Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Latency and lytic replication in Epstein–Barr virus-associated oncogenesis

Abstract

Epstein–Barr virus (EBV) was the first tumour virus identified in humans. The virus is primarily associated with lymphomas and epithelial cell cancers. These tumours express latent EBV antigens and the oncogenic potential of individual latent EBV proteins has been extensively explored. Nevertheless, it was presumed that the pro-proliferative and anti-apoptotic functions of these oncogenes allow the virus to persist in humans; however, recent evidence suggests that cellular transformation is not required for virus maintenance. Vice versa, lytic EBV replication was assumed to destroy latently infected cells and thereby inhibit tumorigenesis, but at least the initiation of the lytic cycle has now been shown to support EBV-driven malignancies. In addition to these changes in the roles of latent and lytic EBV proteins during tumorigenesis, the function of non-coding RNAs has become clearer, suggesting that they might mainly mediate immune escape rather than cellular transformation. In this Review, these recent findings will be discussed with respect to the role of EBV-encoded oncogenes in viral persistence and the contributions of lytic replication as well as non-coding RNAs in virus-driven tumour formation. Accordingly, early lytic EBV antigens and attenuated viruses without oncogenes and microRNAs could be harnessed for immunotherapies and vaccination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Models of latent Epstein–Barr virus infection to reach viral persistence.
Fig. 2: Persistence without transformation.
Fig. 3: Oncogenesis with lytic replication.
Fig. 4: Potential functions of lytic Epstein–Barr virus antigens and non-coding RNAs during Epstein–Barr virus-driven tumour formation.
Fig. 5: Lytic replication in clinical manifestations of Epstein–Barr virus infection.
Fig. 6: Non-coding RNAs in the Epstein–Barr virus genome.

Similar content being viewed by others

References

  1. Farrell, P. J. Epstein–Barr virus and cancer. Annu. Rev. Pathol. 14, 29–53 (2019).

    CAS  PubMed  Google Scholar 

  2. Epstein, M. A., Achong, B. G. & Barr, Y. M. Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet 1, 702–703 (1964).

    CAS  PubMed  Google Scholar 

  3. Epstein, M. A., Henle, G., Achong, B. G. & Barr, Y. M. Morphological and biological studies on a virus in cultured lymphoblasts from Burkitt’s lymphoma. J. Exp. Med. 121, 761–770 (1964).

    Google Scholar 

  4. Miller, G. & Lipman, M. Release of infectious Epstein–Barr virus by transformed marmoset leukocytes. Proc. Natl Acad. Sci. USA 70, 190–194 (1973).

    CAS  PubMed  Google Scholar 

  5. Miller, G. & Lipman, M. Comparison of the yield of infectious virus from clones of human and simian lymphoblastoid lines transformed by Epstein–Barr virus. J. Exp. Med. 138, 1398–1412 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Cesarman, E. Gammaherpesviruses and lymphoproliferative disorders. Annu. Rev. Pathol. 9, 349–372 (2014).

    CAS  PubMed  Google Scholar 

  7. Luzuriaga, K. & Sullivan, J. L. Infectious mononucleosis. N. Engl. J. Med. 362, 1993–2000 (2010).

    CAS  PubMed  Google Scholar 

  8. Young, L. S., Yap, L. F. & Murray, P. G. Epstein–Barr virus: more than 50 years old and still providing surprises. Nat. Rev. Cancer 16, 789–802 (2016).

    CAS  PubMed  Google Scholar 

  9. Chesnokova, L. S., Valencia, S. M. & Hutt-Fletcher, L. M. The BDLF3 gene product of Epstein–Barr virus, gp150, mediates non-productive binding to heparan sulfate on epithelial cells and only the binding domain of CD21 is required for infection. Virology 494, 23–28 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kutok, J. L. & Wang, F. Spectrum of Epstein–Barr virus-associated diseases. Annu. Rev. Pathol. 1, 375–404 (2006).

    CAS  PubMed  Google Scholar 

  11. Tugizov, S. M., Berline, J. W. & Palefsky, J. M. Epstein–Barr virus infection of polarized tongue and nasopharyngeal epithelial cells. Nat. Med. 9, 307–314 (2003).

    CAS  PubMed  Google Scholar 

  12. Dunmire, S. K., Grimm, J. M., Schmeling, D. O., Balfour, H. H., Jr. & Hogquist, K. A. The incubation period of primary Epstein–Barr virus infection: viral dynamics and immunologic events. PLOS Pathog. 11, e1005286 (2015).

    PubMed  PubMed Central  Google Scholar 

  13. Woellmer, A., Arteaga-Salas, J. M. & Hammerschmidt, W. BZLF1 governs CpG-methylated chromatin of Epstein–Barr virus reversing epigenetic repression. PLOS Pathog. 8, e1002902 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wille, C. K. et al. 5-Hydroxymethylation of the EBV genome regulates the latent to lytic switch. Proc. Natl Acad. Sci. USA 112, E7257–E7265 (2015).

    CAS  PubMed  Google Scholar 

  15. Wille, C. K. et al. Viral genome methylation differentially affects the ability of BZLF1 versus BRLF1 to activate Epstein–Barr virus lytic gene expression and viral replication. J. Virol. 87, 935–950 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lu, F. et al. Coordinate regulation of TET2 and EBNA2 controls the DNA methylation state of latent Epstein–Barr virus. J. Virol. 91, e00804–e00817 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wille, C. K., Li, Y., Rui, L., Johannsen, E. C. & Kenney, S. C. Restricted TET2 expression in germinal center type B cells promotes stringent Epstein–Barr virus latency. J. Virol. 91, e01987–16 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Tugizov, S. M., Herrera, R. & Palefsky, J. M. Epstein–Barr virus transcytosis through polarized oral epithelial cells. J. Virol. 87, 8179–8194 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Babcock, G. J., Decker, L. L., Volk, M. & Thorley-Lawson, D. A. EBV persistence in memory B cells in vivo. Immunity 9, 395–404 (1998).

    CAS  PubMed  Google Scholar 

  20. Thorley-Lawson, D. A. EBV persistence — introducing the virus. Curr. Top. Microbiol. Immunol. 390, 151–209 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Babcock, J. G., Hochberg, D. & Thorley-Lawson, A. D. The expression pattern of Epstein–Barr virus latent genes in vivo is dependent upon the differentiation stage of the infected B cell. Immunity 13, 497–506 (2000).

    CAS  PubMed  Google Scholar 

  22. Murer, A. et al. EBV persistence without its EBNA3A and 3C oncogenes in vivo. PLOS Pathog. 14, e1007039 (2018). This study demonstrates that latency III does not need to be established for EBV to gain access to persistence in latency 0.

    PubMed  PubMed Central  Google Scholar 

  23. Ma, S. D. et al. A new model of Epstein–Barr virus infection reveals an important role for early lytic viral protein expression in the development of lymphomas. J. Virol. 85, 165–177 (2011). This study shows that EBV deficient in lytic gene expression does not efficiently establish lymphomas in HIS mice.

    CAS  PubMed  Google Scholar 

  24. van Zyl, D. G. et al. Immunogenic particles with a broad antigenic spectrum stimulate cytolytic T cells and offer increased protection against EBV infection ex vivo and in mice. PLOS Pathog. 14, e1007464 (2018).

    PubMed  PubMed Central  Google Scholar 

  25. Skalsky, R. L. & Cullen, B. R. EBV noncoding RNAs. Curr. Top. Microbiol. Immunol. 391, 181–217 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kurth, J. et al. EBV-infected B cells in infectious mononucleosis: viral strategies for spreading in the B cell compartment and establishing latency. Immunity 13, 485–495 (2000).

    CAS  PubMed  Google Scholar 

  27. Hartung, A. et al. EBV miRNA expression profiles in different infection stages: a prospective cohort study. PLOS ONE 14, e0212027 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hochberg, D. et al. Demonstration of the Burkitt’s lymphoma Epstein–Barr virus phenotype in dividing latently infected memory cells in vivo. Proc. Natl Acad. Sci. USA 101, 239–244 (2004).

    CAS  PubMed  Google Scholar 

  29. Tovey, M. G., Lenoir, G. & Begon-Lours, J. Activation of latent Epstein–Barr virus by antibody to human IgM. Nature 276, 270–272 (1978).

    CAS  PubMed  Google Scholar 

  30. McDonald, C., Karstegl, C. E., Kellam, P. & Farrell, P. J. Regulation of the Epstein–Barr virus Zp promoter in B lymphocytes during reactivation from latency. J. Gen. Virol. 91, 622–629 (2010).

    CAS  PubMed  Google Scholar 

  31. Reusch, J. A., Nawandar, D. M., Wright, K. L., Kenney, S. C. & Mertz, J. E. Cellular differentiation regulator BLIMP1 induces Epstein–Barr virus lytic reactivation in epithelial and B cells by activating transcription from both the R and Z promoters. J. Virol. 89, 1731–1743 (2015).

    PubMed  Google Scholar 

  32. Ersing, I. et al. A temporal proteomic map of Epstein–Barr virus lytic replication in B cells. Cell Rep. 19, 1479–1493 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Laichalk, L. L. & Thorley-Lawson, D. A. Terminal differentiation into plasma cells initiates the replicative cycle of Epstein–Barr virus in vivo. J. Virol. 79, 1296–1307 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen, J. et al. Ephrin receptor A2 is a functional entry receptor for Epstein–Barr virus. Nat. Microbiol. 3, 172–180 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, H. et al. Ephrin receptor A2 is an epithelial cell receptor for Epstein–Barr virus entry. Nat. Microbiol. 3, 1–8 (2018).

    PubMed  Google Scholar 

  36. Hutt-Fletcher, L. M. The long and complicated relationship between Epstein–Barr virus and epithelial cells. J. Virol. 91, e01677–16 (2017).

    PubMed  Google Scholar 

  37. Buettner, M. et al. Lytic Epstein–Barr virus infection in epithelial cells but not in B-lymphocytes is dependent on Blimp1. J. Gen. Virol. 93, 1059–1064 (2012).

    CAS  PubMed  Google Scholar 

  38. Frappier, L. EBNA1. Curr. Top. Microbiol. Immunol. 391, 3–34 (2015).

    CAS  PubMed  Google Scholar 

  39. Hammerschmidt, W. & Sugden, B. Epstein–Barr virus sustains Burkitt’s lymphomas and Hodgkin’s disease. Trends Mol. Med. 10, 331–336 (2004).

    CAS  PubMed  Google Scholar 

  40. AlQarni, S. et al. Lymphomas driven by Epstein–Barr virus nuclear antigen-1 (EBNA1) are dependant upon Mdm2. Oncogene 37, 3998–4012 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kempkes, B. & Ling, P. D. EBNA2 and its coactivator EBNA-LP. Curr. Top. Microbiol. Immunol. 391, 35–59 (2015).

    CAS  PubMed  Google Scholar 

  42. Szymula, A. et al. Epstein–Barr virus nuclear antigen EBNA-LP is essential for transforming naive B cells, and facilitates recruitment of transcription factors to the viral genome. PLOS Pathog. 14, e1006890 (2018).

    PubMed  PubMed Central  Google Scholar 

  43. Styles, C. T., Paschos, K., White, R. E. & Farrell, P. J. The cooperative functions of the EBNA3 proteins are central to EBV persistence and latency. Pathogens 7, E31 (2018).

    PubMed  Google Scholar 

  44. Styles, C. T. et al. EBV epigenetically suppresses the B cell-to-plasma cell differentiation pathway while establishing long-term latency. PLOS Biol. 15, e2001992 (2017).

    PubMed  PubMed Central  Google Scholar 

  45. White, R. E. et al. EBNA3B-deficient EBV promotes B cell lymphomagenesis in humanized mice and is found in human tumors. J. Clin. Invest. 122, 1487–1502 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Thorley-Lawson, D. A. Epstein–Barr virus: exploiting the immune system. Nat. Rev. Immunol. 1, 75–82 (2001).

    CAS  PubMed  Google Scholar 

  47. Cen, O. & Longnecker, R. Latent membrane protein 2 (LMP2). Curr. Top. Microbiol. Immunol. 391, 151–180 (2015).

    CAS  PubMed  Google Scholar 

  48. Caldwell, R. G., Wilson, J. B., Anderson, S. J. & Longnecker, R. Epstein–Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity 9, 405–411 (1998).

    CAS  PubMed  Google Scholar 

  49. Kieser, A. & Sterz, K. R. The latent membrane protein 1 (LMP1). Curr. Top. Microbiol. Immunol. 391, 119–149 (2015).

    CAS  PubMed  Google Scholar 

  50. Kulwichit, W. et al. Expression of the Epstein–Barr virus latent membrane protein 1 induces B cell lymphoma in transgenic mice. Proc. Natl Acad. Sci. USA 95, 11963–11968 (1998).

    CAS  PubMed  Google Scholar 

  51. Zhang, B. et al. Immune surveillance and therapy of lymphomas driven by Epstein–Barr virus protein LMP1 in a mouse model. Cell 148, 739–751 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ramiro, A. R. et al. AID is required for c-myc/IgH chromosome translocations in vivo. Cell 118, 431–438 (2004).

    CAS  PubMed  Google Scholar 

  53. Torgbor, C. et al. A multifactorial role for P. falciparum malaria in endemic Burkitt’s lymphoma pathogenesis. PLOS Pathog. 10, e1004170 (2014).

    PubMed  PubMed Central  Google Scholar 

  54. Babcock, G. J., Decker, L. L., Freeman, R. B. & Thorley-Lawson, D. A. Epstein–Barr virus-infected resting memory B cells, not proliferating lymphoblasts, accumulate in the peripheral blood of immunosuppressed patients. J. Exp. Med. 190, 567–576 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Delecluse, H. J., Hilsendegen, T., Pich, D., Zeidler, R. & Hammerschmidt, W. Propagation and recovery of intact, infectious Epstein–Barr virus from prokaryotic to human cells. Proc. Natl Acad. Sci. USA 95, 8245–8250 (1998).

    CAS  PubMed  Google Scholar 

  56. Hertle, M. L. et al. Differential gene expression patterns of EBV infected EBNA-3A positive and negative human B lymphocytes. PLOS Pathog. 5, e1000506 (2009).

    PubMed  PubMed Central  Google Scholar 

  57. Paschos, K., Parker, G. A., Watanatanasup, E., White, R. E. & Allday, M. J. BIM promoter directly targeted by EBNA3C in polycomb-mediated repression by EBV. Nucleic Acids Res. 40, 7233–7246 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Skalska, L. et al. Induction of p16(INK4a) is the major barrier to proliferation when Epstein–Barr virus (EBV) transforms primary B cells into lymphoblastoid cell lines. PLOS Pathog. 9, e1003187 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Romero-Masters, J. C. et al. An EBNA3C-deleted Epstein–Barr virus (EBV) mutant causes B-cell lymphomas with delayed onset in a cord blood-humanized mouse model. PLOS Pathog. 14, e1007221 (2018).

    PubMed  PubMed Central  Google Scholar 

  60. Altmann, M. & Hammerschmidt, W. Epstein–Barr virus provides a new paradigm: a requirement for the immediate inhibition of apoptosis. PLOS Biol. 3, e404 (2005).

    PubMed  PubMed Central  Google Scholar 

  61. Nikitin, P. A. et al. An ATM/Chk2-mediated DNA damage-responsive signaling pathway suppresses Epstein–Barr virus transformation of primary human B cells. Cell Host Microbe 8, 510–522 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Maruo, S. et al. Epstein–Barr virus nuclear antigens 3C and 3A maintain lymphoblastoid cell growth by repressing p16INK4A and p14ARF expression. Proc. Natl Acad. Sci. USA 108, 1919–1924 (2011).

    CAS  PubMed  Google Scholar 

  63. Ma, Y. et al. CRISPR/Cas9 screens reveal Epstein–Barr virus-transformed B cell host dependency factors. Cell Host Microbe 21, 580–591 e587 (2017).

    CAS  PubMed  Google Scholar 

  64. Jiang, S. et al. The Epstein–Barr virus regulome in lymphoblastoid cells. Cell Host Microbe 22, 561–573 e564 (2017). This study and Ma et al. (2017) describe systematic approaches to characterize host cell factors and superenhancer regulation during B cell transformation by EBV.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Klein, E., Nagy, N. & Rasul, A. E. EBV genome carrying B lymphocytes that express the nuclear protein EBNA-2 but not LMP-1: type IIb latency. Oncoimmunology 2, e23035 (2013).

    PubMed  PubMed Central  Google Scholar 

  66. Price, A. M. & Luftig, M. A. To be or not IIb: a multi-step process for Epstein–Barr virus latency establishment and consequences for B cell tumorigenesis. PLOS Pathog. 11, e1004656 (2015).

    PubMed  PubMed Central  Google Scholar 

  67. Kurth, J., Hansmann, M. L., Rajewsky, K. & Kuppers, R. Epstein–Barr virus-infected B cells expanding in germinal centers of infectious mononucleosis patients do not participate in the germinal center reaction. Proc. Natl Acad. Sci. USA 100, 4730–4735 (2003).

    CAS  PubMed  Google Scholar 

  68. Oudejans, J. J. et al. Detection of heterogeneous Epstein–Barr virus gene expression patterns within individual post-transplantation lymphoproliferative disorders. Am. J. Pathol. 147, 923–933 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Price, A. M. et al. Analysis of Epstein–Barr virus-regulated host gene expression changes through primary B-cell outgrowth reveals delayed kinetics of latent membrane protein 1-mediated NF-κB activation. J. Virol. 86, 11096–11106 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Antsiferova, O. et al. Adoptive transfer of EBV specific CD8+ T cell clones can transiently control EBV infection in humanized mice. PLOS Pathog. 10, e1004333 (2014).

    PubMed  PubMed Central  Google Scholar 

  71. McKenzie, J. & El-Guindy, A. Epstein–Barr virus lytic cycle reactivation. Curr. Top. Microbiol. Immunol. 391, 237–261 (2015).

    CAS  PubMed  Google Scholar 

  72. Chiu, Y. F. & Sugden, B. Epstein–Barr virus: the path from latent to productive infection. Annu. Rev. Virol. 3, 359–372 (2016).

    CAS  PubMed  Google Scholar 

  73. Okuno, Y. et al. Defective Epstein–Barr virus in chronic active infection and haematological malignancy. Nat. Microbiol. 4, 404–413 (2019). This study demonstrates that EBV isolates with BART miRNA deficiencies and higher lytic EBV gene expression are enriched in EBV pathologies.

    PubMed  Google Scholar 

  74. Arvey, A. et al. The tumor virus landscape of AIDS-related lymphomas. Blood 125, e14–e22 (2015).

    PubMed  PubMed Central  Google Scholar 

  75. Walens, A. et al. CCL5 promotes breast cancer recurrence through macrophage recruitment in residual tumors. Elife 8, e43653 (2019).

    PubMed  PubMed Central  Google Scholar 

  76. Casagrande, N. et al. CCR5 antagonism by maraviroc inhibits Hodgkin lymphoma microenvironment interactions and xenograft growth. Haematologica 104, 564–575 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Yu, X., McCarthy, P. J., Wang, Z., Gorlen, D. A. & Mertz, J. E. Shutoff of BZLF1 gene expression is necessary for immortalization of primary B cells by Epstein–Barr virus. J. Virol. 86, 8086–8096 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Ma, S. D. et al. An Epstein–Barr virus (EBV) mutant with enhanced BZLF1 expression causes lymphomas with abortive lytic EBV infection in a humanized mouse model. J. Virol. 86, 7976–7987 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Bristol, J. A. et al. A cancer-associated Epstein–Barr virus BZLF1 promoter variant enhances lytic infection. PLOS Pathog. 14, e1007179 (2018).

    PubMed  PubMed Central  Google Scholar 

  80. Tsai, M. H. et al. Spontaneous lytic replication and epitheliotropism define an Epstein–Barr virus strain found in carcinomas. Cell Rep. 5, 458–470 (2013).

    CAS  PubMed  Google Scholar 

  81. Tsai, M. H. et al. The biological properties of different Epstein–Barr virus strains explain their association with various types of cancers. Oncotarget 8, 10238–10254 (2017).

    PubMed  Google Scholar 

  82. Jung, Y. J., Choi, H., Kim, H. & Lee, S. K. MicroRNA miR-BART20-5p stabilizes Epstein–Barr virus latency by directly targeting BZLF1 and BRLF1. J. Virol. 88, 9027–9037 (2014).

    PubMed  PubMed Central  Google Scholar 

  83. McHugh, D. et al. Persistent KSHV infection increases EBV-associated tumor formation in vivo via enhanced EBV lytic gene expression. Cell Host Microbe 22, 61–73 (2017).

    CAS  PubMed  Google Scholar 

  84. Kanakry, J. & Ambinder, R. The biology and clinical utility of EBV monitoring in blood. Curr. Top. Microbiol. Immunol. 391, 475–499 (2015).

    CAS  PubMed  Google Scholar 

  85. Lin, J. C. et al. Quantification of plasma Epstein–Barr virus DNA in patients with advanced nasopharyngeal carcinoma. N. Engl. J. Med. 350, 2461–2470 (2004).

    CAS  PubMed  Google Scholar 

  86. Ruf, S. et al. Comparison of six different specimen types for Epstein–Barr viral load quantification in peripheral blood of pediatric patients after heart transplantation or after allogeneic hematopoietic stem cell transplantation. J. Clin. Virol. 53, 186–194 (2012).

    CAS  PubMed  Google Scholar 

  87. Morishima, S. et al. Increased T-cell responses to Epstein–Barr virus with high viral load in patients with Epstein–Barr virus-positive diffuse large B-cell lymphoma. Leuk. Lymphoma 56, 1072–1078 (2015).

    CAS  PubMed  Google Scholar 

  88. Suzuki, R. et al. Prospective measurement of Epstein–Barr virus-DNA in plasma and peripheral blood mononuclear cells of extranodal NK/T-cell lymphoma, nasal type. Blood 118, 6018–6022 (2011).

    CAS  PubMed  Google Scholar 

  89. Kanakry, J. A. et al. The clinical significance of EBV DNA in the plasma and peripheral blood mononuclear cells of patients with or without EBV diseases. Blood 127, 2007–2017 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Hjalgrim, H. et al. Characteristics of Hodgkin’s lymphoma after infectious mononucleosis. N. Engl. J. Med. 349, 1324–1332 (2003).

    CAS  PubMed  Google Scholar 

  91. Hjalgrim, H. et al. HLA-A alleles and infectious mononucleosis suggest a critical role for cytotoxic T-cell response in EBV-related Hodgkin lymphoma. Proc. Natl Acad. Sci. USA 107, 6400–6405 (2010).

    CAS  PubMed  Google Scholar 

  92. Hjalgrim, H. et al. Infectious mononucleosis, childhood social environment, and risk of Hodgkin lymphoma. Cancer Res. 67, 2382–2388 (2007).

    CAS  PubMed  Google Scholar 

  93. Taylor, G. S., Long, H. M., Brooks, J. M., Rickinson, A. B. & Hislop, A. D. The immunology of Epstein–Barr virus-induced disease. Annu. Rev. Immunol. 33, 787–821 (2015).

    CAS  PubMed  Google Scholar 

  94. Dugan, J. P. et al. Complete and durable responses in primary central nervous system post-transplant lymphoproliferative disorder with zidovudine, ganciclovir, rituximab and dexamethasone. Clin. Cancer Res. 24, 3273–3281 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Yajima, M., Kanda, T. & Takada, K. Critical role of Epstein–Barr virus (EBV)-encoded RNA in efficient EBV-induced B-lymphocyte growth transformation. J. Virol. 79, 4298–4307 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Repellin, C. E., Tsimbouri, P. M., Philbey, A. W. & Wilson, J. B. Lymphoid hyperplasia and lymphoma in transgenic mice expressing the small non-coding RNA, EBER1 of Epstein–Barr virus. PLOS One 5, e9092 (2010).

    PubMed  PubMed Central  Google Scholar 

  97. Feederle, R. et al. The members of an Epstein–Barr virus microRNA cluster cooperate to transform B lymphocytes. J. Virol. 85, 9801–9810 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Feederle, R. et al. A viral microRNA cluster strongly potentiates the transforming properties of a human herpesvirus. PLOS Pathog. 7, e1001294 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Seto, E. et al. Micro RNAs of Epstein–Barr virus promote cell cycle progression and prevent apoptosis of primary human B cells. PLOS Pathog. 6, e1001063 (2010).

    PubMed  PubMed Central  Google Scholar 

  100. Wahl, A. et al. A cluster of virus-encoded microRNSAs accelerates acute systemic Epstein–Barr virus infection but does not significantly enhance virus-induced oncogenesis in vivo. J. Virol. 87, 5437–5446 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Xing, L. & Kieff, E. cis-Acting effects on RNA processing and Drosha cleavage prevent Epstein–Barr virus latency III BHRF1 expression. J. Virol. 85, 8929–8939 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Amoroso, R. et al. Quantitative studies of Epstein–Barr virus-encoded microRNAs provide novel insights into their regulation. J. Virol. 85, 996–1010 (2011).

    CAS  PubMed  Google Scholar 

  103. Vereide, D. T. et al. Epstein–Barr virus maintains lymphomas via its miRNAs. Oncogene 33, 1258–1264 (2014).

    CAS  PubMed  Google Scholar 

  104. Skalsky, R. L. et al. The viral and cellular microRNA targetome in lymphoblastoid cell lines. PLOS Pathog. 8, e1002484 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Riley, K. J. et al. EBV and human microRNAs co-target oncogenic and apoptotic viral and human genes during latency. EMBO J. 31, 2207–2221 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Skalsky, R. L., Kang, D., Linnstaedt, S. D. & Cullen, B. R. Evolutionary conservation of primate lymphocryptovirus microRNA targets. J. Virol. 88, 1617–1635 (2014).

    PubMed  PubMed Central  Google Scholar 

  107. Lung, R. W. et al. Modulation of LMP2A expression by a newly identified Epstein–Barr virus-encoded microRNA miR-BART22. Neoplasia 11, 1174–1184 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Bernhardt, K. et al. A viral microRNA cluster regulates the expression of PTEN, p27 and of a bcl-2 homolog. PLOS Pathog. 12, e1005405 (2016).

    PubMed  PubMed Central  Google Scholar 

  109. Poling, B. C., Price, A. M., Luftig, M. A. & Cullen, B. R. The Epstein–Barr virus miR-BHRF1 microRNAs regulate viral gene expression in cis. Virology 512, 113–123 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Li, J., Callegari, S. & Masucci, M. G. The Epstein–Barr virus miR-BHRF1-1 targets RNF4 during productive infection to promote the accumulation of SUMO conjugates and the release of infectious virus. PLOS Pathog. 13, e1006338 (2017).

    PubMed  PubMed Central  Google Scholar 

  111. Chen, Y., Fachko, D., Ivanov, N. S., Skinner, C. M. & Skalsky, R. L. Epstein–Barr virus microRNAs regulate B cell receptor signal transduction and lytic reactivation. PLOS Pathog. 15, e1007535 (2019).

    PubMed  PubMed Central  Google Scholar 

  112. Murer, A. et al. MicroRNAs of Epstein–Barr virus attenuate T-cell-mediated immune control in vivo. MBio 10, e01941–18 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Pfeffer, S. et al. Identification of virus-encoded microRNAs. Science 304, 734–736 (2004).

    CAS  PubMed  Google Scholar 

  114. Xia, T. et al. EBV microRNAs in primary lymphomas and targeting of CXCL-11 by ebv-mir-BHRF1-3. Cancer Res 68, 1436–1442 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Albanese, M. et al. Epstein–Barr virus microRNAs reduce immune surveillance by virus-specific CD8+ T cells. Proc. Natl Acad. Sci. USA 113, E6467–E6475 (2016). This study and Murer et al. (2019) demonstrate that EBV miRNAs mainly serve the role of immune escape from CD8 + T cell responses.

    CAS  PubMed  Google Scholar 

  116. Lerner, M. R., Andrews, N. C., Miller, G. & Steitz, J. A. Two small RNAs encoded by Epstein–Barr virus and complexed with protein are precipitated by antibodies from patients with systemic lupus erythematosus. Proc. Natl Acad. Sci. USA 78, 805–809 (1981).

    CAS  PubMed  Google Scholar 

  117. Fok, V., Friend, K. & Steitz, J. A. Epstein–Barr virus noncoding RNAs are confined to the nucleus, whereas their partner, the human La protein, undergoes nucleocytoplasmic shuttling. J. Cell Biol. 173, 319–325 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Fok, V., Mitton-Fry, R. M., Grech, A. & Steitz, J. A. Multiple domains of EBER 1, an Epstein–Barr virus noncoding RNA, recruit human ribosomal protein L22. RNA 12, 872–882 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Wu, Y., Maruo, S., Yajima, M., Kanda, T. & Takada, K. Epstein–barr virus (EBV)-encoded RNA 2 (EBER2) but not EBER1 plays a critical role in EBV-induced B-cell growth transformation. J. Virol. 81, 11236–11245 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Swaminathan, S., Tomkinson, B. & Kieff, E. Recombinant Epstein–Barr virus with small RNA (EBER) genes deleted transforms lymphocytes and replicates in vitro. Proc. Natl Acad. Sci. USA 88, 1546–1550 (1991).

    CAS  PubMed  Google Scholar 

  121. Gregorovic, G. et al. Cellular gene expression that correlates with EBER expression in Epstein–Barr virus-infected lymphoblastoid cell lines. J. Virol. 85, 3535–3545 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Gregorovic, G. et al. Epstein–Barr viruses deficient in EBER RNAs give higher LMP2 RNA expression in lymphoblastoid cell lines and efficiently establish persistent infection in humanized mice. J. Virol. 89, 11711–11714 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. McHugh, D. et al. Infection and immune control of human oncogenic γ-herpesviruses in humanized mice. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180296 (2019).

    CAS  PubMed  Google Scholar 

  124. Martin, D. F. et al. Oral ganciclovir for patients with cytomegalovirus retinitis treated with a ganciclovir implant. Roche Ganciclovir Study Group. N. Engl. J. Med. 340, 1063–1070 (1999).

    CAS  PubMed  Google Scholar 

  125. Bilger, A. et al. Leflunomide/teriflunomide inhibit Epstein–Barr virus (EBV)-induced lymphoproliferative disease and lytic viral replication. Oncotarget 8, 44266–44280 (2017).

    PubMed  PubMed Central  Google Scholar 

  126. Damania, B. & Münz, C. Immunodeficiencies that predispose to pathologies by human oncogenic γ-herpesviruses. FEMS Microbiol. Rev. 43, 181–192 (2019).

    PubMed  PubMed Central  Google Scholar 

  127. Sullivan, N. L. et al. Understanding the immunology of the Zostavax shingles vaccine. Curr. Opin. Immunol. 59, 25–30 (2019).

    CAS  PubMed  Google Scholar 

  128. Rühl, J. et al. Heterologous prime-boost vaccination protects from EBV antigen expressing lymphomas. J. Clin. Invest. 129, 2071–2087 (2019).

    PubMed  PubMed Central  Google Scholar 

  129. Bu, W. et al. Immunization with components of the viral fusion apparatus elicits antibodies that neutralize Epstein–Barr virus in B cells and epithelial cells. Immunity 50, 1305–1316.e6 (2019).

    CAS  PubMed  Google Scholar 

  130. Kanekiyo, M. et al. Rational design of an Epstein–Barr virus vaccine targeting the receptor-binding site. Cell 162, 1090–1100 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Snijder, J. et al. An antibody targeting the fusion machinery neutralizes dual-tropic infection and defines a site of vulnerability on Epstein–Barr virus. Immunity 48, 799–811.e9 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Parkin, D. M. The global health burden of infection-associated cancers in the year 2002. Int. J. Cancer 118, 3030–3044 (2006).

    CAS  PubMed  Google Scholar 

  133. Bouvard, V. et al. A review of human carcinogens—Part B: biological agents. Lancet Oncol. 10, 321–322 (2009).

    PubMed  Google Scholar 

  134. Cohen, J. I., Fauci, A. S., Varmus, H. & Nabel, G. J. Epstein–Barr virus: an important vaccine target for cancer prevention. Sci. Transl. Med. 3, 107fs107 (2011).

    Google Scholar 

  135. Totonchy, J. & Cesarman, E. Does persistent HIV replication explain continued lymphoma incidence in the era of effective antiretroviral therapy? Curr. Opin. Virol. 20, 71–77 (2016).

    PubMed  PubMed Central  Google Scholar 

  136. McLaughlin, L. P., Gottschalk, S., Rooney, C. M. & Bollard, C. M. EBV-directed T cell therapeutics for EBV-associated lymphomas. Methods Mol. Biol. 1532, 255–265 (2017).

    CAS  PubMed  Google Scholar 

  137. Smith, C. et al. Effective treatment of metastatic forms of Epstein–Barr virus-associated nasopharyngeal carcinoma with a novel adenovirus-based adoptive immunotherapy. Cancer Res. 72, 1116–1125 (2012).

    CAS  PubMed  Google Scholar 

  138. Ansell, S. M. et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N. Engl. J. Med. 372, 311–319 (2015).

    PubMed  Google Scholar 

  139. Olsson, T., Barcellos, L. F. & Alfredsson, L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat. Rev. Neurol. 13, 25–36 (2017).

    CAS  PubMed  Google Scholar 

  140. Pender, M. P. et al. Epstein–Barr virus-specific T cell therapy for progressive multiple sclerosis. JCI Insight 3, e124714 (2018).

    PubMed Central  Google Scholar 

  141. Sokal, E. M. et al. Recombinant gp350 vaccine for infectious mononucleosis: a phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein–Barr virus vaccine in healthy young adults. J. Infect. Dis. 196, 1749–1753 (2007).

    PubMed  Google Scholar 

Download references

Acknowledgements

Research in C.M.’s laboratory is supported by Cancer Research Switzerland (KFS-4091-02-2017), KFSP-PrecisionMS of the University of Zürich, the Vontobel Foundation, the Baugarten Foundation, the Sobek Foundation, the Swiss Vaccine Research Institute, the Swiss Multiple Sclerosis Society, Roche, ReiThera and the Swiss National Science Foundation (310030B_182827 and CRSII5_180323).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Münz.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Peer review information

Nature Reviews Microbiology thanks P. Farrell, S. Kenney and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Burkitt’s lymphoma

The B cell tumour in which Epstein–Barr virus was discovered and that expresses EBNA1 as the only viral gene in the context of MYC translocations into the immunoglobulin locus.

Infectious mononucleosis

Immunopathological primary Epstein–Barr virus infection with massive CD8+ T cell lymphocytosis.

Latency

Virus persistence without virion production.

Germinal centre

The location of activated naive B cell differentiation with B cell receptor affinity maturation due to somatic hypermutation, in which centroblasts and centrocytes (activated and resting germinal centre B cells) need to receive signals via their B cell receptor engaging antigen on follicular dendritic cells (signal 1) and T cell help via CD40 (signal 2), in order to survive.

Abortive lytic replication

Early lytic viral gene expression without virion production.

Epstein–Barr nuclear antigen

An Epstein–Barr virus protein that is expressed during latent infection with oncogenic function.

Latent membrane proteins

An Epstein–Barr virus-encoded latent membrane protein that mimics signals that B cells have to receive in germinal centres for their survival and that contribute to viral oncogenesis.

BZLF1

An immediate early lytic transcription factor that initiates lytic Epstein–Barr virus replication from fully methylated viral DNA.

HIS mice

In the context of this review, immunodeficient mice with reconstituted human immune system compartments after transfer of human CD34+ haematopoietic progenitor cells or human cord blood mononuclear cells.

Superenhancers

Often distal genetic elements that strongly increase gene promoter activity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Münz, C. Latency and lytic replication in Epstein–Barr virus-associated oncogenesis. Nat Rev Microbiol 17, 691–700 (2019). https://doi.org/10.1038/s41579-019-0249-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-019-0249-7

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer