generate heat.

Uncoupling protein 1

(UCP1). Inner mitochondrial membrane protein expressed in thermogenic tissues that dissipates membrane potential from the respiratory complexes and sustains thermogenesis.

Haem

Porphyrin group coordinating an iron atom required for electron transfer or oxygen transport.

Iron–sulfur clusters

Iron sulfide molecules that transfer electrons across respiratory complexes.

ER stress

A condition that occurs when the capacity of the endoplasmic reticulum (ER) lumen to fold proteins is saturated. ER stress transduces signals to other organelles such as mitochondria to adapt cellular metabolism to satisfy energy demands.

Mediator complex

A multiprotein complex that transduces signals from transcription factors to RNA polymerase II to control gene expression.

Nuclear receptors

Ligand-regulated transcription factors that are activated by steroid hormones and other lipid-related molecules.

Catecholamines

A group of chemical neurotransmitters, including dopamine, adrenaline and noradrenaline, that are released into the blood upon stress and modulate beige and brown fat tissue activity.

mTOR

Mammalian target of rapamycin, a nutrient-sensor kinase involved in the control of cellular growth, survival, metabolism and immunity.

AMPK

AMP-activated protein kinase that senses fluctuations in the ATP/AMP ratio.

AKT

Also known as protein kinase B (PKB), a group of serine/threonine kinases that respond to a myriad of external stimuli and include AKT1, AKT2 and AKT3.

Translation initiator of short 5′ UTR (TISU) elements

Sequence elements that are downstream of transcription start sites and regulate both transcriptional and translational initiation and are present in mRNAs with very short 5′ untranslated regions (UTRs).

PINK1–parkin mitophagy pathway

A quality control pathway that marks damaged mitochondria to promote their autophagy-mediated destruction.

Branched-chain amino acids

Amino acids, including valine, leucine and isoleucine, that can be oxidized in the cell to obtain energy.

Unfolded protein response

A process that regulates a transcriptional and translational response to endoplasmic reticulum protein folding stress.

Internal mitochondrial targeting sequence-like signals

Peptide sequences present within proteins destined for mitochondria that interact with import receptors and increase import competence.

SEC translocon

Protein complex embedded in the endoplasmic reticulum membrane that transports proteins from and through the endoplasmic reticulum lumen.

ADP/ATP carrier

An inner mitochondrial membrane transporter that exchanges ATP/ADP.

Phosphate carrier

An inner mitochondrial membrane transporter of phosphate.

AAA+ proteases

Subset of ATPase proteases that participate in diverse quality control mechanisms in mitochondria and the cytosol (26S proteasome).

Substrate channelling

Biochemical phenomenon whereby the intermediate product from one enzyme is shuttled as a substrate to the next enzyme before equilibration with the bulk aqueous solvent. This model is contested for mitochondrial respiratory supercomplexes, but refers to the presence of functionally distinct pools of ubiquinone or cytochrome c within supercomplexess that pass between complex I and complex III2 or complex III2 and complex IV, respectively.

Sphingolipids

A class of phospholipids containing a sphingosine backbone. Sphingolipids facilitate mitochondrial function and cellular signalling responses, but their accumulation correlates with mitochondrial dysfunction and chronic metabolic diseases such as type 2 diabetes.

sn-1 position

The first stereochemical position on a glycerol moiety to which a fatty acid is attached.

Barth syndrome

A rare X-linked genetic disorder of cardiolipin metabolism that presents with cardiomyopathy, neutropenia and muscle weakness.

Substantia nigra

Basal ganglia structure in the brain that plays important roles in behaviour–reward neuronal programmes.

Sengers syndrome

A rare autosomal condition characterized by myocardiopathy, lactic acidosis, muscle weakness and short life expectancy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennett, C.F., Latorre-Muro, P. & Puigserver, P. Mechanisms of mitochondrial respiratory adaptation. Nat Rev Mol Cell Biol 23, 817–835 (2022). https://doi.org/10.1038/s41580-022-00506-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-022-00506-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing