Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

It’s not just a phase: function and characteristics of RNA-binding proteins in phase separation

An Author Correction to this article was published on 24 October 2022

This article has been updated

Abstract

Biomolecular condensates that form via phase separation are increasingly regarded as coordinators of cellular reactions that regulate a wide variety of biological phenomena. Mounting evidence suggests that multiple steps of the RNA life cycle are organized within RNA-binding protein-rich condensates. In this Review, we discuss recent insights into the influence of phase separation on RNA biology, which has implications for basic cell biology, the pathogenesis of human diseases and the development of novel therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distinct condensates impact various aspects of the RNA life cycle.
Fig. 2: Protein domains and PTMs coordinate multivalent interactions to drive RBP phase separation.
Fig. 3: Alternative splicing changes the propensity of RBPs to phase separate and the physical characteristics of their condensates.
Fig. 4: RNA influences phase separation and condensate composition through inter- and intramolecular interactions.

Similar content being viewed by others

Change history

References

  1. Hubstenberger, A. et al. P-body purification reveals the condensation of repressed mRNA regulons. Mol. Cell 68, 144–157 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Youn, J. Y. et al. Properties of stress granule and P-body proteomes. Mol. Cell 76, 286–294 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Brinegar, A. E. & Cooper, T. A. Roles for RNA-binding proteins in development and disease. Brain Res. 1647, 1–8 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vuong, C. K., Black, D. L. & Zheng, S. The neurogenetics of alternative splicing. Nat. Rev. Neurosci. 17, 265–281 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Baralle, F. E. & Giudice, J. Alternative splicing as a regulator of development and tissue identity. Nat. Rev. Mol. Cell Biol. 18, 437–451 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009). The P granule was the first biomolecular condensate demonstrated to have liquid-like properties, such as droplet fusion, wetting and dripping.

    Article  CAS  PubMed  Google Scholar 

  7. Monneron, A. & Bernhard, W. Fine structural organization of the interphase nucleus in some mammalian cells. J. Ultrasructure Res. 27, 266–288 (1969).

    Article  CAS  Google Scholar 

  8. Tatomer, D. C. et al. Concentrating pre-mRNA processing factors in the histone locus body facilitates efficient histone mRNA biogenesis. J. Cell Biol. 213, 557–570 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Duronio, R. J. & Marzluff, W. F. Coordinating cell cycle-regulated histone gene expression through assembly and function of the histone locus body. RNA Biol. 14, 726–738 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Galganski, L., Urbanek, M. O. & Krzyzosiak, W. J. Nuclear speckles: molecular organization, biological function and role in disease. Nucleic Acids Res. 45, 10350–10368 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ma, W. & Mayr, C. A membraneless organelle associated with the endoplasmic reticulum enables 3′UTR-mediated protein–protein interactions. Cell 175, 1492–1506 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li, P. et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336–340 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Elbaum-Garfinkle, S. et al. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc. Natl Acad. Sci. US.A 112, 7189–7194 (2015).

    Article  CAS  Google Scholar 

  14. Wang, J. et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688–699 (2018). Extensive mutagenesis of the FUS family of proteins demonstrated that phase separation is driven by tyrosine residues in PrLDs and arginine residues in RBDs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tompa, P. et al. Close encounters of the third kind: disordered domains and the interactions of proteins. BioEssays 31, 328–335 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Michelitsch, M. D. & Weissman, J. S. A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions. Proc. Natl Acad. Sci. USA 97, 11910–11915 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Castello, A. et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149, 1393–1406 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Li, L., McGinnis, J. P. & Si, K. Translational control by prion-like proteins. Trends Cell Biol. 28, 494–505 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zambrano, R. et al. PrionW: a server to identify proteins containing glutamine/asparagine rich prion-like domains and their amyloid cores. Nucleic Acids Res. 43, 331–337 (2015).

    Article  Google Scholar 

  20. Qamar, S. et al. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-π interactions. Cell 173, 720–734 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Harrison, A. F. & Shorter, J. RNA-binding proteins with prion-like domains in health and disease. Biochem. J. 474, 1417–1438 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Molliex, A. et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123–133 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lunde, B. M., Moore, C. & Varani, G. RNA-binding proteins: modular design for efficient function. Nat. Rev. Mol. Cell Biol. 8, 479–490 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Thandapani, P., O’Connor, T. R., Bailey, T. L. & Richard, S. Defining the RGG/RG motif. Mol. Cell 50, 613–623 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Gotor, N. L. et al. RNA-binding and prion domains: the Yin and Yang of phase separation. Nucleic Acids Res. 48, 9491–9504 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chong, P. A., Vernon, R. M. & Forman-Kay, J. D. RGG/RG motif regions in RNA binding and phase separation. J. Mol. Biol. 430, 4650–4665 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Hofweber, M. & Dormann, D. Friend or foe—post-translational modifications as regulators of phase separation and RNP granule dynamics. J. Biol. Chem. 294, 7137–7150 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Bah, A. & Forman-Kay, J. D. Modulation of intrinsically disordered protein function by post-translational modifications. J. Biol. Chem. 291, 6696–6705 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nott, T. J. et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol. Cell 57, 936–947 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hofweber, M. et al. Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation. Cell 173, 706–719 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Ryan, V. H. et al. Mechanistic view of hnRNPA2 low-complexity domain structure, interactions, and phase separation altered by mutation and arginine methylation. Mol. Cell 69, 465–479 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ambadipudi, S., Biernat, J., Riedel, D., Mandelkow, E. & Zweckstetter, M. Liquid–liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau. Nat. Commun. 8, 275 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tsang, B. et al. Phosphoregulated FMRP phase separation models activity-dependent translation through bidirectional control of mRNA granule formation. Proc. Natl Acad. Sci. USA 116, 4218–4227 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Monahan, Z. et al. Phosphorylation of the FUS low‐complexity domain disrupts phase separation, aggregation, and toxicity. EMBO J. 36, 2951–2967 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, A. et al. A single N‐terminal phosphomimic disrupts TDP‐43 polymerization, phase separation, and RNA splicing. EMBO J. 37, e97452 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ford, L., Ling, E., Kandel, E. R. & Fioriti, L. CPEB3 inhibits translation of mRNA targets by localizing them to P bodies. Proc. Natl Acad. Sci. USA 116, 18078–18087 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zbinden, A., Pérez-Berlanga, M., De Rossi, P. & Polymenidou, M. Phase separation and neurodegenerative diseases: a disturbance in the force. Dev. Cell 55, 45–68 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Snead, W. T. & Gladfelter, A. S. The control centers of biomolecular phase separation: how membrane surfaces, PTMs, and active processes regulate condensation. Mol. Cell 76, 295–305 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Duan, Y. et al. PARylation regulates stress granule dynamics, phase separation, and neurotoxicity of disease-related RNA-binding proteins. Cell Res. 29, 233–247 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gueroussov, S. et al. Regulatory expansion in mammals of multivalent hnRNP assemblies that globally control alternative splicing. Cell 170, 324–339 (2017). Multivalent interactions among the HNRNPA and HNRNPD families of RBPs are required for their regulation of alternative splicing. This study, along with ref. 80, demonstrates that IDR-mediated higher-order assembly of RBPs can regulate RNA splicing.

    Article  CAS  PubMed  Google Scholar 

  41. Batlle, C. et al. hnRNPDL phase separation is regulated by alternative splicing and disease-causing mutations accelerate its aggregation. Cell Rep. 30, 1117–1128 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Smith, J. A. et al. FXR1 splicing is important for muscle development and biomolecular condensates in muscle cells. J. Cell Biol. 219, e201911129 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Weskamp, K. et al. Shortened TDP43 isoforms upregulated by neuronal hyperactivity drive TDP43 pathology in ALS. J. Clin. Invest. 130, 1139–1155 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, H. et al. RNA controls polyQ protein phase transitions. Mol. Cell 60, 220–230 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Langdon, E. M. et al. mRNA structure determines specificity of a polyQ-driven phase separation. Science 360, 922–927 (2018). Manipulating RNA sequence and secondary structure alters the identity of the biomolecules incorporated into phase-separated droplets.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Garcia-Jove Navarro, M. et al. RNA is a critical element for the sizing and the composition of phase-separated RNA–protein condensates. Nat. Commun. 10, 3230 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Roden, C. & Gladfelter, A. S. RNA contributions to the form and function of biomolecular condensates. Nat. Rev. Mol. Cell Biol. 22, 183–195 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ribeiro, D. M. et al. Protein complex scaffolding predicted as a prevalent function of long non-coding RNAs. Nucleic Acids Res. 46, 917–928 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Cid-Samper, F. et al. An integrative study of protein–RNA condensates identifies scaffolding RNAs and reveals players in fragile X-associated tremor/ataxia syndrome. Cell Rep. 25, 3422–3434 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pandya-Jones, A. et al. A protein assembly mediates Xist localization and gene silencing. Nature 587, 145–151 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yap, K. et al. A short tandem repeat-enriched RNA assembles a nuclear compartment to control alternative splicing and promote cell survival. Mol. Cell 72, 525–540 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jain, A. & Vale, R. D. RNA phase transitions in repeat expansion disorders. Nature 546, 243–247 (2017). Disease-associated trinucleotide-repeat expansions promote RNA-driven phase separation and gelation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Guillén-Boixet, J. et al. RNA-induced conformational switching and clustering of G3BP drive stress granule assembly by condensation. Cell 181, 346–361 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Yang, P. et al. G3BP1 is a tunable switch that triggers phase separation to assemble stress granules. Cell 181, 325–345 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sanders, D. W. et al. Competing protein–RNA interaction networks control multiphase intracellular organization. Cell 181, 306–324 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Maharana, S. et al. RNA buffers the phase separation behavior of prion-like RNA binding proteins. Science 360, 918–921 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mann, J. R. et al. RNA binding antagonizes neurotoxic phase transitions of TDP-43. Neuron 102, 321–338 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Burke, K. A., Janke, A. M., Rhine, C. L. & Fawzi, N. L. Residue-by-residue view of in vitro FUS granules that bind the C-terminal domain of RNA polymerase II. Mol. Cell 60, 231–241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Banerjee, P. R., Milin, A. N., Moosa, M. M., Onuchic, P. L. & Deniz, A. A. Reentrant phase transition drives dynamic substructure formation in ribonucleoprotein droplets. Angew. Chem. 56, 11354–11359 (2017).

    Article  CAS  Google Scholar 

  60. Liu, S. et al. USP42 drives nuclear speckle mRNA splicing via directing dynamic phase separation to promote tumorigenesis. Cell Death Differ. https://doi.org/10.1038/s41418-021-00763-6 (2021).

  61. Wang, C., Politz, J. C., Pederson, T. & Huang, S. RNA polymerase III transcripts and the PTB protein are essential for the integrity of the perinucleolar compartment. Mol. Biol. Cell 14, 2425–2435 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ninomiya, K. et al. LncRNA‐dependent nuclear stress bodies promote intron retention through SR protein phosphorylation. EMBO J. 39, e102729 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. Schul, W. et al. The RNA 3′ cleavage factors CstF 64 kDa and CPSF 100 kDa are concentrated in nuclear domains closely associated with coiled bodies and newly synthesized RNA. EMBO J. 15, 2883–2892 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li, L. et al. Dynamic nature of cleavage bodies and their spatial relationship to DDX1 bodies, Cajal bodies, and gems. Mol. Biol. Cell 17, 1126–1140 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang, C. et al. Context-dependent deposition and regulation of mRNAs in P-bodies. Elife 7, e29815 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Luo, Y., Na, Z. & Slavoff, S. A. P-bodies: composition, properties, and functions. Biochemistry 57, 2424–2431 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Kroschwald, S. et al. Different material states of Pub1 condensates define distinct modes of stress adaptation and recovery. Cell Rep. 23, 3327–3339 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Riback, J. A. et al. Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell 168, 1028–1040 (2017). This study was one of the first to identify an RBP that aids in stress adaptation through phase separation. Pab1 undergoes phase separation in response to physiological stress conditions to enhance organism survival.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wallace, E. W. J. et al. Reversible, specific, active aggregates of endogenous proteins assemble upon heat stress. Cell 162, 1286–1298 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Franzmann, T. M. et al. Phase separation of a yeast prion protein promotes cellular fitness. Science 359, eaao5654 (2018).

    Article  PubMed  Google Scholar 

  71. Iserman, C. et al. Condensation of Ded1p promotes a translational switch from housekeeping to stress protein production. Cell 181, 818–831 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gilks, N. et al. Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol. Biol. Cell 15, 5383–5398 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Khong, A. et al. The stress granule transcriptome reveals principles of mRNA accumulation in stress granules. Mol. Cell 68, 808–820 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Van Treeck, B. et al. RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome. Proc. Natl Acad. Sci. USA 115, 2734–2739 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Decker, C. J. & Parker, R. P-bodies and stress granules: possible roles in the control of translation and mRNA degradation. Cold Spring Harb. Perspect. Biol. 4, a012286 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Sheu-Gruttadauria, J. & MacRae, I. J. Phase transitions in the assembly and function of human miRISC. Cell 173, 946–957 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kim, T. H. et al. Phospho-dependent phase separation of FMRP and CAPRIN1 recapitulates regulation of translation and deadenylation. Science 365, 825–829 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Conicella, A. E. et al. TDP-43 α-helical structure tunes liquid–liquid phase separation and function. Proc. Natl Acad. Sci. USA 117, 5883–5894 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schmidt, H. B., Barreau, A. & Rohatgi, R. Phase separation-deficient TDP43 remains functional in splicing. Nat. Commun. 10, 4890 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ying, Y. et al. Splicing activation by Rbfox requires self-aggregation through its tyrosine-rich domain. Cell 170, 312–323 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li, W. et al. Biophysical properties of AKAP95 protein condensates regulate splicing and tumorigenesis. Nat. Cell Biol. 22, 960–972 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fang, X. et al. Arabidopsis FLL2 promotes liquid–liquid phase separation of polyadenylation complexes. Nature 569, 265–269 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Boulay, G. et al. Cancer-specific retargeting of BAF complexes by a prion-like domain. Cell 171, 163–178 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zuo, L. et al. Loci-specific phase separation of FET fusion oncoproteins promotes gene transcription. Nat. Commun. 12, 1491 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Grabocka, E. & Bar-Sagi, D. Mutant KRAS enhances tumor cell fitness by upregulating stress granules. Cell 167, 1803–1813 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Somasekharan, S. P. et al. YB-1 regulates stress granule formation and tumor progression by translationally activating G3BP1. J. Cell Biol. 208, 913–929 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Taylor, J. P., Brown, R. H. & Cleveland, D. W. Decoding ALS: from genes to mechanism. Nature 539, 197–206 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Nedelsky, N. B. & Taylor, J. P. Bridging biophysics and neurology: aberrant phase transitions in neurodegenerative disease. Nat. Rev. Neurol. 15, 272–286 (2019).

    Article  PubMed  Google Scholar 

  89. Kim, H. J. et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495, 467–473 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Conlon, E. G. & Manley, J. L. RNA-binding proteins in neurodegeneration: mechanisms in aggregate. Genes Dev. 31, 1509–1528 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Patel, A. et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162, 1066–1077 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Guenther, E. L. et al. Atomic structures of segments from TDP-43 LCD and insight into reversible and pathogenic aggregation. Nat. Struct. Mol. Biol. 25, 463–471 (2018); erratum 26, 988 (2019)..

  93. Blokhuis, A. M., Groen, E. J. N., Koppers, M., Van Den Berg, L. H. & Pasterkamp, R. J. Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathol. 125, 777–794 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ivanova, M. I. et al. Aggregation-triggering segments of SOD1 fibril formation support a common pathway for familial and sporadic ALS. Proc. Natl Acad. Sci. USA 111, 197–201 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Arai, T. et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun. 351, 602–611 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Mackenzie, I. R. A. et al. Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann. Neurol. 61, 427–434 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Lee, S. & Kim, H.-J. Prion-like mechanism in amyotrophic lateral sclerosis: are protein aggregates the key? Exp. Neurobiol. 24, 1–7 (2015).

    Article  PubMed  Google Scholar 

  98. Buratti, E. TDP-43 post-translational modifications in health and disease. Expert Opin. Ther. Targets 22, 279–293 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. Hergesheimer, R. C. et al. The debated toxic role of aggregated TDP-43 in amyotrophic lateral sclerosis: a resolution in sight? Brain 142, 1176–1194 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Fang, M. Y. et al. Small-molecule modulation of TDP-43 recruitment to stress granules prevents persistent TDP-43 accumulation in ALS/FTD. Neuron 103, 802–819 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wheeler, R. J. et al. Small molecules for modulating protein driven liquid–liquid phase separation in treating neurodegenerative disease. Preprint at bioRxiv https://doi.org/10.1101/721001 (2019).

  102. Babinchak, W. M. et al. Small molecules as potent biphasic modulators of protein liquid–liquid phase separation. Nat. Commun. 11, 5574 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Klein, I. A. et al. Partitioning of cancer therapeutics in nuclear condensates. Science 368, 1386–1392 (2020). The physiochemical composition of small molecules determines their partitioning into biological condensates, which may be harnessed for improved therapeutic design.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Alberti, S., Gladfelter, A. & Mittag, T. Considerations and challenges in studying liquid–liquid phase separation and biomolecular condensates. Cell 176, 419–434 (2019). This review proposes precise and rigorous standards for the study of liquid–liquid phase separation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. McSwiggen, D. T., Mir, M., Darzacq, X. & Tjian, R. Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences. Genes Dev. 33, 1619–1634 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. McSwiggen, D. T. et al. Evidence for DNA-mediated nuclear compartmentalization distinct from phase separation. Elife 8, e47098 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Wei, M. T. et al. Nucleated transcriptional condensates amplify gene expression. Nat. Cell Biol. 22, 1187–1196 (2020).

    Article  CAS  PubMed  Google Scholar 

  108. Shin, Y. et al. Spatiotemporal control of intracellular phase transitions using light-activated optoDroplets. Cell 168, 159–171 (2017).

    Article  CAS  PubMed  Google Scholar 

  109. Trojanowski, J., Frank, L., Rademacher, A., Grigaitis, P. & Rippe, K. Transcription activation is enhanced by multivalent interactions independent of liquid–liquid phase separation. Preprint at bioRxiv https://doi.org/10.1101/2021.01.27.428421 (2021).

  110. Hyman, A. A., Weber, C. A. & Jülicher, F. Liquid–liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Gibbs, J. W. On the equilibrium of heterogeneous substances. Am. J. Sci. 16, 441–458 (1878).

    Article  Google Scholar 

  112. Wilson, E. B. The structure of protoplasm. Science 10, 33–45 (1899).

    Article  CAS  PubMed  Google Scholar 

  113. Hardy, W. B. On the structure of cell protoplasm. J. Physiol. 24, 158–210 (1899).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank M. Calabrese, E.R. Hinkle, R.E. Blue and A.J. Black (University of North Carolina at Chapel Hill) for providing critical feedback on the manuscript. Research in the Giudice laboratory is supported by start-up funds and a Jefferson Pilot Award from the University of North Carolina at Chapel Hill, the National Institutes of Health (NIH R01GM130866) and a Career Development Award from the American Heart Association (19CDA34660248). H.J.W. is supported in part by NIH-NIGMS training award T32GM119999 and by the NSF Graduate Research Fellowship Program (DGE-1650116). We acknowledge the support of the Program in Translational Medicine and the Mechanistic, Interdisciplinary Biology (MiBio) Graduate Training Program, both at the University of North Carolina at Chapel Hill.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jimena Giudice.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Structural & Molecular Biology thanks Dorothee Dormann and Jernej Ule for their contribution to the peer review of this work. Anke Sparmann was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiedner, H.J., Giudice, J. It’s not just a phase: function and characteristics of RNA-binding proteins in phase separation. Nat Struct Mol Biol 28, 465–473 (2021). https://doi.org/10.1038/s41594-021-00601-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-021-00601-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing