Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inhibitors of bacterial immune systems: discovery, mechanisms and applications

Abstract

To contend with the diversity and ubiquity of bacteriophages and other mobile genetic elements, bacteria have developed an arsenal of immune defence mechanisms. Bacterial defences include CRISPR–Cas, restriction–modification and a growing list of mechanistically diverse systems, which constitute the bacterial ‘immune system’. As a response, bacteriophages and mobile genetic elements have evolved direct and indirect mechanisms to circumvent or block bacterial defence pathways and ensure successful infection. Recent advances in methodological and computational approaches, as well as the increasing availability of genome sequences, have boosted the discovery of direct inhibitors of bacterial defence systems. In this Review, we discuss methods for the discovery of direct inhibitors, their diverse mechanisms of action and perspectives on their emerging applications in biotechnology and beyond.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bacterial defences against phage invasion and their suppression by phage-encoded inhibitors.
Fig. 2: Approaches used for the discovery of direct inhibitors of bacterial immune systems.
Fig. 3: General mechanisms of defence inhibition by direct inhibitors.
Fig. 4: Biotechnological applications of direct inhibitors.

Similar content being viewed by others

References

  1. Salmond, G. P. C. & Fineran, P. C. A century of the phage: past, present and future. Nat. Rev. Microbiol. 13, 777–786 (2015).

    CAS  PubMed  Google Scholar 

  2. Suttle, C. A. Marine viruses–major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).

    CAS  PubMed  Google Scholar 

  3. Brüssow, H., Canchaya, C. & Hardt, W.-D. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 68, 560–602 (2004).

    PubMed  PubMed Central  Google Scholar 

  4. Mayo-Muñoz, D., Pinilla-Redondo, R., Birkholz, N. & Fineran, P. C. A host of armor: prokaryotic immune strategies against mobile genetic elements. Cell Rep. 42, 112672 (2023). This review provides a comprehensive overview of bacterial immune defences discovered to date.

    PubMed  Google Scholar 

  5. Georjon, H. & Bernheim, A. The highly diverse antiphage defence systems of bacteria. Nat. Rev. Microbiol. 21, 686–700 (2023).

    CAS  PubMed  Google Scholar 

  6. Samson, J. E., Magadán, A. H., Sabri, M. & Moineau, S. Revenge of the phages: defeating bacterial defences. Nat. Rev. Microbiol. 11, 675–687 (2013).

    CAS  PubMed  Google Scholar 

  7. Hampton, H. G., Watson, B. N. J. & Fineran, P. C. The arms race between bacteria and their phage foes. Nature 577, 327–336 (2020).

    CAS  ADS  PubMed  Google Scholar 

  8. Malone, L. M., Birkholz, N. & Fineran, P. C. Conquering CRISPR: how phages overcome bacterial adaptive immunity. Curr. Opin. Biotechnol. 68, 30–36 (2021).

    CAS  PubMed  Google Scholar 

  9. Ibarra-Chávez, R., Hansen, M. F., Pinilla-Redondo, R., Seed, K. D. & Trivedi, U. Phage satellites and their emerging applications in biotechnology. FEMS Microbiol. Rev. 45, fuab031 (2021).

    PubMed  PubMed Central  Google Scholar 

  10. Barrangou, R., Sontheimer, E. J. & Marraffini, L. A. Crispr: Biology and Applications. (John Wiley & Sons, 2022).

  11. Marino, N. D., Pinilla-Redondo, R., Csörgő, B. & Bondy-Denomy, J. Anti-CRISPR protein applications: natural brakes for CRISPR-Cas technologies. Nat. Methods 17, 471–479 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Studier, F. W. Gene 0.3 of bacteriophage T7 acts to overcome the DNA restriction system of the host. J. Mol. Biol. 94, 283–295 (1975). In this study, the first inhibitor of restriction–modification systems, Ocr, is identified through the isolation of sensitive T7 phage mutants.

    CAS  PubMed  Google Scholar 

  13. Tock, M. R. & Dryden, D. T. F. The biology of restriction and anti-restriction. Curr. Opin. Microbiol. 8, 466–472 (2005).

    CAS  PubMed  Google Scholar 

  14. Bondy-Denomy, J., Pawluk, A., Maxwell, K. L. & Davidson, A. R. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493, 429–432 (2013). In this study, the first five Acrs are discovered in the genomes of bacteriophages infecting Pseudomonas aeruginosa.

    CAS  ADS  PubMed  Google Scholar 

  15. Hobbs, S. J. et al. Phage anti-CBASS and anti-Pycsar nucleases subvert bacterial immunity. Nature 605, 522–526 (2022). This study describes the anti-CBASS and anti-Pycsar enzymes Acb1 and Apyc1, representing the first known inhibitors of signalling-based defences.

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  16. Leavitt, A. et al. Viruses inhibit TIR gcADPR signalling to overcome bacterial defence. Nature 611, 326–331 (2022). This study finds that the Thoeris inhibitor Tad1 sequesters the immune signalling molecule produced by TIR-domain proteins.

    CAS  ADS  PubMed  Google Scholar 

  17. Yirmiya, E. et al. Phages overcome bacterial immunity via diverse anti-defence proteins. Nature https://doi.org/10.1038/s41586-023-06869-w (2023). In this study, inhibitors of Hachimann, Gabija and Thoeris defence are discovered through comparative genomics.

  18. Athukoralage, J. S. & White, M. F. Cyclic nucleotide signaling in phage defense and counter-defense. Annu. Rev. Virol. 9, 451–468 (2022).

    CAS  PubMed  Google Scholar 

  19. Sontheimer, E. J. & Davidson, A. R. Inhibition of CRISPR-Cas systems by mobile genetic elements. Curr. Opin. Microbiol. 37, 120–127 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Pinilla-Redondo, R. et al. Discovery of multiple anti-CRISPRs highlights anti-defense gene clustering in mobile genetic elements. Nat. Commun. 11, 5652 (2020). This study reports that anti-defence genes cluster together in MGEs.

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  21. Samuel, B. & Burstein, D. A diverse repertoire of anti-defense systems is encoded in the leading region of plasmids. Preprint at bioRxiv https://doi.org/10.1101/2023.02.15.528439 (2023).

  22. Pawluk, A., Bondy-Denomy, J., Cheung, V. H. W., Maxwell, K. L. & Davidson, A. R. A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa. mBio 5, e00896 (2014).

    PubMed  PubMed Central  Google Scholar 

  23. Pawluk, A. et al. Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species. Nat. Microbiol. 1, 16085 (2016).

    CAS  PubMed  Google Scholar 

  24. Birkholz, N., Fagerlund, R. D., Smith, L. M., Jackson, S. A. & Fineran, P. C. The autoregulator Aca2 mediates anti-CRISPR repression. Nucleic Acids Res. 47, 9658–9665 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Stanley, S. Y. et al. Anti-CRISPR-associated proteins are crucial repressors of anti-CRISPR transcription. Cell 178, 1452–1464.e13 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Marino, N. D. et al. Discovery of widespread type I and type V CRISPR-Cas inhibitors. Science 362, 240–242 (2018).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  27. Mahendra, C. et al. Broad-spectrum anti-CRISPR proteins facilitate horizontal gene transfer. Nat. Microbiol. 5, 620–629 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Roy, D., Huguet, K. T., Grenier, F. & Burrus, V. IncC conjugative plasmids and SXT/R391 elements repair double-strand breaks caused by CRISPR–Cas during conjugation. Nucleic Acids Res. 48, 8815–8827 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. LeRoux, M. et al. The DarTG toxin-antitoxin system provides phage defence by ADP-ribosylating viral DNA. Nat. Microbiol. 7, 1028–1040 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ho, P. et al. Bacteriophage antidefense genes that neutralize TIR and STING immune responses. Cell Rep. 42, 112305 (2023).

    CAS  PubMed  Google Scholar 

  31. He, F. et al. Anti-CRISPR proteins encoded by archaeal lytic viruses inhibit subtype I-D immunity. Nat. Microbiol. 3, 461–469 (2018).

    CAS  PubMed  Google Scholar 

  32. Val-Calvo, J. et al. Establishment genes present on pLS20 family of conjugative plasmids are regulated in two different ways. Microorganisms 9, 2465 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Peng, X., Mayo-Muñoz, D., Bhoobalan-Chitty, Y. & Martínez-Álvarez, L. Anti-CRISPR proteins in archaea. Trends Microbiol. 28, 913–921 (2020).

    CAS  PubMed  Google Scholar 

  34. Silas, S. et al. Activation of programmed cell death and counter-defense functions of phage accessory genes. Preprint at bioRxiv https://doi.org/10.1101/2023.04.06.535777 (2023).

  35. Gao, L. A. et al. Prokaryotic innate immunity through pattern recognition of conserved viral proteins. Science 377, eabm4096 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Stokar-Avihail, A. et al. Discovery of phage determinants that confer sensitivity to bacterial immune systems. Cell 186, 1863–1876.e16 (2023). This study systematically identifies triggers of defence systems and reveals common mechanisms of phage sensing by defence systems.

    CAS  PubMed  Google Scholar 

  37. Blower, T. R., Evans, T. J., Przybilski, R., Fineran, P. C. & Salmond, G. P. C. Viral evasion of a bacterial suicide system by RNA-based molecular mimicry enables infectious altruism. PLoS Genet. 8, e1003023 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Srikant, S., Guegler, C. K. & Laub, M. T. The evolution of a counter-defense mechanism in a virus constrains its host range. eLife 11, e79549 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Huiting, E. et al. Bacteriophages inhibit and evade cGAS-like immune function in bacteria. Cell 186, 864–876.e21 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Garb, J. et al. Multiple phage resistance systems inhibit infection via SIR2-dependent NAD depletion. Nat. Microbiol. 7, 1849–1856 (2022). This study uses a phage mating approach to identify inhibitors of defence-associated sirtuins.

    CAS  PubMed  Google Scholar 

  41. Uribe, R. V. et al. Discovery and characterization of Cas9 inhibitors disseminated across seven bacterial phyla. Cell Host Microbe 25, 233–241.e5 (2019). This study develops a high-throughput approach to screen for type II-A CRISPR–Cas inhibitors in metagenomic libraries.

    CAS  PubMed  Google Scholar 

  42. Forsberg, K. J. et al. Functional metagenomics-guided discovery of potent Cas9 inhibitors in the human microbiome. eLife 8, e46540 (2019).

    PubMed  PubMed Central  Google Scholar 

  43. Bobonis, J. et al. Bacterial retrons encode phage-defending tripartite toxin–antitoxin systems. Nature 609, 144–150 (2022).

    CAS  ADS  PubMed  Google Scholar 

  44. Bondy-Denomy, J. et al. A unified resource for tracking anti-CRISPR names. CRISPR J. 1, 304–305 (2018).

    PubMed  PubMed Central  Google Scholar 

  45. Eitzinger, S. et al. Machine learning predicts new anti-CRISPR proteins. Nucleic Acids Res. 48, 4698–4708 (2020). This study develops a machine learning-based method to aid the direct identification of new potential anti-CRISPRs.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Gussow, A. B. et al. Machine-learning approach expands the repertoire of anti-CRISPR protein families. Nat. Commun. 11, 3784 (2020).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  47. Wandera, K. G. et al. Anti-CRISPR prediction using deep learning reveals an inhibitor of Cas13b nucleases. Mol. Cell 82, 2714–2726.e4 (2022).

    CAS  PubMed  Google Scholar 

  48. Davidson, A. R. et al. Anti-CRISPRs: protein inhibitors of CRISPR-Cas systems. Annu. Rev. Biochem. 89, 309–332 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wiegand, T., Karambelkar, S., Bondy-Denomy, J. & Wiedenheft, B. Structures and strategies of anti-CRISPR-mediated immune suppression. Annu. Rev. Microbiol. 74, 21–37 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Suresh, S. K., Murugan, K. & Sashital, D. G. Enzymatic anti-CRISPRs improve the bacteriophage arsenal. Nat. Struct. Mol. Biol. 26, 250–251 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Knott, G. J. et al. Broad-spectrum enzymatic inhibition of CRISPR-Cas12a. Nat. Struct. Mol. Biol. 26, 315–321 (2019). This study discovers the first multiple-turnover enzymatic CRISPR–Cas inhibitor.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Azam, A. H. et al. Viruses encode tRNA and anti-retron to evade bacterial immunity. Preprint at bioRxiv https://doi.org/10.1101/2023.03.15.532788 (2023).

  53. Burroughs, A. M., Zhang, D., Schäffer, D. E., Iyer, L. M. & Aravind, L. Comparative genomic analyses reveal a vast, novel network of nucleotide-centric systems in biological conflicts, immunity and signaling. Nucleic Acids Res. 43, 10633–10654 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Athukoralage, J. S. et al. An anti-CRISPR viral ring nuclease subverts type III CRISPR immunity. Nature 577, 572–575 (2020).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  55. Birkholz, N. & Fineran, P. C. Turning down the (C)BASS: phage-encoded inhibitors jam bacterial immune signaling. Mol. Cell 82, 2185–2187 (2022).

    CAS  PubMed  Google Scholar 

  56. Dong, L. et al. An anti-CRISPR protein disables type V Cas12a by acetylation. Nat. Struct. Mol. Biol. 26, 308–314 (2019).

    CAS  PubMed  Google Scholar 

  57. Jurenas, D., Fraikin, N., Goormaghtigh, F. & Van Melderen, L. Biology and evolution of bacterial toxin–antitoxin systems. Nat. Rev. Microbiol. 20, 335–350 (2022).

    CAS  PubMed  Google Scholar 

  58. Bondy-Denomy, J. et al. Multiple mechanisms for CRISPR–Cas inhibition by anti-CRISPR proteins. Nature 526, 136–139 (2015).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  59. Chowdhury, S. et al. Structure reveals mechanisms of viral suppressors that intercept a CRISPR RNA-guided surveillance complex. Cell 169, 47–57.e11 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Bhoobalan-Chitty, Y., Johansen, T. B., Di Cianni, N. & Peng, X. Inhibition of type III CRISPR-Cas immunity by an archaeal virus-encoded anti-CRISPR protein. Cell 179, 448–458.e11 (2019).

    CAS  PubMed  Google Scholar 

  61. Antine, S. P. et al. Structural basis of Gabija anti-phage defence and viral immune evasion. Nature https://doi.org/10.1038/s41586-023-06855-2 (2023).

  62. Harrington, L. B. et al. A broad-spectrum inhibitor of CRISPR-Cas9. Cell 170, 1224–1233.e15 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Pawluk, A. et al. Disabling a type I-E CRISPR-Cas nuclease with a bacteriophage-encoded anti-CRISPR protein. mBio 8, e01751-17 (2017).

    PubMed  PubMed Central  Google Scholar 

  64. Penner, M., Morad, I., Snyder, L. & Kaufmann, G. Phage T4-coded Stp: double-edged effector of coupled DNA and tRNA-restriction systems. J. Mol. Biol. 249, 857–868 (1995).

    CAS  PubMed  Google Scholar 

  65. Otsuka, Y. & Yonesaki, T. Dmd of bacteriophage T4 functions as an antitoxin against Escherichia coli LsoA and RnlA toxins. Mol. Microbiol. 83, 669–681 (2012).

    CAS  PubMed  Google Scholar 

  66. Ramage, H. R., Connolly, L. E. & Cox, J. S. Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution. PLoS Genet. 5, e1000767 (2009).

    PubMed  PubMed Central  Google Scholar 

  67. Yang, L. et al. Insights into the inhibition of type I-F CRISPR-Cas system by a multifunctional anti-CRISPR protein AcrIF24. Nat. Commun. 13, 1931 (2022).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  68. Fuchsbauer, O. et al. Cas9 allosteric inhibition by the anti-CRISPR protein AcrIIA6. Mol. Cell 76, 922–937.e7 (2019).

    CAS  PubMed  Google Scholar 

  69. Marino, N. D. et al. Translation-dependent downregulation of Cas12a mRNA by an anti-CRISPR protein. Preprint at bioRxiv https://doi.org/10.1101/2022.11.29.518452 (2022).

  70. Osuna, B. A. et al. Listeria phages induce cas9 degradation to protect lysogenic genomes. Cell Host Microbe 28, 31–40.e9 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Li, Y. & Bondy-Denomy, J. Anti-CRISPRs go viral: the infection biology of CRISPR-Cas inhibitors. Cell Host Microbe 29, 704–714 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Jenson, J. M., Li, T., Du, F., Ea, C.-K. & Chen, Z. J. Ubiquitin-like conjugation by bacterial cGAS enhances anti-phage defence. Nature 616, 326–331 (2023).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  73. Court, R., Cook, N., Saikrishnan, K. & Wigley, D. The crystal structure of λ-Gam protein suggests a model for RecBCD inhibition. J. Mol. Biol. 371, 25–33 (2007).

    CAS  PubMed  Google Scholar 

  74. Wilkinson, M. et al. Structural basis for the inhibition of RecBCD by Gam and its synergistic antibacterial effect with quinolones. eLife 5, e22963 (2016).

    PubMed  PubMed Central  Google Scholar 

  75. Levy, A. et al. CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature 520, 505–510 (2015).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  76. Kuzmenko, A. et al. DNA targeting and interference by a bacterial Argonaute nuclease. Nature 587, 632–637 (2020).

    CAS  ADS  PubMed  Google Scholar 

  77. Walkinshaw, M. D. et al. Structure of Ocr from bacteriophage T7, a protein that mimics B-form DNA. Mol. Cell 9, 187–194 (2002).

    CAS  PubMed  Google Scholar 

  78. Isaev, A. et al. Phage T7 DNA mimic protein Ocr is a potent inhibitor of BREX defence. Nucleic Acids Res. 48, 5397–5406 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hong, S. et al. CRISPR RNA and anti-CRISPR protein binding to the Xanthomonas albilineans Csy1-Csy2 heterodimer in the type I-F CRISPR-Cas system. J. Biol. Chem. 293, 2744–2754 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Dong, D. et al. Structural basis of CRISPR–SpyCas9 inhibition by an anti-CRISPR protein. Nature 546, 436–439 (2017).

    CAS  ADS  PubMed  Google Scholar 

  81. Shin, J. et al. Disabling Cas9 by an anti-CRISPR DNA mimic. Sci. Adv. 3, e1701620 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  82. Koonin, E. V. & Krupovic, M. The depths of virus exaptation. Curr. Opin. Virol. 31, 1–8 (2018).

    CAS  PubMed  Google Scholar 

  83. Faure, G. et al. CRISPR–Cas in mobile genetic elements: counter-defence and beyond. Nat. Rev. Microbiol. 17, 513–525 (2019).

    CAS  PubMed  Google Scholar 

  84. Wang, X. et al. Structural basis of Cas3 inhibition by the bacteriophage protein AcrF3. Nat. Struct. Mol. Biol. 23, 868–870 (2016).

    CAS  PubMed  Google Scholar 

  85. Pinilla-Redondo, R. et al. CRISPR-Cas systems are widespread accessory elements across bacterial and archaeal plasmids. Nucleic Acids Res. 50, 4315–4328 (2022).

    CAS  PubMed  Google Scholar 

  86. Altae-Tran, H. et al. Uncovering the functional diversity of rare CRISPR-Cas systems with deep terascale clustering. Science 382, eadi1910 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Camara-Wilpert, S. et al. Bacteriophages suppress CRISPR–Cas immunity using RNA-based anti-CRISPRs. Nature 623, 601–607 (2023). This study uncovers the first RNA anti-CRISPRs, which act as mimics of CRISPR repeats to interact with Cas proteins and block immunity.

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  88. Katz, M. A. et al. Diverse viral cas genes antagonize CRISPR immunity. Preprint at bioRxiv https://doi.org/10.1101/2023.06.24.545427 (2023).

  89. Mahler, M., Costa, A. R., van Beljouw, S. P. B., Fineran, P. C. & Brouns, S. J. J. Approaches for bacteriophage genome engineering. Trends Biotechnol. 41, 669–685 (2023).

    CAS  PubMed  Google Scholar 

  90. Mayo-Muñoz, D. et al. Anti-CRISPR-based and CRISPR-based genome editing of Sulfolobus islandicus rod-shaped virus 2. Viruses 10, 695 (2018). This study uses Acrs as a counter-selection strategy for viral engineering.

    PubMed  PubMed Central  Google Scholar 

  91. Guan, J. et al. Bacteriophage genome engineering with CRISPR–Cas13a. Nat. Microbiol. 7, 1956–1966 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Malone, L. M. et al. A jumbo phage that forms a nucleus-like structure evades CRISPR–Cas DNA targeting but is vulnerable to type III RNA-based immunity. Nat. Microbiol. 5, 48–55 (2020).

    CAS  PubMed  Google Scholar 

  93. Mendoza, S. D. et al. A bacteriophage nucleus-like compartment shields DNA from CRISPR nucleases. Nature 577, 244–248 (2020).

    CAS  ADS  PubMed  Google Scholar 

  94. Dedrick, R. M. et al. Phage therapy of Mycobacterium infections: compassionate-use of phages in twenty patients with drug-resistant mycobacterial disease. Clin. Infect. Dis. 76, 103–112 (2023).

    CAS  PubMed  Google Scholar 

  95. Harada, L. K. et al. Biotechnological applications of bacteriophages: state of the art. Microbiol. Res. 212–213, 38–58 (2018).

    PubMed  Google Scholar 

  96. Nora, L. C. et al. The art of vector engineering: towards the construction of next-generation genetic tools. Microb. Biotechnol. 12, 125–147 (2019).

    CAS  PubMed  Google Scholar 

  97. Bikard, D. & Barrangou, R. Using CRISPR-Cas systems as antimicrobials. Curr. Opin. Microbiol. 37, 155–160 (2017).

    CAS  PubMed  Google Scholar 

  98. Birkholz, N., Jackson, S. A., Fagerlund, R. D. & Fineran, P. C. A mobile restriction–modification system provides phage defence and resolves an epigenetic conflict with an antagonistic endonuclease. Nucleic Acids Res. 50, 3348–3361 (2022).

    Google Scholar 

  99. Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).

    CAS  PubMed  Google Scholar 

  100. Liang, M. et al. AcrIIA5 suppresses base editors and reduces their off-target effects. Cells 9, 1786 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Nakamura, M. et al. Anti-CRISPR-mediated control of gene editing and synthetic circuits in eukaryotic cells. Nat. Commun. 10, 194 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  102. Luo, M. L., Mullis, A. S., Leenay, R. T. & Beisel, C. L. Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression. Nucleic Acids Res. 43, 674–681 (2015).

    CAS  PubMed  Google Scholar 

  103. Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 184, 844 (2021).

    CAS  PubMed  Google Scholar 

  104. Johnston, R. K. et al. Use of anti-CRISPR protein AcrIIA4 as a capture ligand for CRISPR/Cas9 detection. Biosens. Bioelectron. 141, 111361 (2019).

    CAS  PubMed  Google Scholar 

  105. Wein, T. & Sorek, R. Bacterial origins of human cell-autonomous innate immune mechanisms. Nat. Rev. Immunol. 22, 629–638 (2022).

    CAS  PubMed  Google Scholar 

  106. Seet, B. T. et al. Poxviruses and immune evasion. Annu. Rev. Immunol. 21, 377–423 (2003).

    CAS  PubMed  Google Scholar 

  107. Patel, P. H. & Maxwell, K. L. Prophages provide a rich source of antiphage defense systems. Curr. Opin. Microbiol. 73, 102321 (2023).

    CAS  PubMed  Google Scholar 

  108. Sahakyan, H., Makarova, K. S. & Koonin, E. V. Search for origins of anti-CRISPR proteins by structure comparison. CRISPR J. 6, 222–231 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Rousset, F. & Sorek, R. The evolutionary success of regulated cell death in bacterial immunity. Curr. Opin. Microbiol. 74, 102312 (2023).

    CAS  PubMed  Google Scholar 

  110. LeGault, K. N. et al. Temporal shifts in antibiotic resistance elements govern phage-pathogen conflicts. Science 373, eabg2166 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhang, Z., Pan, S., Liu, T., Li, Y. & Peng, N. Cas4 nucleases can effect specific integration of CRISPR spacers. J. Bacteriol. 201, e00747-18 (2019).

    PubMed  PubMed Central  Google Scholar 

  112. León, L. M., Park, A. E., Borges, A. L., Zhang, J. Y. & Bondy-Denomy, J. Mobile element warfare via CRISPR and anti-CRISPR in Pseudomonas aeruginosa. Nucleic Acids Res. 49, 2114–2125 (2021).

    PubMed  PubMed Central  Google Scholar 

  113. Lin, P. et al. CRISPR-Cas13 inhibitors block RNA editing in bacteria and mammalian cells. Mol. Cell 78, 850–861.e5 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Muzyukina, P. et al. Identification of an anti-CRISPR protein that inhibits the CRISPR-Cas type I-B system in Clostridioides difficile. mSphere https://doi.org/10.1128/msphere.00401-23 (2023).

  115. Rauch, B. J. et al. Inhibition of CRISPR-Cas9 with bacteriophage proteins. Cell 168, 150–158.e10 (2017).

    CAS  PubMed  Google Scholar 

  116. Hynes, A. P. et al. An anti-CRISPR from a virulent streptococcal phage inhibits Streptococcus pyogenes Cas9. Nat. Microbiol. 2, 1374–1380 (2017).

    CAS  PubMed  Google Scholar 

  117. Hynes, A. P. et al. Widespread anti-CRISPR proteins in virulent bacteriophages inhibit a range of Cas9 proteins. Nat. Commun. 9, 2919 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  118. Watters, K. E. et al. Potent CRISPR-Cas9 inhibitors from Staphylococcus genomes. Proc. Natl Acad. Sci. USA 117, 6531–6539 (2020).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  119. Forsberg, K. J. et al. The novel anti-CRISPR AcrIIA22 relieves DNA torsion in target plasmids and impairs SpyCas9 activity. PLoS Biol. 19, e3001428 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Varble, A. et al. Prophage integration into CRISPR loci enables evasion of antiviral immunity in Streptococcus pyogenes. Nat. Microbiol. 6, 1516–1525 (2021).

    CAS  PubMed  Google Scholar 

  121. Lee, J. et al. Potent Cas9 inhibition in bacterial and human cells by AcrIIC4 and AcrIIC5 anti-CRISPR proteins. mBio 9, e02321-18 (2018).

    PubMed  PubMed Central  Google Scholar 

  122. Song, G. et al. Discovery of potent and versatile CRISPR–Cas9 inhibitors engineered for chemically controllable genome editing. Nucleic Acids Res. 50, 2836–2853 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Liu, J. et al. An archaeal virus-encoded anti-CRISPR protein inhibits type III-B immunity by inhibiting Cas RNP complex turnover. Nucleic Acids Res. https://doi.org/10.1093/nar/gkad804 (2023).

  124. Lin, J., Alfastsen, L., Bhoobalan-Chitty, Y. & Peng, X. Molecular basis for inhibition of type III-B CRISPR-Cas by an archaeal viral anti-CRISPR protein. Cell Host Microbe 31, 1837–1849.e5 (2023).

    CAS  PubMed  Google Scholar 

  125. Watters, K. E., Fellmann, C., Bai, H. B., Ren, S. M. & Doudna, J. A. Systematic discovery of natural CRISPR-Cas12a inhibitors. Science 362, 236–239 (2018).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  126. Meeske, A. J. et al. A phage-encoded anti-CRISPR enables complete evasion of type VI-A CRISPR-Cas immunity. Science 369, 54–59 (2020).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  127. Piel, D. et al. Phage–host coevolution in natural populations. Nat. Microbiol. 7, 1075–1086 (2022).

    CAS  PubMed  Google Scholar 

  128. Bobay, L. M., Touchon, M. & Rocha, E. P. Manipulating or superseding host recombination functions: a dilemma that shapes phage evolvability. PLoS Genet. 9, e1003825 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Murphy, K. C., Fenton, A. C. & Poteete, A. R. Sequence of the bacteriophage P22 anti-RecBCD (abc) genes and properties of P22 abc region deletion mutants. Virology 160, 456–464 (1987).

    CAS  PubMed  Google Scholar 

  130. Murphy, K. C. Bacteriophage P22 Abc2 protein binds to RecC increases the 5′ strand nicking activity of RecBCD and together with λ Bet, promotes Chi-independent recombination. J. Mol. Biol. 296, 385–401 (2000).

    CAS  PubMed  Google Scholar 

  131. Lin, L. Study of Bacteriophage T7 Gene 5.9 and Gene 5.5. PhD thesis, State Univ. of New York at Stony Brook (1992).

  132. Wilkinson, M. et al. Structures of RecBCD in complex with phage-encoded inhibitor proteins reveal distinctive strategies for evasion of a bacterial immunity hub. eLife 11, e83409 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Chen, K. et al. ArdA proteins from different mobile genetic elements can bind to the EcoKI Type I DNA methyltransferase of E. coli K12. Biochim. Biophys. Acta 1844, 505–511 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Belogurov, A. A., Delver, E. P. & Rodzevich, O. V. Plasmid pKM101 encodes two nonhomologous antirestriction proteins (ArdA and ArdB) whose expression is controlled by homologous regulatory sequences. J. Bacteriol. 175, 4843–4850 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Serfiotis-Mitsa, D. et al. The structure of the KlcA and ArdB proteins reveals a novel fold and antirestriction activity against Type I DNA restriction systems in vivo but not in vitro. Nucleic Acids Res. 38, 1723–1737 (2010).

    CAS  PubMed  Google Scholar 

  136. Dharmalingam, K., Revel, H. R. & Goldberg, E. B. Physical mapping and cloning of bacteriophage T4 anti-restriction endonuclease gene. J. Bacteriol. 149, 694–699 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Ho, C. H., Wang, H. C., Ko, T. P., Chang, Y. C. & Wang, A. H. The T4 phage DNA mimic protein Arn inhibits the DNA binding activity of the bacterial histone-like protein H-NS. J. Biol. Chem. 289, 27046–27054 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Rifat, D., Wright, N. T., Varney, K. M., Weber, D. J. & Black, L. W. Restriction endonuclease inhibitor IPI* of bacteriophage T4: a novel structure for a dedicated target. J. Mol. Biol. 375, 720–734 (2008).

    CAS  PubMed  Google Scholar 

  139. Li, D. et al. Single phage proteins sequester TIR- and cGAS-generated signaling molecules. Preprint at bioRxiv https://doi.org/10.1101/2023.11.15.567273 (2023).

  140. Gordeeva, J. et al. BREX system of Escherichia coli distinguishes self from non-self by methylation of a specific DNA site. Nucleic Acids Res. 47, 253–265 (2019).

    CAS  PubMed  Google Scholar 

  141. Hille, F. et al. The biology of CRISPR-Cas: backward and forward. Cell 172, 1239–1259 (2018).

    CAS  PubMed  Google Scholar 

  142. Makarova, K. S., Wolf, Y. I., van der Oost, J. & Koonin, E. V. Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biol. Direct 4, 29 (2009).

    PubMed  PubMed Central  Google Scholar 

  143. Shabalina, S. A. & Koonin, E. V. Origins and evolution of eukaryotic RNA interference. Trends Ecol. Evol. 23, 578–587 (2008).

    PubMed  PubMed Central  Google Scholar 

  144. Swarts, D. C. et al. The evolutionary journey of Argonaute proteins. Nat. Struct. Mol. Biol. 21, 743–753 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Bobadilla Ugarte, P., Barendse, P. & Swarts, D. C. Argonaute proteins confer immunity in all domains of life. Curr. Opin. Microbiol. 74, 102313 (2023).

    CAS  PubMed  Google Scholar 

  146. Cheng, R. et al. A nucleotide-sensing endonuclease from the Gabija bacterial defense system. Nucleic Acids Res. 49, 5216–5229 (2021).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  147. Dillingham, M. S. & Kowalczykowski, S. C. RecBCD enzyme and the repair of double-stranded DNA breaks. Microbiol. Mol. Biol. Rev. 72, 642–671 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. LeRoux, M. & Laub, M. T. Toxin-antitoxin systems as phage defense elements. Annu. Rev. Microbiol. 76, 21–43 (2022).

    CAS  PubMed  Google Scholar 

  149. Millman, A., Melamed, S., Amitai, G. & Sorek, R. Diversity and classification of cyclic-oligonucleotide-based anti-phage signalling systems. Nat. Microbiol. 5, 1608–1615 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Whiteley, A. T. et al. Bacterial cGAS-like enzymes synthesize diverse nucleotide signals. Nature 567, 194–199 (2019).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  151. Tal, N. et al. Cyclic CMP and cyclic UMP mediate bacterial immunity against phages. Cell 184, 5728–5739.e16 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Ofir, G. et al. Antiviral activity of bacterial TIR domains via immune signalling molecules. Nature 600, 116–120 (2021).

    CAS  ADS  PubMed  Google Scholar 

  153. Mestre, M. R., González-Delgado, A., Gutiérrez-Rus, L. I., Martínez-Abarca, F. & Toro, N. Systematic prediction of genes functionally associated with bacterial retrons and classification of the encoded tripartite systems. Nucleic Acids Res. 48, 12632–12647 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Pleška, M. & Guet, C. C. Effects of mutations in phage restriction sites during escape from restriction–modification. Biol. Lett. 13, 20170646 (2017).

    PubMed  PubMed Central  Google Scholar 

  155. Rocha, E. P., Danchin, A. & Viari, A. Evolutionary role of restriction/modification systems as revealed by comparative genome analysis. Genome Res. 11, 946–958 (2001).

    CAS  PubMed  Google Scholar 

  156. Rusinov, I. S., Ershova, A. S., Karyagina, A. S., Spirin, S. A. & Alexeevski, A. V. Avoidance of recognition sites of restriction-modification systems is a widespread but not universal anti-restriction strategy of prokaryotic viruses. BMC Genomics 19, 885 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. van den Berg, D. F., van der Steen, B. A., Costa, A. R. & Brouns, S. J. J. Phage tRNAs evade tRNA-targeting host defenses through anticodon loop mutations. eLife 12, e85183 (2023).

    PubMed  PubMed Central  Google Scholar 

  158. Loenen, W. A. & Murray, N. E. Modification enhancement by the restriction alleviation protein (Ral) of bacteriophage lambda. J. Mol. Biol. 190, 11–22 (1986).

    CAS  PubMed  Google Scholar 

  159. King, G. & Murray, N. E. Restriction alleviation and modification enhancement by the Rac prophage of Escherichia coli K-12. Mol. Microbiol. 16, 769–777 (1995).

    CAS  PubMed  Google Scholar 

  160. Shaw, L. P., Rocha, E. P. C. & MacLean, R. C. Restriction-modification systems have shaped the evolution and distribution of plasmids across bacteria. Nucleic Acids Res. 51, 6806–6818 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Iida, S., Streiff, M. B., Bickle, T. A. & Arber, W. Two DNA antirestriction systems of bacteriophage P1, darA, and darB: characterization of darA phages. Virology 157, 156–166 (1987).

    CAS  PubMed  Google Scholar 

  162. González-Montes, L., Del Campo, I., Garcillán-Barcia, M. P., de la Cruz, F. & Moncalián, G. ArdC, a ssDNA-binding protein with a metalloprotease domain, overpasses the recipient hsdRMS restriction system broadening conjugation host range. PLoS Genet. 16, e1008750 (2020).

    PubMed  PubMed Central  Google Scholar 

  163. Millman, A. et al. Bacterial retrons function in anti-phage defense. Cell 183, 1551–1561.e12 (2020).

    CAS  PubMed  Google Scholar 

  164. Rousset, F. et al. Phages and their satellites encode hotspots of antiviral systems. Cell Host Microbe 30, 740–753.e5 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Smith, L. M., Campa, A. R. & Fineran, P. C. in Crispr: Biology and Applications (eds Barrangou, R. et al.) Ch. 10 (John Wiley & Sons, 2022).

  166. Patterson, A. G. et al. Quorum sensing controls adaptive immunity through the regulation of multiple CRISPR-Cas systems. Mol. Cell 64, 1102–1108 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Høyland-Kroghsbo, N. M. et al. Quorum sensing controls the Pseudomonas aeruginosa CRISPR-Cas adaptive immune system. Proc. Natl Acad. Sci. USA 114, 131–135 (2017).

    ADS  PubMed  Google Scholar 

  168. Shah, M. et al. A phage-encoded anti-activator inhibits quorum sensing in Pseudomonas aeruginosa. Mol. Cell 81, 571–583.e6 (2021).

    CAS  PubMed  Google Scholar 

  169. Campa, A. R. et al. The Rsm (Csr) post-transcriptional regulatory pathway coordinately controls multiple CRISPR–Cas immune systems. Nucleic Acids Res. 49, 9508–9525 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Borges, A. L. et al. Bacterial alginate regulators and phage homologs repress CRISPR–Cas immunity. Nat. Microbiol. 5, 679–687 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Skennerton, C. T. et al. Phage encoded H-NS: a potential Achilles heel in the bacterial defence system. PLoS ONE 6, e20095 (2011).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  172. Shmakov, S. A. et al. Widespread CRISPR-derived RNA regulatory elements in CRISPR-Cas systems. Nucleic Acids Res. 51, 8150–8168 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Amitsur, M., Levitz, R. & Kaufmann, G. Bacteriophage T4 anticodon nuclease, polynucleotide kinase and RNA ligase reprocess the host lysine tRNA. EMBO J. 6, 2499–2503 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Hossain, A. A., McGinn, J., Meeske, A. J., Modell, J. W. & Marraffini, L. A. Viral recombination systems limit CRISPR-Cas targeting through the generation of escape mutations. Cell Host Microbe 29, 1482–1495.e12 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Skorupski, K., Tomaschewski, J., Rüger, W. & Simon, L. D. A bacteriophage T4 gene which functions to inhibit Escherichia coli Lon protease. J. Bacteriol. 170, 3016–3024 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Sberro, H. et al. Discovery of functional toxin/antitoxin systems in bacteria by shotgun cloning. Mol. Cell 50, 136–148 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Engelberg-Kulka, H. et al. rexB of bacteriophage λ is an anti-cell death gene. Proc. Natl Acad. Sci. USA 95, 15481–15486 (1998).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  178. Studier, F. W. & Movva, N. R. SAMase gene of bacteriophage T3 is responsible for overcoming host restriction. J. Virol. 19, 136–145 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Andriianov, A. et al. Phage T3 overcomes the BREX defense through SAM cleavage and inhibition of SAM synthesis by SAM lyase. Cell Rep. 42, 112972 (2023).

    CAS  PubMed  Google Scholar 

  180. Martínez-Alvarez, L., Stickel, D., Salegi-Díez, A., Bhoobalan-Chitty, Y. & Peng, X. To be or not to be an anti-CRISPR: AcrIII-1 and the importance of working with native biological systems. Preprint at bioRxiv https://doi.org/10.1101/2023.01.10.523387 (2023).

  181. Millman, A. et al. An expanded arsenal of immune systems that protect bacteria from phages. Cell Host Microbe 30, 1556–1569.e5 (2022).

    CAS  PubMed  Google Scholar 

  182. Tesson, F. et al. Systematic and quantitative view of the antiviral arsenal of prokaryotes. Nat. Commun. 13, 2561 (2022).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  183. Borges, A. L. et al. Bacteriophage cooperation suppresses CRISPR-Cas3 and Cas9 immunity. Cell 174, 917–925.e10 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Landsberger, M. et al. Anti-CRISPR phages cooperate to overcome CRISPR-Cas immunity. Cell 174, 908–916.e12 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Chevallereau, A. et al. Exploitation of the cooperative behaviors of anti-CRISPR phages. Cell Host Microbe 27, 189–198.e6 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Chevallereau, A., Pons, B. J., van Houte, S. & Westra, E. R. Interactions between bacterial and phage communities in natural environments. Nat. Rev. Microbiol. 20, 49–62 (2022).

    CAS  PubMed  Google Scholar 

  187. Meaden, S. et al. High viral abundance and low diversity are associated with increased CRISPR-Cas prevalence across microbial ecosystems. Curr. Biol. 32, 220–227.e5 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Bryant, P., Pozzati, G. & Elofsson, A. Improved prediction of protein-protein interactions using AlphaFold2. Nat. Commun. 13, 1265 (2022).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  189. Yu, D., Chojnowski, G., Rosenthal, M. & Kosinski, J. AlphaPulldown—a python package for protein–protein interaction screens using AlphaFold-Multimer. Bioinformatics 39, btac749 (2022).

    PubMed Central  Google Scholar 

  190. Garmaeva, S. et al. Studying the gut virome in the metagenomic era: challenges and perspectives. BMC Biol. 17, 84 (2019).

    PubMed  PubMed Central  Google Scholar 

  191. Jørgensen, T. S., Kiil, A. S., Hansen, M. A., Sørensen, S. J. & Hansen, L. H. Current strategies for mobilome research. Front. Microbiol. 5, 750 (2015).

    PubMed  PubMed Central  Google Scholar 

  192. Wu, Y. et al. Synergistic anti-phage activity of bacterial defence systems. Preprint at bioRxiv https://doi.org/10.1101/2022.08.21.504612 (2023).

  193. Yan, Y., Zheng, J., Zhang, X. & Yin, Y. dbAPIS: a database of anti-prokaryotic immune system genes. Nucleic Acids Res. 52, D419–D425 (2024).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Smart, L. Payne and S. Crellin for helpful discussions. Research on phage defence and anti-defence systems conducted in the Fineran laboratory is supported by a University of Otago Research Grant, Bioprotection Aotearoa and the Marsden Fund, Royal Society of New Zealand (Te Pūtea Rangahau a Marsden, Te Apārangi). D.M.-M. was supported by a University of Otago Doctoral Scholarship and a Postgraduate Publishing Bursary. R.P.-R. was supported by a Lundbeck Foundation grant, MIMOSAS project [R347-2020-2346].

Author information

Authors and Affiliations

Authors

Contributions

D.M.-M., R.P.-R. and N.B. conceptualized the idea. D.M.-M. and R.P.-R. wrote the manuscript with contributions from S.C.-W., N.B. and P.C.F. D.M.-M. prepared Figs. 1 and 4, Table 1 and Box 1. R.P.-R. prepared Table 1 and Box 3. S.C.-W. prepared Fig. 2 and Box 2. N.B. prepared Fig. 3.

Corresponding authors

Correspondence to Rafael Pinilla-Redondo or Peter C. Fineran.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Asma Hatoum-Aslan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Bacteriophages

(Phages). Viruses that infect bacteria.

CRISPR RNAs

Small guide RNAs that assemble with one or multiple Cas proteins and guide them to complementary nucleic acids in invading mobile genetic elements for degradation.

Direct inhibitor

Inhibitory component that specifically targets and interferes with the defence mechanisms that bacteria use to stop mobile genetic element invasion. Direct inhibitors enable mobile genetic elements to overcome host immunity.

Escape mutant

A mobile genetic element that has evolved to evade defence targeting, typically through mutation.

Jumbo phages

Bacteriophages with large genomes, typically over 200 kb.

Mobile genetic element

(MGE). Genetic entity that requires a host cell to propagate and can move within or between cells. Examples include bacteriophages, plasmids and transposons.

Plasmid

Cytoplasmic DNA element that can replicate independently of the bacterial chromosome and can often transfer horizontally to other bacterial cells.

Protospacer adjacent motif

Short DNA sequence (usually 2–6 base pairs in length) that is immediately adjacent to the target sequence of a CRISPR–Cas system. It is essential for differentiating between self and non-self matches during interference.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayo-Muñoz, D., Pinilla-Redondo, R., Camara-Wilpert, S. et al. Inhibitors of bacterial immune systems: discovery, mechanisms and applications. Nat Rev Genet 25, 237–254 (2024). https://doi.org/10.1038/s41576-023-00676-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-023-00676-9

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology