Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fundamentals, status and promise of sodium-based batteries

Abstract

Na-based batteries have shown substantial progress in recent years and are promising candidates for mitigating the supply risks associated with Li-based batteries. In this Review, Na and Li batteries are compared in terms of fundamental principles and specific materials. Principles for the rational design of a Na battery architecture are discussed. Recent prototypes are surveyed to demonstrate that Na cells offer realistic alternatives that are competitive with some Li cells in terms of performance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Lithium resources.
Fig. 2: Difference in open-circuit voltage.
Fig. 3: Performance of cathode materials.
Fig. 4: Ionic conductivity of solid electrolyte interphase components.
Fig. 5: Specific energy of Na and Li cells.

Similar content being viewed by others

References

  1. Miller, S. L., Svrcek, M. N., Teh, K. Y. & Edwards, C. F. Requirements for designing chemical engines with reversible reactions. Energy 36, 99–110 (2011).

    Article  CAS  Google Scholar 

  2. Teh, K. Y., Miller, S. L. & Edwards, C. F. Thermodynamic requirements for maximum internal combustion engine cycle efficiency. Part 1: optimal combustion strategy. Int. J. Engine Res. 9, 449–465 (2008).

    Article  CAS  Google Scholar 

  3. Oshima, T., Kajita, M. & Okuno, A. Development of sodium-sulfur batteries. Int. J. Appl. Ceram. Technol. 1, 269–276 (2004).

    Article  CAS  Google Scholar 

  4. Dustmann, C. H. Advances in ZEBRA batteries. J. Power Sources 127, 85–92 (2004).

    Article  CAS  Google Scholar 

  5. Tsiropoulos, I., Tarvydas, D. & Lebedeva N. Li-ion batteries for mobility and stationary storage applications. JRC Publications Repository https://publications.jrc.ec.europa.eu/repository/handle/JRC113360 (2018).

  6. Vaalma, C., Buchholz, D., Weil, M. & Passerini, S. A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 3, 18013 (2018).

    Article  Google Scholar 

  7. Jaskula, B. W. in Mineral commodity summaries 2021. U.S. Geological Survey https://pubs.usgs.gov/periodicals/mcs2021/mcs2021.pdf (2021).

  8. Denyer, S. Tibetans in anguish as Chinese mines pollute their sacred grasslands. Washington Post (26 Dec 2016).

  9. Garvey, P. Leaking dam puts lithium mine expansion on hold. The Australian (17 Jul 2019).

  10. Romero, H., Méndez, M. & Smith, P. Mining development and environmental injustice in the Atacama Desert of Northern Chile. Environ. Justice 5, 70–76 (2012).

    Article  Google Scholar 

  11. Melin, H. E. State-of-the-art in reuse and recycling of lithium-ion batteries – A research review. Swedish Energy Agency http://www.energimyndigheten.se/globalassets/forskning--innovation/overgripande/state-of-the-art-in-reuse-and-recycling-of-lithium-ion-batteries-2019.pdf (2019).

  12. Haxel, G. B., Hedrick, J. B. & Orris, G. J. Rare earth elements — critical resources for high technology. U.S. Geological Survey https://pubs.usgs.gov/fs/2002/fs087-02/ (2002).

  13. Lide, D. R. (ed.) CRC Handbook of Chemistry and Physics (CRC Press, 2005).

  14. Li, W. D., Lee, S. & Manthiram, A. High-nickel NMA: a cobalt-free alternative to NMC and NCA cathodes for lithium-ion batteries. Adv. Mater. 32, 2002718 (2020).

    Article  CAS  Google Scholar 

  15. Jian, Z., Hu, Y. S., Ji, X. & Chen, W. NASICON-structured materials for energy storage. Adv. Mater. 29, 1601925 (2017).

    Article  CAS  Google Scholar 

  16. Ong, S. P. et al. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 4, 3680–3688 (2011).

    Article  CAS  Google Scholar 

  17. Lee, K. T., Ramesh, T. N., Nan, F., Botton, G. & Nazar, L. F. Topochemical synthesis of sodium metal phosphate olivines for sodium-ion batteries. Chem. Mater. 23, 3593–3600 (2011).

    Article  CAS  Google Scholar 

  18. Kim, S. W., Seo, D. H., Ma, X. H., Ceder, G. & Kang, K. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2, 710–721 (2012).

    Article  CAS  Google Scholar 

  19. Kim, J. C. et al. Direct observation of alternating octahedral and prismatic sodium layers in O3-type transition metal oxides. Adv. Energy Mater. 10, 2001151 (2020).

    Article  CAS  Google Scholar 

  20. Chayambuka, K., Mulder, G., Danilov, D. L. & Notten, P. H. L. Sodium-ion battery materials and electrochemical properties reviewed. Adv. Energy Mater. 8, 1800079 (2018).

    Article  CAS  Google Scholar 

  21. Delmas, C., Carlier, D. & Guignard, M. The layered oxides in lithium and sodium-ion batteries: a solid-state chemistry approach. Adv. Energy Mater. 11, 2001201 (2021).

    Article  CAS  Google Scholar 

  22. Klein, F., Jache, B., Bhide, A. & Adelhelm, P. Conversion reactions for sodium-ion batteries. Phys. Chem. Chem. Phys. 15, 15876–15887 (2013).

    Article  CAS  Google Scholar 

  23. Jenkins, H. D. B., Roobottom, H. K., Passmore, J. & Glasser, L. Relationships among ionic lattice energies, molecular (formula unit) volumes, and thermochemical radii. Inorg. Chem. 38, 3609–3620 (1999).

    Article  CAS  Google Scholar 

  24. Glasser, L. & Jenkins, H. D. B. Lattice energies and unit cell volumes of complex ionic solids. J. Am. Chem. Soc. 122, 632–638 (2000).

    Article  CAS  Google Scholar 

  25. Glasser, L. Lattice energies of crystals with multiple ions: a generalized Kapustinskii equation. Inorg. Chem. 34, 4935–4936 (1995).

    Article  CAS  Google Scholar 

  26. Meyer, K. Physikalisch-Chemische Kristallographie (VEB Deutscher Verlag für Grundstoffindustrie, 1968).

  27. Haber, F. Beitrag zur Kenntnis der Metalle. Sitzungsber. Preuss. Akad. Wiss. 506–518 (1919).

  28. Weiss, A. & Witte, H. Kristallstruktur und chemische Bindung (Verlag Chemie, 1983).

  29. Zhu, Y. J., Xu, Y. H., Liu, Y. H., Luo, C. & Wang, C. S. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. Nanoscale 5, 780–787 (2013).

    Article  CAS  Google Scholar 

  30. Fang, Y. J., Yu, X. Y. & Lou, X. W. A practical high-energy cathode for sodium-ion batteries based on uniform P2-Na0.7CoO2 microspheres. Angew. Chem. Int. Ed. 56, 5801–5805 (2017).

    Article  CAS  Google Scholar 

  31. Ohzuku, T. & Ueda, A. Solid-state redox reactions of LiCoO2 (R3m) for 4 volt secondary lithium cells. J. Electrochem. Soc. 141, 2972–2977 (1994).

    Article  CAS  Google Scholar 

  32. Jost, W. Diffusion and electrolytic conduction in crystals (ionic semiconductors). J. Chem. Phys. 1, 466–475 (1933).

    Article  CAS  Google Scholar 

  33. Maier, J. Physical Chemistry of Ionic Materials: Ions and Electrons in Solids (Wiley, 2004).

  34. Spencer, O. S. & Plint, C. A. Formation energy of individual cation vacancies in LiF and NaCl. J. Appl. Phys. 40, 168–172 (1969).

    Article  CAS  Google Scholar 

  35. Kubota, K. et al. New insight into structural evolution in layered NaCrO2 during electrochemical sodium extraction. J. Phys. Chem. C 119, 166–175 (2015).

    Article  CAS  Google Scholar 

  36. Andersen, T. N. & Eyring, H. in Physical Chemistry: An Advanced Treatise Vol. IX A Ch. 3 (ed. Eyring, H.) 247–344 (Academic, 1970).

  37. Allmatt, A. R. & Lidiard, B. Atomic Transport in Solids (Cambridge Univ. Press, 1993).

  38. Riess, I. & Maier, J. Symmetrized general hopping current equation. Phys. Rev. Lett. 100, 205901 (2008).

    Article  CAS  Google Scholar 

  39. Maier, J. Complex oxides: high temperature defect chemistry vs. low temperature defect chemistry. Phys. Chem. Chem. Phys. 5, 2164–2173 (2003).

    Article  CAS  Google Scholar 

  40. Bauer, C. F. & Whitmore, D. H. Ionic conductivity of sodium fluoride. Phys. Status Solidi 37, 585–598 (1970).

    Article  CAS  Google Scholar 

  41. Nadler, C. & Rossel, J. Measurement and interpretation of ionic conduction in alkali halides. Phys. Status Solidi A Appl. Res. 18, 711–722 (1973).

    Article  CAS  Google Scholar 

  42. Maier, J. Thermodynamics of electrochemical lithium storage. Angew. Chem. Int. Ed. 52, 4998–5026 (2013).

    Article  CAS  Google Scholar 

  43. Shin, J. Y., Samuelis, D. & Maier, J. Defect chemistry of lithium storage in TiO2 as a function of oxygen stoichiometry. Solid State Ion. 225, 590–593 (2012).

    Article  CAS  Google Scholar 

  44. Roberts, M. W., Thomas, J. M., Corish, J., Jacobs, P. W. M. & Radhakrishna, S. in Surface and Defect Properties of Solids Vol. 6 (eds Roberts, M. W. & Thomas, J. M.) 218–279 (Royal Society of Chemistry, 1977).

  45. Li, X. et al. Jahn–Teller assisted Na diffusion for high performance Na ion batteries. Chem. Mater. 28, 6575–6583 (2016).

    Article  CAS  Google Scholar 

  46. Tessman, J. R., Kahn, A. H. & Shockley, W. Electronic polarizabilities of ions in crystals. Phys. Rev. 92, 890–895 (1953).

    Article  CAS  Google Scholar 

  47. Mahan, G. D. Polarizability of ions in crystals. Solid State Ion. 1, 29–45 (1980).

    Article  CAS  Google Scholar 

  48. Cotton, F. A., Wilkinson, G., Murillo, C. A. & Bochmann, M. Advanced Inorganic Chemistry 6th edn (Wiley, 1999).

  49. Babu, C. S. & Lim, C. Theory of ionic hydration: insights from molecular dynamics simulations and experiment. J. Phys. Chem. B 103, 7958–7968 (1999).

    Article  CAS  Google Scholar 

  50. Okoshi, M., Yamada, Y., Komaba, S., Yamada, A. & Nakai, H. Theoretical analysis of interactions between potassium ions and organic electrolyte solvents: a comparison with lithium, sodium, and magnesium ions. J. Electrochem. Soc. 164, A54–A60 (2017).

    Article  CAS  Google Scholar 

  51. Flores, E., Avall, G., Jeschke, S. & Johansson, P. Solvation structure in dilute to highly concentrated electrolytes for lithium-ion and sodium-ion batteries. Electrochim. Acta 233, 134–141 (2017).

    Article  CAS  Google Scholar 

  52. Pham, T. A., Kweon, K. E., Samanta, A., Lordi, V. & Pask, J. E. Solvation and dynamics of sodium and potassium in ethylene carbonate from ab initio molecular dynamics simulations. J. Phys. Chem. C 121, 21913–21920 (2017).

    Article  CAS  Google Scholar 

  53. Banerjee, P. & Bagchi, B. Ions’ motion in water. J. Chem. Phys. 150, 190901 (2019).

    Article  CAS  Google Scholar 

  54. Tchitchekova, D. S. et al. On the reliability of half-cell tests for monovalent (Li+, Na+) and divalent (Mg2+, Ca2+) cation based batteries. J. Electrochem. Soc. 164, A1384–A1392 (2017).

    Article  CAS  Google Scholar 

  55. Seki, S. et al. Density, viscosity, ionic conductivity, and self-diffusion coefficient of organic liquid electrolytes: part I. Propylene carbonate + Li, Na, Mg and Ca cation salts. J. Electrochem. Soc. 165, A542–A546 (2018).

    Article  CAS  Google Scholar 

  56. Maier, J. Salt concentration polarization of liquid electrolytes and determination of transport properties of cations, anions, ion pairs and ion triples. Electrochim. Acta 129, 21–27 (2014).

    Article  CAS  Google Scholar 

  57. Bjerrum, N. Kgl. Danske Videnskab. Selskab. Mat. Fys. Medd. 7, 9 (1926).

  58. Kortuem, G. Treatise on Electrochemistry (Elsevier, 1965).

  59. Barthel, J. M., Krienke, H. & Kunz, W. Physical Chemistry of Electrolyte Solutions 4 (Steinkopff, 1998).

  60. Stolwijk, N. A. & Obeidi, S. Radiotracer diffusion and ionic conduction in a PEO-NaI polymer electrolyte. Phys. Rev. Lett. 93, 125901 (2004).

    Article  CAS  Google Scholar 

  61. Browning, K. L., Sacci, R. L. & Veith, G. M. Energetics of Na+ transport through the electrode/cathode interface in single solvent electrolytes. J. Electrochem. Soc. 164, A580–A586 (2017).

    Article  CAS  Google Scholar 

  62. Gaberscek, M., Moskon, J., Erjavec, B., Dominko, R. & Jamnik, J. The importance of interphase contacts in Li ion electrodes: the meaning of the high-frequency impedance arc. Electrochem. Solid State Lett. 11, A170 (2008).

    Article  CAS  Google Scholar 

  63. Holm, R. Electric Contacts Handbook (Springer, 1958).

  64. Zhu, C. B., Usiskin, R. E., Yu, Y. & Maier, J. The nanoscale circuitry of battery electrodes. Science 358, eaao2808 (2017).

    Article  CAS  Google Scholar 

  65. Usiskin, R. E. & Maier, J. Guidelines for optimizing the architecture of battery insertion electrodes based on the concept of wiring lengths. Phys. Chem. Chem. Phys. 20, 16449–16462 (2018).

    Article  CAS  Google Scholar 

  66. Usiskin, R. & Maier, J. Guidelines for optimizing the architecture of battery insertion electrodes with ohmic surface, coating, or electrolyte resistances. J. Electrochem. Soc. 167, 080505 (2020).

    Article  Google Scholar 

  67. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J.-M. Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000).

    Article  CAS  Google Scholar 

  68. Balaya, P., Li, H., Kienle, L. & Maier, J. Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity. Adv. Funct. Mater. 13, 621–625 (2003).

    Article  CAS  Google Scholar 

  69. Wang, F. et al. Ternary metal fluorides as high-energy cathodes with low cycling hysteresis. Nat. Commun. 6, 6668 (2015).

    Article  CAS  Google Scholar 

  70. Thackeray, M. M. & Coetzer, J. A preliminary investigation of the electrochemical performance of α-Fe2O3 and Fe3O4 cathodes in high-temperature cells. Mater. Res. Bull. 16, 591–597 (1981).

    Article  CAS  Google Scholar 

  71. Zhu, C., Mu, X., van Aken, P. A., Maier, J. & Yu, Y. Fast Li storage in MoS2-graphene-carbon nanotube nanocomposites: advantageous functional integration of 0D, 1D, and 2D nanostructures. Adv. Energy Mater. 5, 1401170 (2015).

    Article  CAS  Google Scholar 

  72. Zhu, C., Mu, X., van Aken, P. A., Yu, Y. & Maier, J. Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew. Chem. Int. Ed. 53, 2152–2156 (2014).

    Article  CAS  Google Scholar 

  73. Wang, Y., Xiao, R., Hu, Y.-S., Avdeev, M. & Chen, L. P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries. Nat. Commun. 6, 6954 (2015).

    Article  CAS  Google Scholar 

  74. Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 16141 (2016).

    Article  Google Scholar 

  75. Kato, Y. et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016).

    Article  CAS  Google Scholar 

  76. Dugas, R., Zhang, B., Rozier, P. & Tarascon, J.-M. Optimization of Na-ion battery systems based on polyanionic or layered positive electrodes and carbon anodes. J. Electrochem. Soc. 163, A867–A874 (2016).

    Article  CAS  Google Scholar 

  77. Holtstiege, F., Bärmann, P., Nölle, R., Winter, M. & Placke, T. Pre-lithiation strategies for rechargeable energy storage technologies: concepts, promises and challenges. Batteries 4, 4 (2018).

    Article  CAS  Google Scholar 

  78. West, K., Jacobsen, T. & Atlung, S. Modeling of porous insertion electrodes with liquid electrolyte. J. Electrochem. Soc. 129, 1480–1485 (1982).

    Article  CAS  Google Scholar 

  79. Delmas, C., Fouassier, C. & Hagenmuller, P. Structural classification and properties of the layered oxides. Phys. B C 99, 81–85 (1980).

    Article  CAS  Google Scholar 

  80. Zhao, C. L. et al. Rational design of layered oxide materials for sodium-ion batteries. Science 370, 708–711 (2020).

    Article  CAS  Google Scholar 

  81. Wang, Y. et al. Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries. Nat. Commun. 6, 6401 (2015).

    Article  CAS  Google Scholar 

  82. Tripathi, A., Rudola, A., Gajjela, S. R., Xi, S. & Balaya, P. Developing an O3 type layered oxide cathode and its application in 18650 commercial type Na-ion batteries. J. Mater. Chem. A 7, 25944–25960 (2019).

    Article  CAS  Google Scholar 

  83. Zhao, C., Ding, F., Lu, Y., Chen, L. & Hu, Y. S. High-entropy layered oxide cathodes for sodium-ion batteries. Angew. Chem. Int. Ed. 59, 264–269 (2020).

    Article  CAS  Google Scholar 

  84. Rong, X. et al. Structure-induced reversible anionic redox activity in Na layered oxide cathode. Joule 2, 125–140 (2018).

    Article  CAS  Google Scholar 

  85. Rong, X. et al. Anionic redox reaction-induced high-capacity and low-strain cathode with suppressed phase transition. Joule 3, 503–517 (2019).

    Article  CAS  Google Scholar 

  86. Zhao, C. et al. Ti substitution facilitating oxygen oxidation in Na2/3Mg1/3Ti1/6Mn1/2O2 cathode. Chem 5, 2913–2925 (2019).

    Article  CAS  Google Scholar 

  87. Chen, F. et al. A NASICON-type positive electrode for Na batteries with high energy density: Na4MnV(PO4)3. Small Methods 3, 1800218 (2018).

    Article  CAS  Google Scholar 

  88. Whittingham, M. S., Song, Y. N., Lutta, S., Zavalij, P. Y. & Chernova, N. A. Some transition metal (oxy)phosphates and vanadium oxides for lithium batteries. J. Mater. Chem. 15, 3362–3379 (2005).

    Article  CAS  Google Scholar 

  89. Law, M., Ramar, V. & Balaya, P. Na2MnSiO4 as an attractive high capacity cathode material for sodium-ion battery. J. Power Sources 359, 277–284 (2017).

    Article  CAS  Google Scholar 

  90. Gaberscek, M., Dominko, R. & Jamnik, J. Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes. Electrochem. Commun. 9, 2778 (2007).

    Article  CAS  Google Scholar 

  91. Saravanan, K., Mason, C. W., Rudola, A., Wong, K. H. & Balaya, P. The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries. Adv. Energy Mater. 3, 444–450 (2013).

    Article  CAS  Google Scholar 

  92. Jian, Z. et al. Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochem. Commun. 14, 86–89 (2012).

    Article  CAS  Google Scholar 

  93. Lalere, F. et al. Improving the energy density of Na3V2(PO4)3-based positive electrodes through V/Al substitution. J. Mater. Chem. A 3, 16198–16205 (2015).

    Article  CAS  Google Scholar 

  94. Zhou, W. et al. NaxMV(PO4)3 (M = Mn, Fe, Ni) structure and properties for sodium extraction. Nano Lett. 16, 7836–7841 (2016).

    Article  CAS  Google Scholar 

  95. Ponrouch, A. et al. Towards high energy density sodium ion batteries through electrolyte optimization. Energy Environ. Sci. 6, 2361–2369 (2013).

    Article  CAS  Google Scholar 

  96. Zhu, C. et al. A high power–high energy Na3V2(PO4)2F3 sodium cathode: investigation of transport parameters, rational design and realization. Chem. Mater. 29, 5207–5215 (2017).

    Article  CAS  Google Scholar 

  97. Law, M., Ramar, V. & Balaya, P. Synthesis, characterisation and enhanced electrochemical performance of nanostructured Na2FePO4F for sodium batteries. RSC Adv. 5, 50155–50164 (2015).

    Article  CAS  Google Scholar 

  98. Law, M. & Balaya, P. NaVPO4F with high cycling stability as a promising cathode for sodium-ion battery. Energy Storage Mater. 10, 102–113 (2018).

    Article  Google Scholar 

  99. Zhu, C., Song, K., van Aken, P. A., Maier, J. & Yu, Y. Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast Na-storage cathode with the potential of outperforming Li cathodes. Nano Lett. 14, 2175–2180 (2014).

    Article  CAS  Google Scholar 

  100. Song, J. et al. Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. J. Am. Chem. Soc. 137, 2658–2664 (2015).

    Article  CAS  Google Scholar 

  101. Paolella, A. et al. A review on hexacyanoferrate-based materials for energy storage and smart windows: challenges and perspectives. J. Mater. Chem. A 5, 18919–18932 (2017).

    Article  CAS  Google Scholar 

  102. Rudola, A., Du, K. & Balaya, P. Monoclinic sodium iron hexacyanoferrate cathode and non-flammable glyme-based electrolyte for inexpensive sodium-ion batteries. J. Electrochem. Soc. 164, A1098–A1109 (2017).

    Article  CAS  Google Scholar 

  103. You, Y., Wu, X. L., Yin, Y. X. & Guo, Y. G. High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ. Sci. 7, 1643–1647 (2014).

    Article  CAS  Google Scholar 

  104. Wu, F. X. et al. Multi-electron reaction materials for sodium-based batteries. Mater. Today 21, 960–973 (2018).

    Article  CAS  Google Scholar 

  105. Adelhelm, P. et al. From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries. Beilstein J. Nanotechnol. 6, 1016–1055 (2015).

    Article  CAS  Google Scholar 

  106. Lee, M. et al. High-performance sodium–organic battery by realizing four-sodium storage in disodium rhodizonate. Nat. Energy 2, 861–868 (2017).

    Article  CAS  Google Scholar 

  107. Wakihara, M. & Yamamoto, O. Lithium Ion Batteries: Fundamentals and Performance (Wiley, 1998).

  108. Stevens, D. A. & Dahn, J. R. The mechanisms of lithium and sodium insertion in carbon materials. J. Electrochem. Soc. 148, A803–A811 (2001).

    Article  CAS  Google Scholar 

  109. DiVincenzo, D. P. & Mele, E. J. Cohesion and structure in stage-1 graphite intercalation compounds. Phys. Rev. B Condens. Matter Mater. Phys. 32, 2538–2553 (1985).

    Article  CAS  Google Scholar 

  110. Liu, Y., Merinov, B. V. & Goddard, W. A. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals. Proc. Natl Acad. Sci. USA 113, 3735–3739 (2016).

    Article  CAS  Google Scholar 

  111. Lenchuk, O., Adelhelm, P. & Mollenhauer, D. New insights into the origin of unstable sodium graphite intercalation compounds. Phys. Chem. Chem. Phys. 21, 19378–19390 (2019).

    Article  CAS  Google Scholar 

  112. Jache, B. & Adelhelm, P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew. Chem. Int. Ed. 53, 10169–10173 (2014).

    Article  CAS  Google Scholar 

  113. Dou, X. et al. Hard carbons for sodium-ion batteries: structure, analysis, sustainability, and electrochemistry. Mater. Today 23, 87–104 (2019).

    Article  CAS  Google Scholar 

  114. Zhang, B., Ghimbeu, C. M., Laberty, C., Vix-Guterl, C. & Tarascon, J.-M. Correlation between microstructure and Na storage behavior in hard carbon. Adv. Energy Mater. 6, 1501588 (2016).

    Article  CAS  Google Scholar 

  115. Stratford, J. M., Allan, P. K., Pecher, O., Chater, P. A. & Grey, C. P. Mechanistic insights into sodium storage in hard carbon anodes using local structure probes. Chem. Commun. 52, 12430–12433 (2016).

    Article  CAS  Google Scholar 

  116. Morikawa, Y., Nishimura, S., Hashimoto, R., Ohnuma, M. & Yamada, A. Mechanism of sodium storage in hard carbon: an X-ray scattering analysis. Adv. Energy Mater. 10, 1903176 (2020).

    Article  CAS  Google Scholar 

  117. Wang, K. et al. Sodium storage in hard carbon with curved graphene platelets as the basic structural units. J. Mater. Chem. A 7, 3327–3335 (2019).

    Article  CAS  Google Scholar 

  118. Ponrouch, A., Goñi, A. R. & Palacín, M. R. High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte. Electrochem. Commun. 27, 85–88 (2013).

    Article  CAS  Google Scholar 

  119. Zhang, H., Ming, H., Zhang, W., Cao, G. & Yang, Y. Coupled carbonization strategy toward advanced hard carbon for high-energy sodium-ion battery. ACS Appl. Mater. Interfaces 9, 23766–23774 (2017).

    Article  CAS  Google Scholar 

  120. Zheng, Y., Wang, Y., Lu, Y., Hu, Y.-S. & Li, J. A high-performance sodium-ion battery enhanced by macadamia shell derived hard carbon anode. Nano Energy 39, 489–498 (2017).

    Article  CAS  Google Scholar 

  121. Izanzar, I. et al. Hard carbons issued from date palm as efficient anode materials for sodium-ion batteries. Carbon 137, 165–173 (2018).

    Article  CAS  Google Scholar 

  122. Li, Y. et al. Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: towards practical applications. Energy Storage Mater. 5, 191–197 (2016).

    Article  Google Scholar 

  123. Li, Y., Hu, Y.-S., Li, H., Chen, L. & Huang, X. A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries. J. Mater. Chem. A 4, 96–104 (2016).

    Article  CAS  Google Scholar 

  124. Lu, Y. et al. Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance. Adv. Energy Mater. 8, 1800108 (2018).

    Article  CAS  Google Scholar 

  125. Qi, Y. et al. Retarding graphitization of soft carbon precursor: from fusion-state to solid-state carbonization. Energy Storage Mater. 26, 577–584 (2019).

    Article  Google Scholar 

  126. Qi, Y. et al. Slope-dominated carbon anode with high specific capacity and superior rate capability for high safety Na-ion batteries. Angew. Chem. Int. Ed. 58, 4361–4365 (2019).

    Article  CAS  Google Scholar 

  127. Li, Y. et al. Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance. Adv. Energy Mater. 9, 1902852 (2019).

    Article  CAS  Google Scholar 

  128. Meng, Q. et al. Tuning the closed pore structure of hard carbons with the highest Na storage capacity. ACS Energy Lett. 4, 2608–2612 (2019).

    Article  CAS  Google Scholar 

  129. Zhao, C. et al. High-temperature treatment induced carbon anode with ultrahigh Na storage capacity at low-voltage plateau. Sci. Bull. 63, 1125–1129 (2018).

    Article  CAS  Google Scholar 

  130. Kamiyama, A. et al. High-capacity hard carbon synthesized from macroporous phenolic resin for sodium-ion and potassium-ion battery. ACS Appl. Energy Mater. 3, 135–140 (2020).

    Article  CAS  Google Scholar 

  131. Rudola, A., Saravanan, K., Devaraj, S., Gong, H. & Balaya, P. Na2Ti6O13: a potential anode for grid-storage sodium-ion batteries. Chem. Commun. 49, 7451–7453 (2013).

    Article  CAS  Google Scholar 

  132. Wang, Y. et al. A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nat. Commun. 4, 2365 (2013).

    Article  Google Scholar 

  133. Xiong, H., Slater, M. D., Balasubramanian, M., Johnson, C. S. & Rajh, T. Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J. Phys. Chem. Lett. 2, 2560–2565 (2011).

    Article  CAS  Google Scholar 

  134. Sun, Y. et al. Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat. Commun. 4, 1870 (2013).

    Article  CAS  Google Scholar 

  135. Monroe, C. & Newman, J. Dendrite growth in lithium/polymer systems: a propagation model for liquid electrolytes under galvanostatic conditions. J. Electrochem. Soc. 150, A1377–A1384 (2003).

    Article  CAS  Google Scholar 

  136. Krauskopf, T., Richter, F. H., Zeier, W. G. & Janek, J. Physicochemical concepts of the lithium metal anode in solid-state batteries. Chem. Rev. 120, 7745–7794 (2020).

    Article  CAS  Google Scholar 

  137. Jolly, D. S. et al. Sodium/Na β″ alumina interface: Effect of pressure on voids. ACS Appl. Mater. Interfaces 12, 678–685 (2020).

    Article  CAS  Google Scholar 

  138. Newmann, G. & Tuijn, C. Self-Diffusion and Impurity Diffusion in Pure Metals (Elsevier, 2009).

  139. Eshetu, G. G. et al. Electrolytes and interphases in sodium-based rechargeable batteries: recent advances and perspectives. Adv. Energy Mater. 10, 2000093 (2020).

    Article  CAS  Google Scholar 

  140. Kuratani, K. et al. Transport phenomena of nonaqueous electrolyte solutions at high concentrations: a comparison between the Li- and Na-systems. J. Electrochem. Soc. 163, H417–H425 (2016).

    Article  CAS  Google Scholar 

  141. Logan, E. R. & Dahn, J. R. Electrolyte design for fast-charging Li-ion batteries. Trends Chem. 2, 354–366 (2020).

    Article  CAS  Google Scholar 

  142. Li, Y. Q. et al. Ultralow-concentration electrolyte for Na-ion batteries. ACS Energy Lett. 5, 1156–1158 (2020).

    Article  CAS  Google Scholar 

  143. Li, K. et al. Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes. Nat. Commun. 10, 725 (2019).

    Article  CAS  Google Scholar 

  144. Liu, X., Qin, B., Zhang, H., Moretti, A. & Passerini, S. Glyme-based electrolyte for Na/bilayered-V2O5 batteries. ACS Appl. Energy Mater. 2, 2786–2793 (2019).

    Article  CAS  Google Scholar 

  145. Du, K. et al. A comprehensive study on the electrolyte, anode and cathode for developing commercial type non-flammable sodium-ion battery. Energy Storage Mater. 29, 287–299 (2020).

    Article  Google Scholar 

  146. Rakov, D. A. et al. Engineering high-energy-density sodium battery anodes for improved cycling with superconcentrated ionic-liquid electrolytes. Nat. Mater. 19, 1096–1101 (2020).

    Article  CAS  Google Scholar 

  147. Kreuer, K.-D., Kohler, H. & Maier, J. in High Conductivity Ionic Conductors: Recent Trends and Applications (ed. Takahashi, T.) 242–279 (World Scientific, 1989).

  148. Duchardt, M. et al. Superion conductor Na11.1Sn2.1P0.9Se12: lowering the activation barrier of Na plus conduction in quaternary 1-4-5-6 electrolytes. Chem. Mater. 30, 4134–4139 (2018).

    Article  CAS  Google Scholar 

  149. Krauskopf, T. et al. Comparing the descriptors for investigating the influence of lattice dynamics on ionic transport using the superionic conductor Na3PS4−xSex. J. Am. Chem. Soc. 140, 14464–14473 (2018).

    Article  CAS  Google Scholar 

  150. Zhang, Z. et al. Na11Sn2PS12: a new solid state sodium superionic conductor. Energy Environ. Sci. 11, 87–93 (2018).

    Article  CAS  Google Scholar 

  151. Zhang, Z. et al. New horizons for inorganic solid state ion conductors. Energy Environ. Sci. 11, 1945–1976 (2018).

    Article  CAS  Google Scholar 

  152. Yang, J. et al. Ultrastable all-solid-state sodium rechargeable batteries. ACS Energy Lett. 5, 2835–2841 (2020).

    Article  CAS  Google Scholar 

  153. Warhus, U., Maier, J. & Rabenau, A. Thermodynamics of NASICON (Na1+xZr2SixP3−xO12). J. Solid State Chem. 72, 113–125 (1988).

    Article  CAS  Google Scholar 

  154. Kreuer, K. D. & Warhus, U. NASICON solid electrolytes: part IV Chemical durability. Mater. Res. Bull. 21, 357–363 (1986).

    Article  CAS  Google Scholar 

  155. Bates, J. B. et al. Composition, ion-ion correlations and conductivity of beta″-alumina. Solid State Ion. 5, 159–162 (1981).

    Article  CAS  Google Scholar 

  156. Haffner, A., Hatz, A. K., Moudrakovski, I., Lotsch, B. V. & Johrendt, D. Fast sodium-ion conductivity in supertetrahedral phosphidosilicates. Angew. Chem. Int. Ed. 57, 6155–6160 (2018).

    Article  CAS  Google Scholar 

  157. Vajenine, G. V. Plasma-assisted synthesis and properties of Na3N. Inorg. Chem. 46, 5146–5148 (2007).

    Article  CAS  Google Scholar 

  158. Nuwayhid, R. B., Jarry, A., Rubloff, G. W. & Gregorczyk, K. E. Atomic layer deposition of sodium phosphorus oxynitride: a conformal solid-state sodium-ion conductor. ACS Appl. Mater. Interfaces 12, 21641–21650 (2020).

    Article  CAS  Google Scholar 

  159. Qiao, L. X., Judez, X., Rojo, T., Armand, M. & Zhang, H. Polymer electrolytes for sodium batteries. J. Electrochem. Soc. 167, 070534 (2020).

    Article  CAS  Google Scholar 

  160. Yang, J. et al. Safety-enhanced polymer electrolytes for sodium batteries: recent progress and perspectives. ACS Appl. Mater. Interfaces 11, 17109–17127 (2019).

    Article  CAS  Google Scholar 

  161. Nojabaee, M., Popovic, J. & Maier, J. Glyme-based liquid–solid electrolytes for lithium metal batteries. J. Mater. Chem. A 7, 13331–13338 (2019).

    Article  CAS  Google Scholar 

  162. Pfaffenhuber, C., Gobel, M., Popovic, J. & Maier, J. Soggy-sand electrolytes: status and perspectives. Phys. Chem. Chem. Phys. 15, 18318–18335 (2013).

    Article  CAS  Google Scholar 

  163. Bhattacharyya, A. J. & Maier, J. Second phase effects on the conductivity of non-aqueous salt solutions: “soggy sand electrolytes”. Adv. Mater. 16, 811–814 (2004).

    Article  CAS  Google Scholar 

  164. Peled, E. & Menkin, S. Review-SEI: past, present and future. J. Electrochem. Soc. 164, A1703–A1719 (2017).

    Article  CAS  Google Scholar 

  165. Janek, J. Oscillatory kinetics at solid/solid phase boundaries in ionic crystals. Solid State Ion. 131, 129–142 (2000).

    Article  CAS  Google Scholar 

  166. Iermakova, D. I., Dugas, R., Palacin, M. R. & Ponrouch, A. On the comparative stability of Li and Na metal anode interfaces in conventional alkyl carbonate electrolytes. J. Electrochem. Soc. 162, A7060–A7066 (2015).

    Article  CAS  Google Scholar 

  167. Qian, J. et al. Prussian blue cathode materials for sodium-ion batteries and other ion batteries. Adv. Energy Mater. 8, 1702619 (2018).

    Article  CAS  Google Scholar 

  168. Qi, Y. et al. Scalable room-temperature synthesis of multi-shelled Na3(VOPO4)2F microsphere cathodes. Joule 2, 2348–2363 (2018).

    Article  CAS  Google Scholar 

  169. Kim, D. K. et al. Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett. 8, 3948–3952 (2008).

    Article  CAS  Google Scholar 

  170. Shin, H. C., Cho, W. I. & Jang, H. Electrochemical properties of the carbon-coated LiFePO4 as a cathode material for lithium-ion secondary batteries. J. Power Sources 159, 1383–1388 (2006).

    Article  CAS  Google Scholar 

  171. Noh, H.-J., Youn, S., Yoon, C. S. & Sun, Y.-K. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J. Power Sources 233, 121–130 (2013).

    Article  CAS  Google Scholar 

  172. Li, Y. et al. Achieving superior electrochemical performances on LiNi0.8Co0.15Al0.05O2 cathode materials by cadmium oxide modification. Mater. Chem. Phys. 240, 122029 (2020).

    Article  CAS  Google Scholar 

  173. Choi, J. W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016).

    Article  CAS  Google Scholar 

  174. Bauer, A. et al. The scale-up and commercialization of nonaqueous Na-ion battery technologies. Adv. Energy Mater. 8, 1702869 (2018).

    Article  CAS  Google Scholar 

  175. Yan, G., Dugas, R. & Tarascon, J.-M. The Na3V2(PO4)2F3/carbon Na-ion battery: its performance understanding as deduced from differential voltage analysis. J. Electrochem. Soc. 165, A220–A227 (2018).

    Article  CAS  Google Scholar 

  176. Broux, T. et al. High rate performance for carbon-coated Na3V2(PO4)2F3 in Na-ion batteries. Small Methods 3, 1800215 (2019).

    Article  CAS  Google Scholar 

  177. Tarascon, J.-M. Na-ion versus Li-ion batteries: complementarity rather than competitiveness. Joule 4, 1616–1620 (2020).

    Article  Google Scholar 

  178. Mu, L. et al. Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode. Adv. Mater. 27, 6928–6933 (2015).

    Article  CAS  Google Scholar 

  179. Lu, Y., Rong, X., Hu, Y.-S., Chen, L. & Li, H. Research and development of advanced battery materials in China. Energy Storage Mater. 23, 144–153 (2019).

    Article  Google Scholar 

  180. Fukunaga, A. et al. Performance validation of sodium-ion batteries using an ionic liquid electrolyte. J. Appl. Electrochem. 46, 487–496 (2016).

    Article  CAS  Google Scholar 

  181. Wang, H. et al. Large-scale synthesis of NaNi1/3Fe1/3Mn1/3O2 as high performance cathode materials for sodium ion batteries. J. Electrochem. Soc. 163, A565–A570 (2016).

    Article  CAS  Google Scholar 

  182. Wang, W. et al. Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries. Nat. Commun. 11, 980 (2020).

    Article  CAS  Google Scholar 

  183. Kundu, D., Adams, B. D., Duffort, V., Vajargah, S. H. & Nazar, L. F. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119 (2016).

    Article  CAS  Google Scholar 

  184. Lin, M. C. et al. An ultrafast rechargeable aluminium-ion battery. Nature 520, 325–328 (2015).

    Article  CAS  Google Scholar 

  185. Chen, H. et al. Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life. Sci. Adv 3, eaao7233 (2017).

    Article  CAS  Google Scholar 

  186. Shannon, R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976).

    Article  Google Scholar 

  187. Kittel, C. Introduction to Solid State Physics 8th edn (Wiley, 2005).

  188. Ding, F. et al. A novel Ni-rich O3-Na[Ni0.60Fe0.25Mn0.15]O2 cathode for Na-ion batteries. Energy Storage Mater. 30, 420–430 (2020).

    Article  Google Scholar 

  189. Wang, L. et al. Rhombohedral Prussian white as cathode for rechargeable sodium-ion batteries. J. Am. Chem. Soc. 137, 2548–2554 (2015).

    Article  CAS  Google Scholar 

  190. Ali, G. et al. An open-framework iron fluoride and reduced graphene oxide nanocomposite as a high-capacity cathode material for Na-ion batteries. J. Mater. Chem. A 3, 10258–10266 (2015).

    Article  CAS  Google Scholar 

  191. Rudola, A., Saravanan, K., Mason, C. W. & Balaya, P. Na2Ti3O7: an intercalation based anode for sodium-ion battery applications. J. Mater. Chem. A 1, 2653–2662 (2013).

    Article  CAS  Google Scholar 

  192. Xu, J., Ma, C., Balasubramanian, M. & Meng, Y. S. Understanding Na2Ti3O7 as an ultra-low voltage anode material for a Na-ion battery. Chem. Commun. 50, 12564–12567 (2014).

    Article  CAS  Google Scholar 

  193. Liu, S., Feng, J., Bian, X., Liu, J. & Xu, H. The morphology-controlled synthesis of a nanoporous-antimony anode for high-performance sodium-ion batteries. Energy Environ. Sci. 9, 1229–1236 (2016).

    Article  CAS  Google Scholar 

  194. Bhide, A., Hofmann, J., Katharina Dürr, A., Janek, J. & Adelhelm, P. Electrochemical stability of non-aqueous electrolytes for sodium-ion batteries and their compatibility with Na0.7CoO2. Phys. Chem. Chem. Phys. 16, 1987–1998 (2014).

    Article  CAS  Google Scholar 

  195. Westman, K. et al. Diglyme based electrolytes for sodium-ion batteries. ACS Appl. Energy Mater. 1, 2671–2680 (2018).

    Article  CAS  Google Scholar 

  196. Hooper, A. A study of the electrical properties of single-crystal and polycrystalline β-alumina using complex plane analysis. J. Phys. D Appl. Phys. 10, 1487–1496 (1977).

    Article  CAS  Google Scholar 

  197. Lacivita, V., Wang, Y., Bo, S.-H. & Ceder, G. Ab initio investigation of the stability of electrolyte/electrode interfaces in all-solid-state Na batteries. J. Mater. Chem. A 7, 8144–8155 (2019).

    Article  CAS  Google Scholar 

  198. Ma, Q. et al. Scandium-substituted Na3Zr2(SiO4)2(PO4) prepared by a solution-assisted solid-state reaction method as sodium-ion conductors. Chem. Mater. 28, 4821–4828 (2016).

    Article  CAS  Google Scholar 

  199. Ma, Q. et al. A new Na[(FSO2)(n-C4F9SO2)N]-based polymer electrolyte for solid-state sodium batteries. J. Mater. Chem. A 5, 7738–7743 (2017).

    Article  CAS  Google Scholar 

  200. Colò, F., Bella, F., Nair, J. R. & Gerbaldi, C. Light-cured polymer electrolytes for safe, low-cost and sustainable sodium-ion batteries. J. Power Sources 365, 293–302 (2017).

    Article  CAS  Google Scholar 

  201. Kim, J.-K., Lim, Y. J., Kim, H., Cho, G.-B. & Kim, Y. A hybrid solid electrolyte for flexible solid-state sodium batteries. Energy Environ. Sci. 8, 3589–3596 (2015).

    Article  CAS  Google Scholar 

  202. Bradley, D. C., Stillings, L. L., Jaskula, B. W., Munk, L. & McCauley, A. D. in Critical Mineral Resources of the United StatesEconomic and Environmental Geology and Prospects for Future Supply Ch. K (eds Schulz, K. J., DeYoung, J. H. Jr, Seal, R. R. II & Bradley, D. C.) (US Geological Survey, 2017).

  203. Barin, I. Thermochemical Data of Pure Substances 3rd edn (Wiley, 1995).

  204. Linqin, M. et al. Electrochemical properties of novel O3-NaCu19Ni29Fe13Mn13O2 as cathode material for sodium-ion batteries. Energy Storage Sci. Technol. 5, 324–328 (2016).

    Google Scholar 

  205. Jian, Z. et al. Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv. Energy Mater. 3, 156–160 (2013).

    Article  CAS  Google Scholar 

  206. Kang, J. et al. High rate performance of a Na3V2(PO4)3/C cathode prepared by pyro-synthesis for sodium-ion batteries. J. Mater. Chem. 22, 20857–20860 (2012).

    Article  CAS  Google Scholar 

  207. Chen, C. C. & Maier, J. Space charge storage in composites: thermodynamics. Phys. Chem. Chem. Phys. 19, 6379–6396 (2017).

    Article  CAS  Google Scholar 

  208. Berthelot, R., Carlier, D. & Delmas, C. Electrochemical investigation of the P2–NaxCoO2 phase diagram. Nat. Mater. 10, 74–80 (2011).

    Article  CAS  Google Scholar 

  209. Bianchini, M. et al. The interplay between thermodynamics and kinetics in the solid-state synthesis of layered oxides. Nat. Mater. 19, 1088–1095 (2020).

    Article  CAS  Google Scholar 

  210. Kaufman, J. L. & Van der Ven, A. NaxCoO2 phase stability and hierarchical orderings in the O3/P3 structure family. Phys. Rev. Mater. 3, 015402 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank D. Fabini for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data, discussing content and writing the manuscript. The sections on fundamental properties were developed mostly in Stuttgart (J.M., R.U., J.P.), the materials section mostly in Singapore (P.B., M.L.) and the section on full cells mostly in Beijing (Y.-S.H., Y.L.). R.U. and J.M. coordinated and edited the manuscript prior to submission.

Corresponding authors

Correspondence to Robert Usiskin or Joachim Maier.

Ethics declarations

Competing interests

Y.-S. Hu leads research and development and is Chairman at the Na battery company HiNa Battery Technology. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Materials thanks G. B. Appetecchi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Environmental Justice Atlas (Li mining by the Lichu River): https://ejatlas.org/conflict/a-sudden-mass-death-of-fish-in-the-lichu-river-in-minyak-lhagang-dartsedo-county-in-karze-prefecture

FZSoNick: https://www.fzsonick.com/about-us/company-profile

HiNa Battery Technology: http://www.hinabattery.com/en/index.php?catid=15

NGK insulators: https://www.ngk-insulators.com/en/news/20210204_10937.html

USGS Mineral Commodity Summaries: https://www.usgs.gov/centers/nmic/mineral-commodity-summaries

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usiskin, R., Lu, Y., Popovic, J. et al. Fundamentals, status and promise of sodium-based batteries. Nat Rev Mater 6, 1020–1035 (2021). https://doi.org/10.1038/s41578-021-00324-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-021-00324-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing