Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Nanostructuring versus microstructuring in battery electrodes

Subjects

An Author Correction to this article was published on 18 July 2022

This article has been updated

Abstract

Battery electrodes comprise a mixture of active material particles, conductive carbon and binder additives deposited onto a current collector. Although this basic design has persisted for decades, the desired size scale of the active material particle is a matter of debate. Advances in nanotechnology have spurred interest in deploying nanoparticles as the active material. In this Perspective, we compare the features of nanoparticle and microparticle electrodes, and discuss why the battery industry is unlikely to replace microstructures with nanometre-sized analogues. We then address the question of whether there is a place for nanomaterials in battery design. We suggest that the way forward lies in microscale particles with built-in nanoscale features, such as microparticles assembled from nanoscale building blocks or patterned with engineered or natural nanopores. These multiscale particles offer exciting possibilities to develop battery electrodes that are quintessentially both micro and nano with respect to their performance attributes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Kinetic, thermodynamic and mechanical properties of nanometre- and micrometre-sized active material particles in Li-ion batteries.
Fig. 2: Shortcomings of nanostructuring and current industrial scenario for battery-electric vehicles.
Fig. 3: Microparticles with engineered or natural nanoporosity.
Fig. 4: Microscale particles assembled using nanoscale building blocks for high-energy conversion cathodes.

Similar content being viewed by others

Change history

References

  1. Goldman, A. R., Rotondo, F. S. & Swallow, J. G. Lithium ion battery industrial base in the US and abroad (Institute for Defense Analyses, 2019).

  2. Nykvist, B. & Nilsson, M. Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Chang. 5, 329–332 (2015).

    Article  Google Scholar 

  3. Ziegler, M. S. & Trancik, J. E. Re-examining rates of lithium-ion battery technology improvement and cost decline. Energy Environ. Sci. 14, 1635–1651 (2021).

    Article  Google Scholar 

  4. Lutsey, N. & Nicholas, M. Update on electric vehicle costs in the United States through 2030 (International Council on Clean Transportation, 2019).

  5. Gür, T. M. Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ. Sci. 11, 2696–2767 (2018).

    Article  Google Scholar 

  6. Hundekar, P., Jain, R., Lakhnot, A. S. & Koratkar, N. Recent advances in the mitigation of dendrites in lithium-metal batteries. J. Appl. Phys. 128, 10903 (2020).

    Article  CAS  Google Scholar 

  7. Ellis, B. L., Lee, K. T. & Nazar, L. F. Positive electrode materials for Li-ion and Li-batteries. Chem. Mater. 22, 691–714 (2010).

    Article  CAS  Google Scholar 

  8. Lotfabad, E. M. et al. High-density sodium and lithium ion battery anodes from banana peels. ACS Nano 8, 7115–7129 (2014).

    Article  CAS  Google Scholar 

  9. Liu, C., Li, F., Ma, L.-P. & Cheng, H.-M. Advanced materials for energy storage. Adv. Mater. 22, E28–E62 (2010).

    Article  CAS  Google Scholar 

  10. Naguib, M. et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc. 135, 15966–15969 (2013).

    Article  CAS  Google Scholar 

  11. Whittingham, M. S. Materials challenges facing electrical energy storage. MRS Bull. 33, 411–419 (2008).

    Article  CAS  Google Scholar 

  12. Dang, J. et al. Synthesis and electrochemical performance characterization of Ce-doped Li3V2(PO4)3/C as cathodes for lithium-ion batteries. J. Power Sources 243, 33–39 (2013).

    Article  CAS  Google Scholar 

  13. Obrovac, M. N. & Chevrier, V. L. Alloy negative electrodes for Li-ion batteries. Chem. Rev. 114, 11444–11502 (2014).

    Article  CAS  Google Scholar 

  14. Lu, J. et al. The role of nanotechnology in the development of battery materials for electric vehicles. Nat. Nanotechnol. 11, 1031–1038 (2016).

    Article  CAS  Google Scholar 

  15. Aricò, A. S., Bruce, P., Scrosati, B., Tarascon, J.-M. & van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005).

    Article  CAS  Google Scholar 

  16. Mukherjee, R., Krishnan, R., Lu, T.-M. & Koratkar, N. Nanostructured electrodes for high-power lithium ion batteries. Nano Energy 1, 518–533 (2012).

    Article  CAS  Google Scholar 

  17. Sun, Y., Liu, N. & Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 1, 16071 (2016).

    Article  CAS  Google Scholar 

  18. Tang, Y., Zhang, Y., Li, W., Ma, B. & Chen, X. Rational material design for ultrafast rechargeable lithium-ion batteries. Chem. Soc. Rev. 44, 5926–5940 (2015).

    Article  CAS  Google Scholar 

  19. Jain, R. et al. Reversible alloying of phosphorene with potassium and its stabilization using reduced graphene oxide buffer layers. ACS Nano 13, 14094–14106 (2019).

    Article  CAS  Google Scholar 

  20. Qi, W. et al. Nanostructured anode materials for lithium-ion batteries: principle, recent progress and future perspectives. J. Mater. Chem. A 5, 19521–19540 (2017).

    Article  CAS  Google Scholar 

  21. Tsai, P.-C. et al. Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries. Energy Environ. Sci. 11, 860–871 (2018).

    Article  CAS  Google Scholar 

  22. Feckl, J. M., Fominykh, K., Döblinger, M., Fattakhova-Rohlfing, D. & Bein, T. Nanoscale porous framework of lithium titanate for ultrafast lithium insertion. Angew. Chem. Int. Ed. 51, 7459–7463 (2012).

    Article  CAS  Google Scholar 

  23. Bresser, D. et al. The importance of “going nano” for high power battery materials. J. Power Sources 219, 217–222 (2012).

    Article  CAS  Google Scholar 

  24. Seo, D.-H. et al. Intrinsic nanodomains in triplite LiFeSO4F and its implication in lithium-ion diffusion. Adv. Energy Mater. 8, 1701408 (2018).

    Article  CAS  Google Scholar 

  25. Malik, R., Burch, D., Bazant, M. & Ceder, G. Particle size dependence of the ionic diffusivity. Nano Lett. 10, 4123–4127 (2010).

    Article  CAS  Google Scholar 

  26. Kim, J. C., Seo, D.-H., Chen, H. & Ceder, G. The effect of antisite disorder and particle size on Li intercalation kinetics in monoclinic LiMnBO3. Adv. Energy Mater. 5, 1401916 (2015).

    Article  CAS  Google Scholar 

  27. Housel, L. M. et al. Investigation of α-MnO2 tunneled structures as model cation hosts for energy storage. Acc. Chem. Res. 51, 575–582 (2018).

    Article  CAS  Google Scholar 

  28. Pomerantseva, E., Bonaccorso, F., Feng, X., Cui, Y. & Gogotsi, Y. Energy storage: the future enabled by nanomaterials. Science 366, 6468 (2019).

    Article  CAS  Google Scholar 

  29. Jung, S.-K. et al. Nanoscale phenomena in lithium-ion batteries. Chem. Rev. 120, 6684–6737 (2020).

    Article  CAS  Google Scholar 

  30. Yamada, A. et al. Room-temperature miscibility gap in LixFePO4. Nat. Mater. 5, 357–360 (2006).

    Article  CAS  Google Scholar 

  31. Kobayashi, G. et al. Isolation of solid solution phases in size-controlled LixFePO4 at room temperature. Adv. Funct. Mater. 19, 395–403 (2009).

    Article  CAS  Google Scholar 

  32. Meethong, N., Huang, H.-Y. S., Carter, W. C. & Chiang, Y.-M. Size-dependent lithium miscibility gap in nanoscale Li1−xFePO4. Electrochem. Solid State Lett. 10, A134 (2007).

    Article  CAS  Google Scholar 

  33. Meethong, N., Huang, H.-Y. S., Speakman, S. A., Carter, W. C. & Chiang, Y.-M. Strain accommodation during phase transformations in olivine-based cathodes as a materials selection criterion for high-power rechargeable batteries. Adv. Funct. Mater. 17, 1115–1123 (2007).

    Article  CAS  Google Scholar 

  34. Wagemaker, M., Mulder, F. M. & Van der Ven, A. The role of surface and interface energy on phase stability of nanosized insertion compounds. Adv. Mater. 21, 2703–2709 (2009).

    Article  CAS  Google Scholar 

  35. Burch, D. & Bazant, M. Z. Size-dependent spinodal and miscibility gaps for intercalation in nanoparticles. Nano Lett. 9, 3795–3800 (2009).

    Article  CAS  Google Scholar 

  36. Wagemaker, M. et al. Dynamic solubility limits in nanosized olivine LiFePO4. J. Am. Chem. Soc. 133, 10222–10228 (2011).

    Article  CAS  Google Scholar 

  37. Wagemaker, M., Borghols, W. J. H. & Mulder, F. M. Large impact of particle size on insertion reactions. a case for anatase LixTiO2. J. Am. Chem. Soc. 129, 4323–4327 (2007).

    Article  CAS  Google Scholar 

  38. Borghols, W. J. H., Wagemaker, M., Lafont, U., Kelder, E. M. & Mulder, F. M. Impact of nanosizing on lithiated rutile TiO2. Chem. Mater. 20, 2949–2955 (2008).

    Article  CAS  Google Scholar 

  39. Hu, Y.-S., Kienle, L., Guo, Y.-G. & Maier, J. High lithium electroactivity of nanometer-sized rutile TiO2. Adv. Mater. 18, 1421–1426 (2006).

    Article  CAS  Google Scholar 

  40. Van der Ven, A. & Wagemaker, M. Effect of surface energies and nano-particle size distribution on open circuit voltage of Li-electrodes. Electrochem. Commun. 11, 881–884 (2009).

    Article  CAS  Google Scholar 

  41. Kang, J. W. et al. Particle size effect of anatase TiO2 nanocrystals for lithium-ion batteries. J. Electrochem. Soc. 158, A59 (2011).

    Article  CAS  Google Scholar 

  42. Liu, P., Vajo, J. J., Wang, J. S., Li, W. & Liu, J. Thermodynamics and kinetics of the Li/FeF3 reaction by electrochemical analysis. J. Phys. Chem. C 116, 6467–6473 (2012).

    Article  CAS  Google Scholar 

  43. Okubo, M. et al. Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. J. Am. Chem. Soc. 129, 7444–7452 (2007).

    Article  CAS  Google Scholar 

  44. Lee, K. T., Kan, W. H. & Nazar, L. F. Proof of intercrystallite ionic transport in LiMPO4 electrodes (M = Fe, Mn). J. Am. Chem. Soc. 131, 6044–6045 (2009).

    Article  CAS  Google Scholar 

  45. Madej, E., La Mantia, F., Schuhmann, W. & Ventosa, E. Impact of the specific surface area on the memory effect in Li-ion batteries: the case of anatase TiO2. Adv. Energy Mater. 4, 1400829 (2014).

    Article  CAS  Google Scholar 

  46. Guo, X. et al. Size-dependent memory effect of the LiFePO4 electrode in Li-ion batteries. ACS Appl. Mater. Interfaces 10, 41407–41414 (2018).

    Article  CAS  Google Scholar 

  47. Sasaki, T., Ukyo, Y. & Novák, P. Memory effect in a lithium-ion battery. Nat. Mater. 12, 569–575 (2013).

    Article  CAS  Google Scholar 

  48. Jia, J., Tan, C., Liu, M., Li, D. & Chen, Y. Relaxation-induced memory effect of LiFePO4 electrodes in Li-ion batteries. ACS Appl. Mater. Interfaces 9, 24561–24567 (2017).

    Article  CAS  Google Scholar 

  49. Larcher, D. et al. Effect of particle size on lithium intercalation into α-Fe2O3. J. Electrochem. Soc. 150, A133 (2003).

    Article  CAS  Google Scholar 

  50. Bock, D. C. et al. Size dependent behavior of Fe3O4 crystals during electrochemical (de)lithiation: an in situ X-ray diffraction, ex situ X-ray absorption spectroscopy, transmission electron microscopy and theoretical investigation. Phys. Chem. Chem. Phys. 19, 20867–20880 (2017).

    Article  CAS  Google Scholar 

  51. Menard, M. C., Takeuchi, K. J., Marschilok, A. C. & Takeuchi, E. S. Electrochemical discharge of nanocrystalline magnetite: structure analysis using X-ray diffraction and X-ray absorption spectroscopy. Phys. Chem. Chem. Phys. 15, 18539–18548 (2013).

    Article  CAS  Google Scholar 

  52. Luo, L., Zhao, B., Xiang, B. & Wang, C.-M. Size-controlled intercalation-to-conversion transition in lithiation of transition-metal chalcogenides — NbSe3. ACS Nano 10, 1249–1255 (2016).

    Article  CAS  Google Scholar 

  53. Li, W. et al. Operando bulk and interfacial characterization for electrochemical energy storage: case study employing isothermal microcalorimetry and X-ray absorption spectroscopy. J. Mater. Res. 37, 319–333 (2022).

    Article  CAS  Google Scholar 

  54. Cabana, J., Monconduit, L., Larcher, D. & Palacín, M. R. Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170–E192 (2010).

    Article  CAS  Google Scholar 

  55. Martha, S. K. et al. Electrode architectures for high capacity multivalent conversion compounds: iron (II and III) fluoride. RSC Adv. 4, 6730–6737 (2014).

    Article  CAS  Google Scholar 

  56. Zhou, H. et al. Controlled formation of mixed nanoscale domains of high capacity Fe2O3–FeF3 conversion compounds by direct fluorination. ACS Nano 9, 2530–2539 (2015).

    Article  CAS  Google Scholar 

  57. Chevrier, V. L., Hautier, G., Ong, S. P., Doe, R. E. & Ceder, G. First-principles study of iron oxyfluorides and lithiation of FeOF. Phys. Rev. B 87, 094118 (2013).

    Article  CAS  Google Scholar 

  58. Graetz, J., Ahn, C. C., Yazami, R. & Fultz, B. Highly reversible lithium storage in nanostructured silicon. Electrochem. Solid State Lett. 6, A194 (2003).

    Article  CAS  Google Scholar 

  59. Liu, X. H. et al. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6, 1522–1531 (2012).

    Article  CAS  Google Scholar 

  60. Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014).

    Article  CAS  Google Scholar 

  61. Keller, C. et al. Effect of size and shape on electrochemical performance of nano-silicon-based lithium battery. Nanomaterials 11, 307 (2021).

    Article  CAS  Google Scholar 

  62. Lai, S. Y. et al. Silicon nanoparticle ensembles for lithium-ion batteries elucidated by small-angle neutron scattering. ACS Appl. Energy Mater. 2, 3220–3227 (2019).

    Article  CAS  Google Scholar 

  63. Sun, Y.-K., Oh, S.-M., Park, H.-K. & Scrosati, B. Micrometer-sized, nanoporous, high-volumetric-capacity LiMn0.85Fe0.15PO4 cathode material for rechargeable lithium-ion batteries. Adv. Mater. 23, 5050–5054 (2011).

    Article  CAS  Google Scholar 

  64. Karkar, Z. et al. How silicon electrodes can be calendered without altering their mechanical strength and cycle life. J. Power Sources 371, 136–147 (2017).

    Article  CAS  Google Scholar 

  65. Wang, F. et al. Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes. J. Am. Chem. Soc. 133, 18828–18836 (2011).

    Article  CAS  Google Scholar 

  66. Courtney, I. A., McKinnon, W. R. & Dahn, J. R. On the aggregation of tin in SnO composite glasses caused by the reversible reaction with lithium. J. Electrochem. Soc. 146, 59–68 (1999).

    Article  CAS  Google Scholar 

  67. Berckmans, G. et al. Cost projection of state of the art lithium-ion batteries for electric vehicles up to 2030. Energies 10, 1314 (2017).

    Article  Google Scholar 

  68. Fan, X. et al. Pomegranate-structured conversion-reaction cathode with a built-in Li source for high-energy Li-ion batteries. ACS Nano 10, 5567–5577 (2016).

    Article  CAS  Google Scholar 

  69. Hsu, K.-F., Tsay, S.-Y. & Hwang, B.-J. Synthesis and characterization of nano-sized LiFePO4 cathode materials prepared by a citric acid-based sol–gel route. J. Mater. Chem. 14, 2690–2695 (2004).

    Article  CAS  Google Scholar 

  70. Blomgren, G. E. The development and future of lithium ion batteries. J. Electrochem. Soc. 164, A5019–A5025 (2016).

    Article  CAS  Google Scholar 

  71. Andre, D. et al. Future generations of cathode materials: an automotive industry perspective. J. Mater. Chem. A 3, 6709–6732 (2015).

    Article  CAS  Google Scholar 

  72. Kwade, A. et al. Current status and challenges for automotive battery production technologies. Nat. Energy 3, 290–300 (2018).

    Article  Google Scholar 

  73. Cao, Y., Li, M., Lu, J., Liu, J. & Amine, K. Bridging the academic and industrial metrics for next-generation practical batteries. Nat. Nanotechnol. 14, 200–207 (2019).

    Article  CAS  Google Scholar 

  74. Ue, M., Sakaushi, K. & Uosaki, K. Basic knowledge in battery research bridging the gap between academia and industry. Mater. Horiz. 7, 1937–1954 (2020).

    Article  CAS  Google Scholar 

  75. Schmuch, R., Wagner, R., Hörpel, G., Placke, T. & Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267–278 (2018).

    Article  CAS  Google Scholar 

  76. Masias, A., Marcicki, J. & Paxton, W. A. Opportunities and challenges of lithium ion batteries in automotive applications. ACS Energy Lett. 6, 621–630 (2021).

    Article  CAS  Google Scholar 

  77. European Council for Automotive R&D. Battery requirements for future automotive applications (EUCAR, 2019).

  78. Lee, W. J. et al. N-doped graphitic self-encapsulation for high performance silicon anodes in lithium-ion batteries. Energy Environ. Sci. 7, 621–626 (2014).

    Article  Google Scholar 

  79. Jangid, M. K. & Mukhopadhyay, A. Real-time monitoring of stress development during electrochemical cycling of electrode materials for Li-ion batteries: overview and perspectives. J. Mater. Chem. A 7, 23679–23726 (2019).

    Article  CAS  Google Scholar 

  80. Gowda, S. R. et al. Three-dimensionally engineered porous silicon electrodes for Li ion batteries. Nano Lett. 12, 6060–6065 (2012).

    Article  CAS  Google Scholar 

  81. Liu, N. et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9, 187–192 (2014).

    Article  CAS  Google Scholar 

  82. Bang, B. M., Lee, J.-I., Kim, H., Cho, J. & Park, S. High-performance macroporous bulk silicon anodes synthesized by template-free chemical etching. Adv. Energy Mater. 2, 878–883 (2012).

    Article  CAS  Google Scholar 

  83. Magasinski, A. et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 9, 353–358 (2010).

    Article  CAS  Google Scholar 

  84. An, W. et al. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nat. Commun. 10, 1447 (2019).

    Article  CAS  Google Scholar 

  85. Zhu, J. et al. Green, template-less synthesis of honeycomb-like porous micron-sized red phosphorus for high-performance lithium storage. ACS Nano 15, 1880–1892 (2021).

    Article  CAS  Google Scholar 

  86. Lou, X. W. D., Archer, L. A. & Yang, Z. Hollow micro-/nanostructures: synthesis and applications. Adv. Mater. 20, 3987–4019 (2008).

    Article  CAS  Google Scholar 

  87. Xu, Y. et al. Controllable synthesis of 3D Fe3O4 micro-cubes as anode materials for lithium ion batteries. CrystEngComm 21, 5050–5058 (2019).

    Article  CAS  Google Scholar 

  88. He, H., Fu, C., An, Y., Feng, J. & Xiao, J. Biofunctional hollow γ-MnO2 microspheres by a one-pot collagen-templated biomineralization route and their applications in lithium batteries. RSC Adv. 11, 37040–37048 (2021).

    Article  CAS  Google Scholar 

  89. Zhang, G. et al. Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv. Mater. 24, 4609–4613 (2012).

    Article  CAS  Google Scholar 

  90. Pan, A., Wu, H. B., Yu, L. & Lou, X. W. D. Template-free synthesis of VO2 hollow microspheres with various interiors and their conversion into V2O5 for lithium-ion batteries. Angew. Chem. Int. Ed. 52, 2226–2230 (2013).

    Article  CAS  Google Scholar 

  91. Partheeban, T. & Sasidharan, M. Template-free synthesis of LiV3O8 hollow microspheres as positive electrode for Li-ion batteries. J. Mater. Sci. 55, 2155–2165 (2020).

    Article  CAS  Google Scholar 

  92. Wang, J., Zhou, H., Nanda, J. & Braun, P. V. Three-dimensionally mesostructured Fe2O3 electrodes with good rate performance and reduced voltage hysteresis. Chem. Mater. 27, 2803–2811 (2015).

    Article  CAS  Google Scholar 

  93. Reddy, M. V. et al. α-Fe2O3 nanoflakes as an anode material for Li-ion batteries. Adv. Funct. Mater. 17, 2792–2799 (2007).

    Article  CAS  Google Scholar 

  94. Wang, Z., Luan, D., Madhavi, S., Hu, Y. & Lou, X. W. Assembling carbon-coated α-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy Environ. Sci. 5, 5252–5256 (2012).

    Article  CAS  Google Scholar 

  95. Billaud, J., Bouville, F., Magrini, T., Villevieille, C. & Studart, A. R. Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries. Nat. Energy 1, 16097 (2016).

    Article  CAS  Google Scholar 

  96. Ju, Z., Zhang, X., Wu, J. & Yu, G. Vertically aligned two-dimensional materials-based thick electrodes for scalable energy storage systems. Nano Res. 14, 3562–3575 (2021).

    Article  CAS  Google Scholar 

  97. Griffith, K. J., Wiaderek, K. M., Cibin, G., Marbella, L. E. & Grey, C. P. Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature 559, 556–563 (2018).

    Article  CAS  Google Scholar 

  98. Cava, R. J., Santoro, A., Murphy, D. W., Zahurak, S. M. & Roth, R. S. The structures of the lithium inserted metal oxides Li0.2ReO3 and Li0.36WO3. J. Solid State Chem. 50, 121–128 (1983).

    Article  CAS  Google Scholar 

  99. Downie, L. E. et al. In situ detection of lithium plating on graphite electrodes by electrochemical calorimetry. J. Electrochem. Soc. 160, A588–A594 (2013).

    Article  CAS  Google Scholar 

  100. Chae, S., Ko, M., Kim, K., Ahn, K. & Cho, J. Confronting issues of the practical implementation of Si anode in high-energy lithium-ion batteries. Joule 1, 47–60 (2017).

    Article  CAS  Google Scholar 

  101. Lakhnot, A. S. et al. Aqueous lithium-ion batteries with niobium tungsten oxide anodes for superior volumetric and rate capability. Energy Stor. Mater. 27, 506–513 (2020).

    Article  Google Scholar 

  102. McColl, K. et al. Energy storage mechanisms in vacancy-ordered Wadsley–Roth layered niobates. J. Mater. Chem. A 9, 20006–20023 (2021).

    Article  CAS  Google Scholar 

  103. Zhang, W. et al. Kinetic pathways of ionic transport in fast-charging lithium titanate. Science 367, 1030–1034 (2020).

    Article  CAS  Google Scholar 

  104. Li, W. et al. A sulfur cathode with pomegranate-like cluster structure. Adv. Energy Mater. 5, 1500211 (2015).

    Article  CAS  Google Scholar 

  105. Luo, C. et al. A chemically stabilized sulfur cathode for lean electrolyte lithium sulfur batteries. Proc. Natl Acad. Sci. USA 117, 14712 (2020).

    Article  CAS  Google Scholar 

  106. Xue, W. et al. Intercalation-conversion hybrid cathodes enabling Li–S full-cell architectures with jointly superior gravimetric and volumetric energy densities. Nat. Energy 4, 374–382 (2019).

    Article  CAS  Google Scholar 

  107. Han, F., Zhu, Y., He, X., Mo, Y. & Wang, C. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv. Energy Mater. 6, 1501590 (2016).

    Article  CAS  Google Scholar 

  108. Luntz, A. C., Voss, J. & Reuter, K. Interfacial challenges in solid-state Li ion batteries. J. Phys. Chem. Lett. 6, 4599–4604 (2015).

    Article  CAS  Google Scholar 

  109. Chen, J. et al. Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 5, 386–397 (2020).

    Article  CAS  Google Scholar 

  110. Tan, D. H. S. et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science 373, 1494–1499 (2021).

    Article  CAS  Google Scholar 

  111. Zhang, W. et al. The detrimental effects of carbon additives in Li10GeP2S12-based solid-state batteries. ACS Appl. Mater. Interfaces 9, 35888–35896 (2017).

    Article  CAS  Google Scholar 

  112. Jo, M., Hong, Y.-S., Choo, J. & Cho, J. Effect of LiCoO2 cathode nanoparticle size on high rate performance for Li-ion batteries. J. Electrochem. Soc. 156, A430 (2009).

    Article  CAS  Google Scholar 

  113. Liu, J., Wang, Z., Zhang, G., Liu, Y. & Yu, A. Size-controlled synthesis of LiFePO4/C composites as cathode materials for lithium ion batteries. Int. J. Electrochem. Sci. 8, 2378–2387 (2013).

    CAS  Google Scholar 

  114. Fey, G. T.-K., Chen, Y. G. & Kao, H.-M. Electrochemical properties of LiFePO4 prepared via ball-milling. J. Power Sources 189, 169–178 (2009).

    Article  CAS  Google Scholar 

  115. Oh, S. W. et al. Nanoporous structured LiFePO4 with spherical microscale particles having high volumetric capacity for lithium batteries. Electrochem. Solid State Lett. 12, A181 (2009).

    Article  CAS  Google Scholar 

  116. Xiao, P., Lv, T., Chen, X. & Chang, C. LiNi0.8Co0.15Al0.05O2: enhanced electrochemical performance from reduced cationic disordering in Li slab. Sci. Rep. 7, 1408 (2017).

    Article  CAS  Google Scholar 

  117. Yiğitalp, A., Taşdemir, A., Alkan Gürsel, S. & Yürüm, A. Nafion-coated LiNi0.80Co0.15Al0.05O2 (NCA) cathode preparation and its influence on the Li-ion battery cycle performance. Energy Storage 2, e154 (2020).

    Article  CAS  Google Scholar 

  118. Liu, H. et al. Morphological evolution of high-voltage spinel LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries: the critical effects of surface orientations and particle size. ACS Appl. Mater. Interfaces 8, 4661–4675 (2016).

    Article  CAS  Google Scholar 

  119. Tan, J. et al. Iron fluoride with excellent cycle performance synthesized by solvothermal method as cathodes for lithium ion batteries. J. Power Sources 251, 75–84 (2014).

    Article  CAS  Google Scholar 

  120. Chen, H. et al. Monodispersed sulfur nanoparticles for lithium–sulfur batteries with theoretical performance. Nano Lett. 15, 798–802 (2015).

    Article  CAS  Google Scholar 

  121. Li, H. A high capacity nano-Si composite anode material for lithium rechargeable batteries. Electrochem. Solid State Lett. 2, 547 (1999).

    Article  CAS  Google Scholar 

  122. Zhu, G., Chao, D., Xu, W., Wu, M. & Zhang, H. Microscale silicon-based anodes: fundamental understanding and industrial prospects for practical high-energy lithium-ion batteries. ACS Nano 15, 15567–15593 (2021).

    Article  CAS  Google Scholar 

  123. Sun, M. et al. Porous Fe2O3 nanotubes as advanced anode for high performance lithium ion batteries. Ceram. Int. 43, 363–367 (2017).

    Article  CAS  Google Scholar 

  124. Lin, Y.-M., Abel, P. R., Heller, A. & Mullins, C. B. α-Fe2O3 nanorods as anode material for lithium ion batteries. J. Phys. Chem. Lett. 2, 2885–2891 (2011).

    Article  CAS  Google Scholar 

  125. Cho, J. S., Hong, Y. J., Lee, J.-H. & Kang, Y. C. Design and synthesis of micron-sized spherical aggregates composed of hollow Fe2O3 nanospheres for use in lithium-ion batteries. Nanoscale 7, 8361–8367 (2015).

    Article  CAS  Google Scholar 

  126. Liu, S. et al. Nb2O5 microstructures: a high-performance anode for lithium ion batteries. Nanotechnology 27, 46LT01 (2016).

    Article  Google Scholar 

  127. Liu, M., Yan, C. & Zhang, Y. Fabrication of Nb2O5 nanosheets for high-rate lithium ion storage applications. Sci. Rep. 5, 8326 (2015).

    Article  CAS  Google Scholar 

  128. Zhang, C., Chen, Z., Guo, Z. & Lou, X. W. D. Additive-free synthesis of 3D porous V2O5 hierarchical microspheres with enhanced lithium storage properties. Energy Environ. Sci. 6, 974–978 (2013).

    Article  CAS  Google Scholar 

  129. An, Q. et al. Three-dimensional porous V2O5 hierarchical octahedrons with adjustable pore architectures for long-life lithium batteries. Nano Res. 8, 481–490 (2015).

    Article  CAS  Google Scholar 

  130. Yuan, W. et al. Preparation of porous Co3O4 polyhedral architectures and its application as anode material in lithium-ion battery. Mater. Lett. 97, 129–132 (2013).

    Article  CAS  Google Scholar 

  131. Zhan, L., Wang, S., Ding, L.-X., Li, Z. & Wang, H. Grass-like Co3O4 nanowire arrays anode with high rate capability and excellent cycling stability for lithium-ion batteries. Electrochim. Acta 135, 35–41 (2014).

    Article  CAS  Google Scholar 

  132. Mukherjee, R. et al. Defect-induced plating of lithium metal within porous graphene networks. Nat. Commun. 5, 3710 (2014).

    Article  CAS  Google Scholar 

  133. Liu, C. et al. Nitrogen-doped graphene by all-solidstate ball-milling graphite with urea as a high-power lithium ion battery anode. J. Power Sources 342, 157–164 (2017).

    Article  CAS  Google Scholar 

  134. Lin, P.-C., Wu, J.-Y. & Liu, W.-R. Green and facile synthesis of few-layer graphene via liquid exfoliation process for lithium-ion batteries. Sci. Rep. 8, 9766 (2018).

    Article  CAS  Google Scholar 

  135. Jiang, C. et al. Particle size dependence of the lithium storage capability and high rate performance of nanocrystalline anatase TiO2 electrode. J. Power Sources 166, 239–243 (2007).

    Article  CAS  Google Scholar 

  136. Saito, M. et al. Improvement of the reversible capacity of TiO2(B) high potential negative electrode. J. Electrochem. Soc. 159, A49–A54 (2011).

    Article  CAS  Google Scholar 

  137. Jiang, C., Honma, I., Kudo, T. & Zhou, H. Nanocrystalline rutile TiO2 electrode for high-capacity and high-rate lithium storage. Electrochem. Solid State Lett. 10, A127 (2007).

    Article  CAS  Google Scholar 

  138. Ren, Y. et al. Nanoparticulate TiO2(B): an anode for lithium-ion batteries. Angew. Chem. Int. Ed. 51,2164–2167 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

N.K. acknowledges funding support from the US National Science Foundation (award numbers 1922633 and 2126178) and the John A. Clark and Edward T. Crossan chair professorship at the Rensselaer Polytechnic Institute. C.W. acknowledges funding support from the US Department of Energy under award number DEEE0008202.

Author information

Authors and Affiliations

Authors

Contributions

R.J., C.W. and N.K. envisioned and developed the Perspective. R.J., A.S.L., K.B., S.S., V.M., R.A.P., M.K. and N.K. carried out the literature survey, analysed the data and prepared the figures. R.J., A.S.L., K.B., F.H., C.W. and N.K. wrote the Perspective.

Corresponding authors

Correspondence to Chunsheng Wang or Nikhil Koratkar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Kaifu Huo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, R., Lakhnot, A.S., Bhimani, K. et al. Nanostructuring versus microstructuring in battery electrodes. Nat Rev Mater 7, 736–746 (2022). https://doi.org/10.1038/s41578-022-00454-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-022-00454-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing