Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular mechanisms of viral oncogenesis in humans

Abstract

Viral infection is a major contributor to the global cancer burden. Recent advances have revealed that seven known oncogenic viruses promote tumorigenesis through shared host cell targets and pathways. A comprehensive understanding of the principles of viral oncogenesis may enable the identification of unknown infectious aetiologies of cancer and the development of therapeutic or preventive strategies for virus-associated cancers. In this Review, we discuss the molecular mechanisms of viral oncogenesis in humans. We highlight recent advances in understanding how viral manipulation of host cellular signalling, DNA damage responses, immunity and microRNA targets promotes the initiation and development of cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Signalling pathways targeted by oncogenic viruses.
Fig. 2: Viral oncoproteins and DNA damage responses influence the fate of the host cell.
Fig. 3: Modulation of host immune responses by oncogenic viruses.

Similar content being viewed by others

References

  1. zur Hausen, H. & de Villiers, E. M. Cancer “causation” by infections — individual contributions and synergistic networks. Semin. Oncol. 41, 860–875 (2014).

    PubMed  Google Scholar 

  2. Moore, P. S. & Chang, Y. Why do viruses cause cancer? Highlights of the first century of human tumour virology. Nat. Rev. Cancer 10, 878–889 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Epstein, M. A., Achong, B. G. & Barr, Y. M. Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet 1, 702–703 (1964).

    CAS  PubMed  Google Scholar 

  4. Chang, Y. et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 266, 1865–1869 (1994). In this study, representational difference analysis identifies KSHV as a new human herpesvirus associated with Kaposi sarcoma.

    CAS  Google Scholar 

  5. Doorbar, J. Molecular biology of human papillomavirus infection and cervical cancer. Clin. Sci. 110, 525–541 (2006).

    CAS  PubMed  Google Scholar 

  6. Liu, W. et al. Identifying the target cells and mechanisms of Merkel cell polyomavirus infection. Cell Host Microbe 19, 775–787 (2016). This study reveals that human dermal fibroblasts are natural host cells of MCPyV infection in human skin.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Feng, H., Shuda, M., Chang, Y. & Moore, P. S. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 319, 1096–1100 (2008). This study discovers that clonal integration of MCPyV DNA into the genome of Merkel cell carcinoma is a key event for tumour development.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Durst, M., Gissmann, L., Ikenberg, H. & zur Hausen, H. A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc. Natl Acad. Sci. USA 80, 3812–3815 (1983).

    CAS  PubMed  Google Scholar 

  9. Choo, Q. L. et al. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244, 359–362 (1989).

    CAS  PubMed  Google Scholar 

  10. Blumberg, B. S., Alter, H. J. & Visnich, S. A “new” antigen in leukemia sera. JAMA 191, 541–546 (1965).

    CAS  PubMed  Google Scholar 

  11. Poiesz, B. J. et al. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T cell lymphoma. Proc. Natl Acad. Sci. USA 77, 7415–7419 (1980).

    CAS  PubMed  Google Scholar 

  12. Sherr, C. J. & McCormick, F. The RB and p53 pathways in cancer. Cancer Cell 2, 103–112 (2002).

    CAS  PubMed  Google Scholar 

  13. McLaughlin-Drubin, M. E. & Munger, K. Viruses associated with human cancer. Biochim. Biophys. Acta 1782, 127–150 (2008).

    CAS  PubMed  Google Scholar 

  14. Howley, P. M. & Livingston, D. M. Small DNA tumor viruses: large contributors to biomedical sciences. Virology 384, 256–259 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wright, D. G. et al. Human T cell leukemia virus type-1-encoded protein HBZ represses p53 function by inhibiting the acetyltransferase activity of p300/CBP and HBO1. Oncotarget 7, 1687–1706 (2016).

    PubMed  Google Scholar 

  16. Ringelhan, M., O’Connor, T., Protzer, U. & Heikenwalder, M. The direct and indirect roles of HBV in liver cancer: prospective markers for HCC screening and potential therapeutic targets. J. Pathol. 235, 355–367 (2015).

    CAS  PubMed  Google Scholar 

  17. Taylor, J. M. & Nicot, C. HTLV-1 and apoptosis: role in cellular transformation and recent advances in therapeutic approaches. Apoptosis 13, 733–747 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Morales-Sanchez, A. & Fuentes-Panana, E. M. Human viruses and cancer. Viruses 6, 4047–4079 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu, W., MacDonald, M. & You, J. Merkel cell polyomavirus infection and Merkel cell carcinoma. Curr. Opin. Virol. 20, 20–27 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Knoll, S. et al. Dissection of cell context-dependent interactions between HBx and p53 family members in regulation of apoptosis: a role for HBV-induced HCC. Cell Cycle 10, 3554–3565 (2011).

    CAS  PubMed  Google Scholar 

  21. Cho, D. C. Targeting the PI3K/Akt/mTOR pathway in malignancy: rationale and clinical outlook. BioDrugs 28, 373–381 (2014).

    CAS  PubMed  Google Scholar 

  22. Wong, J. P. & Damania, B. Modulation of oncogenic signaling networks by Kaposi’s sarcoma-associated herpesvirus. Biol. Chem. 398, 911–918 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Noch, E. & Khalili, K. Oncogenic viruses and tumor glucose metabolism: like kids in a candy store. Mol. Cancer Ther. 11, 14–23 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Surviladze, Z., Sterk, R. T., DeHaro, S. A. & Ozbun, M. A. Cellular entry of human papillomavirus type 16 involves activation of the phosphatidylinositol 3-kinase/Akt/mTOR pathway and inhibition of autophagy. J. Virol. 87, 2508–2517-(2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, L., Wu, J., Ling, M. T., Zhao, L. & Zhao, K. N. The role of the PI3K/Akt/mTOR signalling pathway in human cancers induced by infection with human papillomaviruses. Mol. Cancer 14, 87 (2015).

    PubMed  PubMed Central  Google Scholar 

  26. Fukuda, M. & Longnecker, R. Latent membrane protein 2A inhibits transforming growth factor-beta 1-induced apoptosis through the phosphatidylinositol 3-kinase/Akt pathway. J. Virol. 78, 1697–1705 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Scholle, F., Bendt, K. M. & Raab-Traub, N. Epstein-Barr virus LMP2A transforms epithelial cells, inhibits cell differentiation, and activates Akt. J. Virol. 74, 10681–10689 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Olagnier, D. et al. HTLV-1 Tax-mediated inhibition of FOXO3a activity is critical for the persistence of terminally differentiated CD4+ T cells. PLoS Pathog. 10, e1004575 (2014).

    PubMed  PubMed Central  Google Scholar 

  29. Stallone, G. et al. Sirolimus for Kaposi’s sarcoma in renal-transplant recipients. N. Engl. J. Med. 352, 1317–1323 (2005).

    CAS  PubMed  Google Scholar 

  30. Chang, H. H. & Ganem, D. A unique herpesviral transcriptional program in KSHV-infected lymphatic endothelial cells leads to mTORC1 activation and rapamycin sensitivity. Cell Host Microbe 13, 429–440 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sodhi, A. et al. Akt plays a central role in sarcomagenesis induced by Kaposi’s sarcoma herpesvirus-encoded G protein-coupled receptor. Proc. Natl Acad. Sci. USA 101, 4821–4826 (2004).

    CAS  PubMed  Google Scholar 

  32. Tomlinson, C. C. & Damania, B. The K1 protein of Kaposi’s sarcoma-associated herpesvirus activates the Akt signaling pathway. J. Virol. 78, 1918–1927 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Shuda, M., Kwun, H. J., Feng, H., Chang, Y. & Moore, P. S. Human Merkel cell polyomavirus small T antigen is an oncoprotein targeting the 4E-BP1 translation regulator. J. Clin. Invest. 121, 3623–3634 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim, E. K. & Choi, E. J. Compromised MAPK signaling in human diseases: an update. Arch. Toxicol. 89, 867–882 (2015).

    CAS  PubMed  Google Scholar 

  35. Menzel, N. et al. MAP-kinase regulated cytosolic phospholipase A2 activity is essential for production of infectious hepatitis C virus particles. PLoS Pathog. 8, e1002829 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bowser, B. S., Alam, S. & Meyers, C. Treatment of a human papillomavirus type 31b-positive cell line with benzo[a]pyrene increases viral titer through activation of the Erk1/2 signaling pathway. J. Virol. 85, 4982–4992 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Matusali, G., Arena, G., De Leo, A., Di Renzo, L. & Mattia, E. Inhibition of p38 MAP kinase pathway induces apoptosis and prevents Epstein Barr virus reactivation in Raji cells exposed to lytic cycle inducing compounds. Mol. Cancer 8, 18 (2009).

    PubMed  PubMed Central  Google Scholar 

  38. Dawson, C. W., Laverick, L., Morris, M. A., Tramoutanis, G. & Young, L. S. Epstein-Barr virus-encoded LMP1 regulates epithelial cell motility and invasion via the ERK-MAPK pathway. J. Virol. 82, 3654–3664 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. McCormick, C. & Ganem, D. The kaposin B protein of KSHV activates the p38/MK2 pathway and stabilizes cytokine mRNAs. Science 307, 739–741 (2005).

    CAS  PubMed  Google Scholar 

  40. Xia, L. et al. Upregulated FoxM1 expression induced by hepatitis B virus X protein promotes tumor metastasis and indicates poor prognosis in hepatitis B virus-related hepatocellular carcinoma. J. Hepatol. 57, 600–612 (2012).

    CAS  PubMed  Google Scholar 

  41. Ranganathan, P., Weaver, K. L. & Capobianco, A. J. Notch signalling in solid tumours: a little bit of everything but not all the time. Nat. Rev. Cancer 11, 338–351 (2011).

    CAS  PubMed  Google Scholar 

  42. South, A. P., Cho, R. J. & Aster, J. C. The double-edged sword of Notch signaling in cancer. Semin. Cell Dev. Biol. 23, 458–464 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Rozenblatt-Rosen, O. et al. Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins. Nature 487, 491–495 (2012). This study analyses the host interactome and transcriptome networks perturbed by DNA tumour virus proteins, revealing cancer driver genes that contribute to the molecular basis of human cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Tan, M. J. et al. Cutaneous β-human papillomavirus E6 proteins bind Mastermind-like coactivators and repress Notch signaling. Proc. Natl Acad. Sci. USA 109, E1473–E1480 (2012).

    CAS  PubMed  Google Scholar 

  45. Brimer, N., Lyons, C., Wallberg, A. E. & Vande Pol, S. B. Cutaneous papillomavirus E6 oncoproteins associate with MAML1 to repress transactivation and NOTCH signaling. Oncogene 31, 4639–4646 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Meyers, J. M., Spangle, J. M. & Munger, K. The human papillomavirus type 8 E6 protein interferes with NOTCH activation during keratinocyte differentiation. J. Virol. 87, 4762–4767 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Rowe, M., Raithatha, S. & Shannon-Lowe, C. Counteracting effects of cellular Notch and Epstein-Barr virus EBNA2: implications for stromal effects on virus-host interactions. J. Virol. 88, 12065–12076 (2014).

    PubMed  PubMed Central  Google Scholar 

  48. Gao, J. et al. Hepatitis B virus X protein activates Notch signaling by its effects on Notch1 and Notch4 in human hepatocellular carcinoma. Int. J. Oncol. 48, 329–337 (2016).

    CAS  PubMed  Google Scholar 

  49. Curry, C. L. et al. Gamma secretase inhibitor blocks Notch activation and induces apoptosis in Kaposi’s sarcoma tumor cells. Oncogene 24, 6333–6344 (2005).

    CAS  PubMed  Google Scholar 

  50. Emuss, V. et al. KSHV manipulates Notch signaling by DLL4 and JAG1 to alter cell cycle genes in lymphatic endothelia. PLoS Pathog. 5, e1000616 (2009).

    PubMed  PubMed Central  Google Scholar 

  51. Liu, R. et al. KSHV-induced notch components render endothelial and mural cell characteristics and cell survival. Blood 115, 887–895 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Cheng, F. et al. KSHV-initiated notch activation leads to membrane-type-1 matrix metalloproteinase-dependent lymphatic endothelial-to-mesenchymal transition. Cell Host Microbe 10, 577–590 (2011). In this study, KSHV is found to activate the Notch signalling pathway to induce lymphatic endothelial cells to mesenchymal cell transition, which may contribute to Kaposi sarcoma development by promoting the generation of infected cells with invasive mesenchymal cell properties.

    CAS  PubMed  Google Scholar 

  53. Lan, K. et al. Kaposi’s sarcoma herpesvirus-encoded latency-associated nuclear antigen stabilizes intracellular activated Notch by targeting the Sel10 protein. Proc. Natl Acad. Sci. USA 104, 16287–16292 (2007).

    CAS  PubMed  Google Scholar 

  54. Nusse, R. & Clevers, H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 169, 985–999 (2017).

    CAS  Google Scholar 

  55. Fujimuro, M. & Hayward, S. D. The latency-associated nuclear antigen of Kaposi’s sarcoma-associated herpesvirus manipulates the activity of glycogen synthase kinase-3β. J. Virol. 77, 8019–8030 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Morrison, J. A., Gulley, M. L., Pathmanathan, R. & Raab-Traub, N. Differential signaling pathways are activated in the Epstein-Barr virus-associated malignancies nasopharyngeal carcinoma and Hodgkin lymphoma. Cancer Res. 64, 5251–5260 (2004).

    CAS  PubMed  Google Scholar 

  57. Morrison, J. A., Klingelhutz, A. J. & Raab-Traub, N. Epstein-Barr virus latent membrane protein 2A activates β-catenin signaling in epithelial cells. J. Virol. 77, 12276–12284 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Jha, H. C., Banerjee, S. & Robertson, E. S. The role of gammaherpesviruses in cancer pathogenesis. Pathogens 5, 42 (2016).

    Google Scholar 

  59. Daud, M., Rana, M. A., Husnain, T. & Ijaz, B. Modulation of Wnt signaling pathway by hepatitis B virus. Arch. Virol. 16, 2937–2947 (2017).

    Google Scholar 

  60. Ma, G., Yasunaga, J., Fan, J., Yanagawa, S. & Matsuoka, M. HTLV-1 bZIP factor dysregulates the Wnt pathways to support proliferation and migration of adult T cell leukemia cells. Oncogene 32, 4222–4230 (2013).

    CAS  PubMed  Google Scholar 

  61. Zhang, Q., Lenardo, M. J. & Baltimore, D. 30 Years of NF-κB: a blossoming of relevance to human pathobiology. Cell 168, 37–57 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Karin, M. Nuclear factor-kappaB in cancer development and progression. Nature 441, 431–436 (2006).

    CAS  PubMed  Google Scholar 

  63. Kulwichit, W. et al. Expression of the Epstein-Barr virus latent membrane protein 1 induces B cell lymphoma in transgenic mice. Proc. Natl Acad. Sci. USA 95, 11963–11968 (1998).

    CAS  PubMed  Google Scholar 

  64. Luftig, M. et al. Epstein-Barr virus latent membrane protein 1 activation of NF-κB through IRAK1 and TRAF6. Proc. Natl Acad. Sci. USA 100, 15595–15600 (2003).

    CAS  PubMed  Google Scholar 

  65. Wang, L. W., Jiang, S. & Gewurz, B. E. Epstein-Barr virus LMP1-mediated oncogenicity. J. Virol. 91, e01718–16 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Gopalakrishnan, R., Matta, H. & Chaudhary, P. M. A purine scaffold HSP90 inhibitor BIIB021 has selective activity against KSHV-associated primary effusion lymphoma and blocks vFLIP K13-induced NF-κB. Clin. Cancer Res. 19, 5016–5026 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Bagneris, C. et al. Crystal structure of a vFlip-IKKγ complex: insights into viral activation of the IKK signalosome. Mol. Cell 30, 620–631 (2008).

    CAS  PubMed  Google Scholar 

  68. Chugh, P. et al. Constitutive NF-κB activation, normal Fas-induced apoptosis, and increased incidence of lymphoma in human herpes virus 8 K13 transgenic mice. Proc. Natl Acad. Sci. USA 102, 12885–12890 (2005).

    CAS  PubMed  Google Scholar 

  69. Lavorgna, A. & Harhaj, E. W. Regulation of HTLV-1 tax stability, cellular trafficking and NF-κB activation by the ubiquitin-proteasome pathway. Viruses 6, 3925–3943 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ciccia, A. & Elledge, S. J. The DNA damage response: making it safe to play with knives. Mol. Cell 40, 179–204 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Lilley, C. E., Schwartz, R. a. & Weitzman, M. D. Using or abusing: viruses and the cellular DNA damage response. Trends Microbiol. 15, 119–126 (2007).

    CAS  PubMed  Google Scholar 

  72. Weitzman, M. D., Lilley, C. E. & Chaurushiya, M. S. Genomes in conflict: maintaining genome integrity during virus infection. Annu. Rev. Microbiol. 64, 61–81 (2010).

    CAS  PubMed  Google Scholar 

  73. Fradet-Turcotte, A. et al. Nuclear accumulation of the papillomavirus E1 helicase blocks S-phase progression and triggers an ATM-dependent DNA damage response. J. Virol. 85, 8996–9012 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Gillespie, K. A., Mehta, K. P., Laimins, L. A. & Moody, C. A. Human papillomaviruses recruit cellular DNA repair and homologous recombination factors to viral replication centers. J. Virol. 86, 9520–9526 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Moody, C. A. & Laimins, L. A. Human papillomaviruses activate the ATM DNA damage pathway for viral genome amplification upon differentiation. PLoS Pathog. 5, e1000605 (2009).

    PubMed  PubMed Central  Google Scholar 

  76. Sakakibara, N., Mitra, R. & McBride, A. A. The papillomavirus E1 helicase activates a cellular DNA damage response in viral replication foci. J. Virol. 85, 8981–8995 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Sowd, G. A., Li, N. Y. & Fanning, E. ATM and ATR activities maintain replication fork integrity during SV40 chromatin replication. PLoS Pathog. 9, e1003283 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Tsang, S. H., Wang, X., Li, J., Buck, C. B. & You, J. Host DNA damage response factors localize to Merkel cell polyomavirus DNA replication sites to support efficient viral DNA replication. J. Virol. 88, 3285–3297 (2014).

    PubMed  PubMed Central  Google Scholar 

  79. Weitzman, M. D. & Weitzman, J. B. What’s the damage? The impact of pathogens on pathways that maintain host genome integrity. Cell Host Microbe 15, 283–294 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Duensing, S. & Munger, K. The human papillomavirus type 16 E6 and E7 oncoproteins independently induce numerical and structural chromosome instability. Cancer Res. 62, 7075–7082 (2002).

    CAS  PubMed  Google Scholar 

  81. Wallace, N. A. et al. High-risk alphapapillomavirus oncogenes impair the homologous recombination pathway. J. Virol. 91, e01084–17 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Gruhne, B. et al. The Epstein-Barr virus nuclear antigen-1 promotes genomic instability via induction of reactive oxygen species. Proc. Natl Acad. Sci. USA 106, 2313–2318 (2009).

    CAS  PubMed  Google Scholar 

  83. Takeda, H., Takai, A., Inuzuka, T. & Marusawa, H. Genetic basis of hepatitis virus-associated hepatocellular carcinoma: linkage between infection, inflammation, and tumorigenesis. J. Gastroenterol. 52, 26–38 (2017).

    CAS  PubMed  Google Scholar 

  84. McFadden, K. et al. Metabolic stress is a barrier to Epstein-Barr virus-mediated B cell immortalization. Proc. Natl Acad. Sci. USA 113, E782–790 (2016). This study discovers that metabolic and genotoxic stress experienced by EBV-infected cells represents a barrier to EBV-mediated transformation.

    CAS  PubMed  Google Scholar 

  85. Nikitin, P. A. et al. An ATM/Chk2-mediated DNA damage-responsive signaling pathway suppresses Epstein-Barr virus transformation of primary human B cells. Cell Host Microbe 8, 510–522 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Li, J. et al. Merkel cell polyomavirus large T antigen disrupts host genomic integrity and inhibits cellular proliferation. J. Virol. 87, 9173–9188 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Shuda, M. et al. T antigen mutations are a human tumor-specific signature for Merkel cell polyomavirus. Proc. Natl Acad. Sci. USA 105, 16272–16277 (2008).

    CAS  PubMed  Google Scholar 

  88. Rosewick, N. et al. Cis-perturbation of cancer drivers by the HTLV-1/BLV proviruses is an early determinant of leukemogenesis. Nat. Commun. 8, 15264 (2017). In this study, HTLV-1 and bovine leukaemia virus proviruses are found to integrate preferentially near cancer driver genes and to cause their perturbation, favouring the expansion of the corresponding infected clone, allowing acquisition of additional somatic mutations that lead to the development of leukaemogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Nicot, C. HTLV-I Tax-mediated inactivation of cell cycle checkpoints and DNA repair pathways contribute to cellular transformation: “a random mutagenesis model”. J. Cancer Sci. 2, https://doi.org/10.13188/2377-9292.1000009 (2015).

  90. Machida, K. et al. Hepatitis C virus induces a mutator phenotype: enhanced mutations of immunoglobulin and protooncogenes. Proc. Natl Acad. Sci. USA 101, 4262–4267 (2004). This study demonstrates that HCV infection induces a mutator phenotype to cause a significant increase in the mutation frequency of several proto-oncogenes, suggesting that HCV transforms cells by a hit-and-run mechanism.

    CAS  PubMed  Google Scholar 

  91. Decorsiere, A. et al. Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor. Nature 531, 386–389 (2016).

    PubMed  Google Scholar 

  92. Murphy, C. M. et al. Hepatitis B virus X protein promotes degradation of SMC5/6 to enhance HBV replication. Cell Rep. 16, 2846–2854 (2016). This study, together with reference 91, identifies the SMC complex SMC5/6 as a host restriction factor for HBV infection.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Thorley-Lawson, D. A. EBV persistence — introducing the virus. Curr. Top. Microbiol. Immunol. 390, 151–209 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Hopcraft, S. E. & Damania, B. Tumour viruses and innate immunity. Phil. Trans. R. Soc. B 372, 20160267 (2017).

    PubMed  Google Scholar 

  95. Chen, Q., Sun, L. & Chen, Z. J. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat. Immunol. 17, 1142–1149 (2016).

    CAS  Google Scholar 

  96. Ma, Z. et al. Modulation of the cGAS-STING DNA sensing pathway by gammaherpesviruses. Proc. Natl Acad. Sci. USA 112, E4306–4315 (2015).

    CAS  PubMed  Google Scholar 

  97. Wu, J. J. et al. Inhibition of cGAS DNA sensing by a herpesvirus virion protein. Cell Host Microbe 18, 333–344 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang, G. et al. Cytoplasmic isoforms of Kaposi sarcoma herpesvirus LANA recruit and antagonize the innate immune DNA sensor cGAS. Proc. Natl Acad. Sci. USA 113, E1034–E1043 (2016).

    CAS  PubMed  Google Scholar 

  99. Guito, J. & Lukac, D. M. KSHV reactivation and novel implications of protein isomerization on lytic switch control. Viruses 7, 72–109 (2015).

    PubMed  PubMed Central  Google Scholar 

  100. Lau, L., Gray, E. E., Brunette, R. L. & Stetson, D. B. DNA tumor virus oncogenes antagonize the cGAS-STING DNA-sensing pathway. Science 350, 568–571 (2015). This study reveals that the oncogenes of the DNA tumour viruses, including HPV E7 and adenovirus E1A, can specifically inhibit the cGAS–STING pathway.

    CAS  PubMed  Google Scholar 

  101. Yuen, C. K. et al. Suppression of type i interferon production by human T-cell leukemia virus type 1 oncoprotein Tax through Inhibition of IRF3 phosphorylation. J. Virol. 90, 3902–3912 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Liu, Y. et al. Hepatitis B virus polymerase disrupts K63-linked ubiquitination of STING to block innate cytosolic DNA-sensing pathways. J. Virol. 89, 2287–2300 (2015).

    PubMed  Google Scholar 

  103. Nitta, S. et al. Hepatitis C virus NS4B protein targets STING and abrogates RIG-I-mediated type I interferon-dependent innate immunity. Hepatology 57, 46–58 (2013).

    CAS  PubMed  Google Scholar 

  104. Mackenzie, K. J. et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548, 461–465 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Dou, Z. et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 550, 402–406 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Yu, S. et al. Hepatitis B virus polymerase inhibits RIG-I− and Toll-like receptor 3-mediated β interferon induction in human hepatocytes through interference with interferon regulatory factor 3 activation and dampening of the interaction between TBK1/IKKε and DDX3. J. General Virol. 91, 2080–2090 (2010).

    CAS  Google Scholar 

  107. Wang, X. et al. Hepatitis B virus X protein suppresses virus-triggered IRF3 activation and IFN-β induction by disrupting the VISA-associated complex. Cell. Mol. Immunol. 7, 341–348 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Gregory, S. M. et al. Discovery of a viral NLR homolog that inhibits the inflammasome. Science 331, 330–334 (2011). In this study, KSHV ORF63 is discovered to be a viral homologue that inhibits human NLRP1-mediated innate immune response to promote KSHV reactivation and propagation.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Jacobs, S. R. & Damania, B. The viral interferon regulatory factors of KSHV: immunosuppressors or oncogenes? Frontiers Immunol. 2, 19 (2011).

    Google Scholar 

  110. Chatterjee, M., Osborne, J., Bestetti, G., Chang, Y. & Moore, P. S. Viral IL-6-induced cell proliferation and immune evasion of interferon activity. Science 298, 1432–1435 (2002).

    CAS  PubMed  Google Scholar 

  111. Taga, T. & Kishimoto, T. Gp130 and the interleukin-6 family of cytokines. Annu. Rev. Immunol. 15, 797–819 (1997).

    CAS  PubMed  Google Scholar 

  112. Hewitt, E. W. The MHC class I antigen presentation pathway: strategies for viral immune evasion. Immunology 110, 163–169 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Petersen, J. L., Morris, C. R. & Solheim, J. C. Virus evasion of MHC class I molecule presentation. J. Immunol. 171, 4473–4478 (2003).

    CAS  PubMed  Google Scholar 

  114. Coscoy, L. & Ganem, D. Kaposi’s sarcoma-associated herpesvirus encodes two proteins that block cell surface display of MHC class I chains by enhancing their endocytosis. Proc. Natl Acad. Sci. USA 97, 8051–8056 (2000).

    CAS  PubMed  Google Scholar 

  115. Means, R. E., Ishido, S., Alvarez, X. & Jung, J. U. Multiple endocytic trafficking pathways of MHC class I molecules induced by a Herpesvirus protein. EMBO J. 21, 1638–1649 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Ishido, S., Wang, C., Lee, B. S., Cohen, G. B. & Jung, J. U. Downregulation of major histocompatibility complex class I molecules by Kaposi’s sarcoma-associated herpesvirus K3 and K5 proteins. J. Virol. 74, 5300–5309 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Banerjee, P., Feuer, G. & Barker, E. Human T cell leukemia virus type 1 (HTLV-1) p12I down-modulates ICAM-1 and -2 and reduces adherence of natural killer cells, thereby protecting HTLV-1-infected primary CD4+ T cells from autologous natural killer cell-mediated cytotoxicity despite the reduction of major histocompatibility complex class I molecules on infected cells. J. Virol. 81, 9707–9717 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Van Prooyen, N. et al. Human T cell leukemia virus type 1 p8 protein increases cellular conduits and virus transmission. Proc. Natl Acad. Sci. USA 107, 20738–20743 (2010).

    PubMed  Google Scholar 

  119. Yasuma, K. et al. HTLV-1 bZIP factor impairs anti-viral immunity by inducing co-inhibitory molecule, T cell immunoglobulin and ITIM domain (TIGIT). PLoS Pathog. 12, e1005372 (2016).

    PubMed  PubMed Central  Google Scholar 

  120. Price, A. M. & Luftig, M. A. Dynamic Epstein-Barr virus gene expression on the path to B cell transformation. Adv. Virus Res. 88, 279–313 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Hatton, O. L., Harris-Arnold, A., Schaffert, S., Krams, S. M. & Martinez, O. M. The interplay between Epstein-Barr virus and B lymphocytes: implications for infection, immunity, and disease. Immunol. Res. 58, 268–276 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Caldwell, R. G., Wilson, J. B., Anderson, S. J. & Longnecker, R. Epstein-Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity 9, 405–411 (1998).

    CAS  PubMed  Google Scholar 

  123. Minamitani, T. et al. Evasion of affinity-based selection in germinal centers by Epstein-Barr virus LMP2A. Proc. Natl Acad. Sci. USA 112, 11612–11617 (2015).

    CAS  PubMed  Google Scholar 

  124. Xia, T., Konno, H., Ahn, J. & Barber, G. N. Deregulation of STING signaling in colorectal carcinoma constrains DNA damage responses and correlates with tumorigenesis. Cell Rep. 14, 282–297 (2016).

    CAS  PubMed  Google Scholar 

  125. McQuaid, T., Savini, C. & Seyedkazemi, S. Sofosbuvir, a significant paradigm change in HCV treatment. J. Clin. Transl Hepatol. 3, 27–35 (2015).

    PubMed  PubMed Central  Google Scholar 

  126. Kaufman, H. L. et al. Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial. Lancet. Oncol. 17, 1374–1385 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Nghiem, P. T. et al. PD-1 blockade with pembrolizumab in advanced Merkel-cell carcinoma. N. Engl. J. Med. 374, 2542–2552 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Porta, C., Paglino, C. & Mosca, A. Targeting PI3K/Akt/mTOR signaling in cancer. Frontiers Oncol. 4, 64 (2014).

    Google Scholar 

  129. Dowling, R. J. et al. mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science 328, 1172–1176 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Chen, D., Jarrell, A., Guo, C., Lang, R. & Atit, R. Dermal β-catenin activity in response to epidermal Wnt ligands is required for fibroblast proliferation and hair follicle initiation. Development 139, 1522–1533 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Eulalio, A., Huntzinger, E. & Izaurralde, E. Getting to the root of miRNA-mediated gene silencing. Cell 132, 9–14 (2008).

    CAS  PubMed  Google Scholar 

  132. Yates, L. A., Norbury, C. J. & Gilbert, R. J. The long and short of microRNA. Cell 153, 516–519 (2013).

    CAS  PubMed  Google Scholar 

  133. Lujambio, A. & Lowe, S. W. The microcosmos of cancer. Nature 482, 347–355 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Gottwein, E. et al. A viral microRNA functions as an orthologue of cellular miR-155. Nature 450, 1096–1099 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Gottwein, E. et al. Viral microRNA targetome of KSHV-infected primary effusion lymphoma cell lines. Cell Host Microbe 10, 515–526 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Marquitz, A. R., Mathur, A., Shair, K. H. & Raab-Traub, N. Infection of Epstein-Barr virus in a gastric carcinoma cell line induces anchorage independence and global changes in gene expression. Proc. Natl Acad. Sci. USA 109, 9593–9598 (2012).

    CAS  PubMed  Google Scholar 

  137. Honegger, A. et al. Dependence of intracellular and exosomal microRNAs on viral E6/E7 oncogene expression in HPV-positive tumor cells. PLoS Pathog. 11, e1004712 (2015).

    PubMed  PubMed Central  Google Scholar 

  138. Vernin, C. et al. HTLV-1 bZIP factor HBZ promotes cell proliferation and genetic instability by activating OncomiRs. Cancer Res. 74, 6082–6093 (2014).

    CAS  PubMed  Google Scholar 

  139. Luna, J. M. et al. Hepatitis C virus RNA functionally sequesters miR-122. Cell 160, 1099–1110 (2015). This study suggests that HCV induced miR-122 sequestration, and subsequent derepression of host miR-122 targets promotes a cellular environment to support HCV-associated oncogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Raab-Traub, N. Novel mechanisms of EBV-induced oncogenesis. Curr. Opin. Virol. 2, 453–458 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Young, L. S. & Rickinson, A. B. Epstein-Barr virus: 40 years on. Nat. Rev. Cancer 4, 757–768 (2004).

    CAS  PubMed  Google Scholar 

  142. Levrero, M. & Zucman-Rossi, J. Mechanisms of HBV-induced hepatocellular carcinoma. J. Hepatol. 64, S84–101 (2016).

    CAS  PubMed  Google Scholar 

  143. Gessain, A. & Cassar, O. Epidemiological aspects and world distribution of HTLV-1 infection. Front. Microbiol. 3, 388 (2012).

    PubMed  PubMed Central  Google Scholar 

  144. Matsuoka, M. & Jeang, K. T. Human T cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation. Nat. Rev. Cancer 7, 270–280 (2007).

    CAS  PubMed  Google Scholar 

  145. Schiffman, M. et al. Carcinogenic human papillomavirus infection. Nat. Rev. Dis. Primers 2, 16086 (2016).

    PubMed  Google Scholar 

  146. Harper, D. M. & DeMars, L. R. HPV vaccines — a review of the first decade. Gynecol. Oncol. 146, 196–204 (2017).

    CAS  PubMed  Google Scholar 

  147. Mitchell, J. K., Lemon, S. M. & McGivern, D. R. How do persistent infections with hepatitis C virus cause liver cancer? Curr. Opin. Virol. 14, 101–108 (2015).

    PubMed  PubMed Central  Google Scholar 

  148. Goossens, N. & Hoshida, Y. Hepatitis C virus-induced hepatocellular carcinoma. Clin. Mol. Hepatol. 21, 105–114 (2015).

    PubMed  PubMed Central  Google Scholar 

  149. Schulz, T. F. & Cesarman, E. Kaposi Sarcoma-associated Herpesvirus: mechanisms of oncogenesis. Curr. Opin. Virol. 14, 116–128 (2015).

    CAS  PubMed  Google Scholar 

  150. Wendzicki, J. A., Moore, P. S. & Chang, Y. Large T and small T antigens of Merkel cell polyomavirus. Curr. Opin. Virol. 11, 38–43 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank E. A. White, C. B. Buck and the members of the You laboratory for valuable comments and suggestions on the manuscript. The authors apologize to all colleagues whose primary research papers could not be cited owing to space constraints. Research on human papilloma virus (HPV) and Merkel cell polyomavirus (MCPyV) in the You laboratory has been supported by National Institutes of Health (NIH) grants (R01CA187718, R01CA148768 and R01CA142723) and the National Cancer Institute (NCI) Cancer Center Support grant (NCI P30 CA016520).

Reviewer information

Nature Reviews Microbiology thanks D. Galloway and other anonymous reviewers for their contributions to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

N.A.K. and J.Y. researched data for the article, substantially contributed to discussion of content, wrote the article and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Jianxin You.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary terms

Oncogenic viruses

Viruses that cause cancer. Sometimes also called tumour viruses. However, some tumour viruses, such as adenovirus and polyomavirus SV40 promote tumorigenesis in other organisms and infect humans but do not cause human cancers.

Solid tumours

Masses of transformed and supporting cells that arise in stationary tissues (sarcomas and carcinomas) and not from cells of haematopoietic origin.

Lymphoma

Tumour arising from a lymphoid cell type that occurs predominantly in the lymphatics, as opposed to leukaemias, in which the cancer cells are found in the blood.

Cellular transformation

Selective acquisition of cellular traits, such as replicative immortality, increased stemness, growth factor independence, resistance to growth suppressors and alterations to metabolic flux.

Metastasis

Tumour migration, invasion and colonization of body sites other than the primary site.

p53

A transcription factor and key tumour suppressor downstream of exogenous signals and DNA damage-sensing pathways that maintains genome integrity and governs cell fate by promoting expression of effectors of DNA repair, cell cycle arrest, senescence and apoptosis.

pRB

(Retinoblastoma protein). A tumour suppressor that is responsible for a major G1 checkpoint that blocks S-phase entry and cellular growth.

Oncoproteins

Translated gene products that have the capacity to drive cellular transformation.

Kaposi sarcoma

A family of endothelial malignancies that are associated with Kaposi sarcoma-associated virus (KSHV) and whose members are classified by the type of immunosuppression that enabled KSHV-mediated oncogenesis.

Carcinomas

Tumours arising from cells of an epithelial origin, as opposed to sarcomas, which arise from mesenchymal cells.

Rapamycin

An inhibitor of mechanistic target of rapamycin (mTOR)-mediated proliferative function that acts through direct binding of the peptidyl-prolyl cis-trans isomerase FKBP1A–mechanistic target of rapamycin complex and has shown promise as an immunosuppressant and antitumour drug.

Sarcomagenesis

The seminal event or events leading to cancer progression from mesenchymal-derived cell types.

Cap-dependent translation

Translation in which initiation is mediated by recognition of the 5′ cap that is specific to eukaryotic mRNAs.

MEK1

(MAPK/ERK kinase 1 (also known as MAP2K1)). A crucial protein kinase that mediates an intermediate step of the RAF–MEK–ERK phosphorylation cascade responsible for activating expression of pro-proliferative, survival and differentiation genes in response to external stimuli.

Invasive cells

Tumour cells with characteristics that enable them to metastasize and invade other tissues.

Endothelial-to-mesenchymal transition

A process essential to cardiac development and normal angiogenesis by which endothelial cells acquire stem-like, mesenchymal traits including enhanced migration that, in certain cancers, contribute to metastatic ability.

Proto-oncogene

A type of endogenous gene that, when overexpressed or abnormally activated as a result of mutation, can promote cancer development, at which point it is referred to as an oncogene.

CHK2

(Checkpoint kinase 2). A tumour suppressor kinase activated by ataxia telangiectasia mutated (ATM) in response to double-stranded breaks in DNA that maintains genomic integrity by mediating cell cycle arrest and DNA repair.

Second messengers

Soluble small molecules that transduce intracellular signals, which can be secreted by intracellular bacteria to coordinate responses to their environment.

Inflammasome

A cytoplasmic complex of NOD-, LRR- and pyrin domain-containing proteins (NLRPs), adaptor proteins and caspases that forms in response to cellular damage or bacterial effectors that cause rapid caspase-mediated inflammatory cytokine release and/or a type of lytic cell death called pyroptosis.

T cell anergy

A process by which CD4+ or CD8+ T cells become tolerant to antigens and functionally inactivated owing to stimulation in the absence of a necessary signal.

CHK1

(Checkpoint kinase 1). A protein kinase essential to normal cell division and development that is activated by ataxia telangiectasia and Rad3-related protein (ATR) in response to single-stranded DNA to facilitate proper DNA replication, cell cycle progression and response to DNA insults.

Seed sequence

An eight-nucleotide sequence near the 5′-end of a microRNA that undergoes Watson–Crick base pairing with a target RNA with high specificity and that is required for efficient targeting.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krump, N.A., You, J. Molecular mechanisms of viral oncogenesis in humans. Nat Rev Microbiol 16, 684–698 (2018). https://doi.org/10.1038/s41579-018-0064-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-018-0064-6

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer