Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Translating genomic advances into biodiversity conservation

Abstract

A key action of the new Global Biodiversity Framework is the maintenance of genetic diversity in all species to safeguard their adaptive potential. To achieve this goal, a translational mindset, which aims to convert results of basic research into direct practical benefits, needs to be applied to biodiversity conservation. Despite much discussion on the value of genomics to conservation, a disconnect between those generating genomic resources and those applying it to biodiversity management remains. As global efforts to generate reference genomes for non-model species increase, investment into practical biodiversity applications is critically important. Applications such as understanding population and multispecies diversity and longitudinal monitoring need support alongside education for policymakers on integrating the data into evidence-based decisions. Without such investment, the opportunity to revolutionize global biodiversity conservation using genomics will not be fully realized.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A reference genome can lead to many downstream applications.
Fig. 2: A generalized figure of the multiple workflows that have been presented in recent papers.

Similar content being viewed by others

References

  1. Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science 354, aaf7671 (2016).

    Article  PubMed  Google Scholar 

  2. Ceballos, G., Ehrlich, P. R. & Raven, P. H. Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction. Proc. Natl Acad. Sci. USA 117, 13596–13602 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA 114, E6089–E6096 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sánchez-Bayo, F. & Wyckhuys, K. A. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27 (2019).

    Article  Google Scholar 

  5. Sánchez‐Bayo, F. & Wyckhuys, K. A. Further evidence for a global decline of the entomofauna. Aust. Entomol. 60, 9–26 (2021).

    Article  Google Scholar 

  6. Gitay, H. et al. Climate change and biological diversity. IPCC-XVIII Doc 4 (f) (14.VIII.2001). Intergovernmental Panel on Climate Change: Geneva, Switzerland. https://www.ipcc.ch/site/assets/uploads/2001/09/doc4f.pdf (2001).

  7. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004).

    Article  Google Scholar 

  8. Khoury, M. J. et al. The continuum of translation research in genomic medicine: how can we accelerate the appropriate integration of human genome discoveries into health care and disease prevention? Genet. Med. 9, 665–674 (2007).

    Article  PubMed  Google Scholar 

  9. Manolio, T. A. et al. Implementing genomic medicine in the clinic: the future is here. Genet. Med. 15, 258–267 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Roberts, M. C. et al. Advancing precision public health using human genomics: examples from the field and future research opportunities. Genome Med. 13, 10 (2021).

    Article  Google Scholar 

  11. Giani, A. M., Gallo, G. R., Gianfranceschi, L. & Formenti, G. Long walk to genomics: history and current approaches to genome sequencing and assembly. Comput. Struct. Biotechnol. J. 18, 9–19 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Lewin, H. A. et al. The Earth BioGenome Project 2020: starting the clock. Proc. Natl Acad. Sci. USA 119, e2115635118 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McMahon, B. J., Teeling, E. C. & Höglund, J. How and why should we implement genomics into conservation? Evol. Appl. 7, 999–1007 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Frankham, R., Ballou, J. D. & Briscoe, D. A. Introduction to Conservation Genetics 2nd edn (Cambridge Univ. Press, 2010).

  15. Fuentes‐Pardo, A. P. & Ruzzante, D. E. Whole‐genome sequencing approaches for conservation biology: advantages, limitations and practical recommendations. Mol. Ecol. 26, 5369–5406 (2017).

    Article  PubMed  Google Scholar 

  16. Supple, M. A. & Shapiro, B. Conservation of biodiversity in the genomics era. Genome Biol. 19, 131 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hohenlohe, P. A., Funk, W. C. & Rajora, O. P. Population genomics for wildlife conservation and management. Mol. Ecol. 30, 62–82 (2021).

    Article  PubMed  Google Scholar 

  18. Allendorf, F. W., Hohenlohe, P. A. & Luikart, G. Genomics and the future of conservation genetics. Nat. Rev. Genet. 11, 697–709 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Lewin, H. A. et al. Earth BioGenome Project: sequencing life for the future of life. Proc. Natl Acad. Sci. USA 115, 4325–4333 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Taylor, H. R., Dussex, N. & van Heezik, Y. Bridging the conservation genetics gap by identifying barriers to implementation for conservation practitioners. Glob. Ecol. Conserv. 10, 231–242 (2017).

    Google Scholar 

  21. Jarvis, R. M. et al. Navigating spaces between conservation research and practice: are we making progress? Ecol. Solut. Evid. 1, e12028 (2020).

    Article  Google Scholar 

  22. Kadykalo, A. N., Cooke, S. J. & Young, N. Conservation genomics from a practitioner lens: evaluating the research-implementation gap in a managed freshwater fishery. Biol. Conserv. 241, 108350 (2020).

    Article  Google Scholar 

  23. Toomey, A. H., Knight, A. T. & Barlow, J. Navigating the space between research and implementation in conservation. Conserv. Lett. 10, 619–625 (2017).

    Article  Google Scholar 

  24. Hogg, C. J. et al. Threatened species initiative: empowering conservation action using genomic resources. Proc. Natl Acad. Sci. USA 119, e2115643118 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rossetto, M. et al. A conservation genomics workflow to guide practical management actions. Glob. Ecol. Conserv. 26, e01492 (2021).

    Google Scholar 

  26. Kershaw, F. et al. The coalition for conservation genetics: working across organizations to build capacity and achieve change in policy and practice. Conserv. Sci. Pract. 4, e12635 (2022).

    Article  Google Scholar 

  27. Holderegger, R. et al. Conservation genetics: linking science with practice. Mol. Ecol. 28, 3848–3856 (2019).

    Article  PubMed  Google Scholar 

  28. O’Brien, D. et al. Bringing together approaches to reporting on within species genetic diversity. J. Appl. Ecol. 59, 2227–2233 (2022).

    Article  Google Scholar 

  29. UN Environment Programme. Kunming-Montreal Global Biodiversity Framework — CBD/COP/15/L25. UN Convention on Biological Diversity: Montreal, Canada. https://www.cbd.int/doc/c/e6d3/cd1d/daf663719a03902a9b116c34/cop-15-l-25-en.pdf (2022).

  30. vonHoldt, B. M., Brzeski, K. E., Wilcove, D. S. & Rutledge, L. Y. Redefining the role of admixture and genomics in species conservation. Conserv. Lett. 11, e12371 (2018).

    Article  Google Scholar 

  31. Flanagan, S. P., Forester, B. R., Latch, E. K., Aitken, S. N. & Hoban, S. Guidelines for planning genomic assessment and monitoring of locally adaptive variation to inform species conservation. Evol. Appl. 11, 1035–1052 (2018).

    Article  PubMed  Google Scholar 

  32. Brandies, P., Peel, E., Hogg, C. J. & Belov, K. The value of reference genomes in the conservation of threatened species. Genes 10, 846 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guhlin, J. et al. Species-wide genomics of kākāpō provides transformational tools to accelerate recovery. Nat. Ecol. Evol. 7, 1693–1705 (2023).

    Article  PubMed  Google Scholar 

  34. Funk, W., Forester, B. R., Converse, S. J., Darst, C. & Morey, S. Improving conservation policy with genomics: a guide to integrating adaptive potential into US Endangered Species Act decisions for conservation practitioners and geneticists. Conserv. Genet. 20, 115–134 (2019).

    Article  Google Scholar 

  35. Matzek, V., Covino, J., Funk, J. L. & Saunders, M. Closing the knowing-doing gap in invasive plant management: accessibility and interdisciplinarity of scientific research. Conserv. Lett. 7, 208–215 (2014).

    Article  Google Scholar 

  36. De León, L. F., Silva, B., Avilés-Rodríguez, K. J. & Buitrago-Rosas, D. Harnessing the omics revolution to address the global biodiversity crisis. Curr. Opin. Biotechnol. 80, 102901 (2023).

    Article  PubMed  Google Scholar 

  37. Tang, H. Disentangling a polyploid genome. Nat. Plants 3, 688–689 (2017).

    Article  PubMed  Google Scholar 

  38. Jaron, K. S. et al. Convergent consequences of parthenogenesis on stick insect genomes. Sci. Adv. 8, eabg3842 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liehr, T. in Cytogenomics (ed. Liehr, T.) 1–7 (Academic, 2021).

  40. Fleischmann, A. et al. Evolution of genome size and chromosome number in the carnivorous plant genus Genlisea (Lentibulariaceae), with a new estimate of the minimum genome size in angiosperms. Ann. Bot. 114, 1651–1663 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shao, C. et al. The enormous repetitive Antarctic krill genome reveals environmental adaptations and population insights. Cell 186, 1279–94.e19 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. Peel, E. et al. Best genome sequencing strategies for annotation of complex immune gene families in wildlife. GigaScience 11, giac100 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhang, G. Bird sequencing project takes off. Nature 522, 34 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Teeling, E. C. et al. Bat biology, genomes, and the Bat1K project: to generate chromosome-level genomes for all living bat species. Annu. Rev. Anim. Biosci. 6, 23–46 (2018).

    Article  PubMed  Google Scholar 

  45. Haussler, D. et al. Genome 10K: a proposal to obtain whole-genome sequence for 10000 vertebrate species. J. Hered. 100, 659–674 (2009).

    Article  Google Scholar 

  46. Rhie, A. et al. Towards complete and error-free genome assemblies of all vertebrate species. Nature 592, 737–746 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Paez, S., Kraus, R. H. S., Shapiro, B., Gilbert, M. T. P. & Jarvis, E. D. Reference genomes for conservation. Science 377, 364–366 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Fiedler, P. L. et al. Seizing the moment: the opportunity and relevance of the California Conservation Genomics Project to state and federal conservation policy. J. Hered. 113, 589–596 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shaffer, H. B. et al. Landscape genomics to enable conservation actions: the California Conservation Genomics Project. J. Hered. 113, 577–588 (2022).

    Article  PubMed  Google Scholar 

  50. Theissinger, K. et al. How genomics can help biodiversity conservation. Trends Genet. 39, 545–559 (2023).

    Article  CAS  PubMed  Google Scholar 

  51. Tkach, K. & Watson, M. J. Publication and use of genetic tools in conservation management applications — a systematic review. J. Appl. Ecol. 60, 1522–1536 (2023).

    Article  Google Scholar 

  52. Hoban, S. et al. Global genetic diversity status and trends: towards a suite of essential biodiversity variables (EBVs) for genetic composition. Biol. Rev. 97, 1511–1538 (2022).

    Article  PubMed  Google Scholar 

  53. Hoban, S. et al. Monitoring status and trends in genetic diversity for the Convention on Biological Diversity: an ongoing assessment of genetic indicators in nine countries. Conserv. Lett. 16, e12953 (2023).

    Article  Google Scholar 

  54. Holderegger, R. et al. Ready-to-use workflows for the implementation of genetic tools in conservation management. Conserv. Genet. Resour. 12, 691–700 (2020).

    Article  Google Scholar 

  55. Salafsky, N. et al. Defining and using evidence in conservation practice. Conserv. Sci. Pract. 1, e27 (2019).

    Article  Google Scholar 

  56. Salafsky, N. et al. A practical approach to assessing existing evidence for specific conservation strategies. Conserv. Sci. Pract. 4, e12654 (2022).

    Article  Google Scholar 

  57. Christie, A. P. et al. A practical conservation tool to combine diverse types of evidence for transparent evidence-based decision-making. Conserv. Sci. Pract. 4, e579 (2022).

    Article  Google Scholar 

  58. Hogg, C. J. & Belov, K. Reply to DeWoody et al.: inequitable access to affordable sequencing limits the benefits from population genomic insights. Proc. Natl Acad. Sci. USA 119, e2211129119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mc Cartney, A. M. et al. Indigenous peoples and local communities as partners in the sequencing of global eukaryotic biodiversity. NPJ Biodivers. 2, 8 (2023).

    Article  Google Scholar 

  60. Galla, S. J. et al. Reference genomes from distantly related species can be used for discovery of single nucleotide polymorphisms to inform conservation management. Genes 10, 9 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. McLennan, E. A., Wright, B. R., Belov, K., Hogg, C. J. & Grueber, C. E. Too much of a good thing? Finding the most informative genetic data set to answer conservation questions. Mol. Ecol. Resour. 19, 659–671 (2019).

    Article  PubMed  Google Scholar 

  62. Angeles, N. A. C. & Catap, E. S. Challenges on the development of biodiversity biobanks: the living archives of biodiversity. Biopreserv. Biobank. 21, 5–13 (2023).

    Article  PubMed  Google Scholar 

  63. Hahn, E. E. et al. Unlocking inaccessible historical genomes preserved in formalin. Mol. Ecol. Resour. 22, 2130–2147 (2022).

    Article  CAS  PubMed  Google Scholar 

  64. Thomsen, P. F. & Willerslev, E. Environmental DNA — an emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183, 4–18 (2015).

    Article  Google Scholar 

  65. Johnson, K. R. & Owens, I. F. P. A global approach for natural history museum collections. Science 379, 1192–1194 (2023).

    Article  CAS  PubMed  Google Scholar 

  66. Feigin, C. Y. et al. Genome of the Tasmanian tiger provides insights into the evolution and demography of an extinct marsupial carnivore. Nat. Ecol. Evol. 2, 182–192 (2018).

    Article  PubMed  Google Scholar 

  67. Sharko, F. S. et al. Steller’s sea cow genome suggests this species began going extinct before the arrival of Paleolithic humans. Nat. Commun. 12, 2215 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Díez-del-Molino, D. et al. Genomics of adaptive evolution in the woolly mammoth. Curr. Biol. 33, 1753–64.e4 (2023).

    Article  PubMed  Google Scholar 

  69. Bosse, M. & van Loon, S. Challenges in quantifying genome erosion for conservation. Front. Genet. 13, 960958 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Díez-del-Molino, D., Sánchez-Barreiro, F., Barnes, I., Gilbert, M. T. P. & Dalén, L. Quantifying temporal genomic erosion in endangered species. Trends Ecol. Evol. 33, 176–185 (2018).

    Article  PubMed  Google Scholar 

  71. Roger, F. et al. Airborne environmental DNA metabarcoding for the monitoring of terrestrial insects — a proof of concept from the field. Environ. DNA 4, 790–807 (2022).

    Article  CAS  Google Scholar 

  72. Trujillo-González, A. et al. Detection of khapra beetle environmental DNA using portable technologies in Australian biosecurity. Front. Insect Sci. 2, 795379 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Deiner, K. et al. Environmental DNA metabarcoding: transforming how we survey animal and plant communities. Mol. Ecol. 26, 5872–5895 (2017).

    Article  PubMed  Google Scholar 

  74. Mittermeier, R. A. & Goettsch Mittermeier, C. Megadiversity: Earth’s Biologically Wealthiest Nations. (CEMEX, 1997).

  75. Collier-Robinson, L., Rayne, A., Rupene, M., Thoms, C. & Steeves, T. Embedding indigenous principles in genomic research of culturally significant species. N. Z. J. Ecol. 43, 3389 (2019).

    Google Scholar 

  76. Gates, A. J., Gysi, D. M., Kellis, M. & Barabási, A.-L. A wealth of discovery built on the Human Genome Project — by the numbers. Nature 590, 212–215 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Woolf, S. H. The meaning of translational research and why it matters. JAMA 299, 211–213 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Schweizer, R. M. et al. Big data in conservation genomics: boosting skills, hedging bets, and staying current in the field. J. Hered. 112, 313–327 (2021).

    Article  CAS  PubMed  Google Scholar 

  79. Webb, A. et al. The Pop-gen Pipeline Platform: a software platform for population genomic analyses. Mol. Biol. Evol. 38, 3478–3485 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kutschera, V. E. et al. GenErode: a bioinformatics pipeline to investigate genome erosion in endangered and extinct species. BMC Bioinform. 23, 228 (2022).

    Article  CAS  Google Scholar 

  81. Otero, I. et al. Biodiversity policy beyond economic growth. Conserv. Lett. https://doi.org/10.1111/conl.12713 (2020).

  82. Milner-Gulland, E. Don’t dilute the term nature positive. Nat. Ecol. Evol. 6, 1243–1244 (2022).

    Article  CAS  PubMed  Google Scholar 

  83. Millar, R. J., Hepburn, C., Beddington, J. & Allen, M. R. Principles to guide investment towards a stable climate. Nat. Clim. Chang. 8, 2–4 (2018).

    Article  Google Scholar 

  84. Zu Ermgassen, S. O. et al. Are corporate biodiversity commitments consistent with delivering ‘nature-positive’ outcomes? A review of ‘nature-positive’ definitions, company progress and challenges. J. Clean. Prod. 379, 134798 (2022).

    Article  Google Scholar 

  85. Barbato, M., Orozco-terWengel, P., Tapio, M. & Bruford, M. W. SNeP: a tool to estimate trends in recent effective population size trajectories using genome-wide SNP data. Front. Genet. 6, 109 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Pazmiño, D. A., Maes, G. E., Simpfendorfer, C. A., Salinas-de-León, P. & van Herwerden, L. Genome-wide SNPs reveal low effective population size within confined management units of the highly vagile Galapagos shark (Carcharhinus galapagensis). Conserv. Genet. 18, 1151–1163 (2017).

    Article  Google Scholar 

  87. Wang, J., Santiago, E. & Caballero, A. Prediction and estimation of effective population size. Heredity 117, 193–206 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cristofari, R. et al. Full circumpolar migration ensures evolutionary unity in the Emperor penguin. Nat. Commun. 7, 11842 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. García-Berro, A. et al. Migratory behaviour is positively associated with genetic diversity in butterflies. Mol. Ecol. 32, 560–574 (2023).

    Article  PubMed  Google Scholar 

  90. Millon, A., Lambin, X., Devillard, S. & Schaub, M. Quantifying the contribution of immigration to population dynamics: a review of methods, evidence and perspectives in birds and mammals. Biol. Rev. 94, 2049–2067 (2019).

    Article  PubMed  Google Scholar 

  91. Leitwein, M., Duranton, M., Rougemont, Q., Gagnaire, P.-A. & Bernatchez, L. Using haplotype information for conservation genomics. Trends Ecol. Evol. 35, 245–258 (2020).

    Article  PubMed  Google Scholar 

  92. Mathieson, I. & McVean, G. Estimating selection coefficients in spatially structured populations from time series data of allele frequencies. Genetics 193, 973–984 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Feder, A. F., Kryazhimskiy, S. & Plotkin, J. B. Identifying signatures of selection in genetic time series. Genetics 196, 509–522 (2014).

    Article  PubMed  Google Scholar 

  94. Jasper, M. E., Hoffmann, A. A. & Schmidt, T. L. Estimating dispersal using close kin dyads: the kindisperse R package. Mol. Ecol. Resour. 22, 1200–1212 (2022).

    Article  PubMed  Google Scholar 

  95. Wang, J. COANCESTRY: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol. Ecol. Resour. 11, 141–145 (2011).

    Article  PubMed  Google Scholar 

  96. Wang, J. Pedigree reconstruction from poor quality genotype data. Heredity 122, 719–728 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Pew, J., Muir, P. H., Wang, J. & Frasier, T. R. related: an R package for analysing pairwise relatedness from codominant molecular markers. Mol. Ecol. Resour. 15, 557–561 (2015).

    Article  PubMed  Google Scholar 

  98. McLennan, E. A. et al. Pedigree reconstruction using molecular data reveals an early warning sign of gene diversity loss in an island population of Tasmanian devils (Sarcophilus harrisii). Conserv. Genet. 19, 439–450 (2018).

    Article  Google Scholar 

  99. Huisman, J. Pedigree reconstruction from SNP data: parentage assignment, sibship clustering and beyond. Mol. Ecol. Resour. 17, 1009–1024 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Stojanovic, D. et al. Reproductive skew in a vulnerable bird favors breeders that monopolize nest cavities. Anim. Conserv. https://doi.org/10.1111/acv.12855 (2022).

  101. Ekblom, R. et al. Sample identification and pedigree reconstruction in wolverine (Gulo gulo) using SNP genotyping of non-invasive samples. Conserv. Genet. Resour. 13, 261–274 (2021).

    Article  CAS  Google Scholar 

  102. Martins, K. et al. Landscape genomics provides evidence of climate‐associated genetic variation in Mexican populations of Quercus rugosa. Evol. Appl. 11, 1842–1858 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hall, L. A. & Beissinger, S. R. A practical toolbox for design and analysis of landscape genetics studies. Landsc. Ecol. 29, 1487–1504 (2014).

    Article  Google Scholar 

  104. Storfer, A., Patton, A. & Fraik, A. K. Navigating the interface between landscape genetics and landscape genomics. Front. Genet. 9, 68 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Farquharson, K. A. et al. Restoring faith in conservation action: maintaining wild genetic diversity through the Tasmanian devil insurance program. iScience 25, 104474 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Stoffel, M., Johnston, S., Pilkington, J. & Pemberton, J. M. Genetic architecture and lifetime dynamics of inbreeding depression in a wild mammal. Nat. Commun. 12, 2972 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Schoen, D. J. & Baldwin, S. J. Self‐incompatibility and the genetic architecture of inbreeding depression. N. Phytol. 237, 1040–1049 (2023).

    Article  Google Scholar 

  108. Adams, P. E. et al. Slow recovery from inbreeding depression generated by the complex genetic architecture of segregating deleterious mutations. Mol. Biol. Evol. 39, msab330 (2022).

    Article  CAS  PubMed  Google Scholar 

  109. Kardos, M. et al. Genomic consequences of intensive inbreeding in an isolated wolf population. Nat. Ecol. Evol. 2, 124–131 (2018).

    Article  PubMed  Google Scholar 

  110. Hedrick, P. W., Hellsten, U. & Grattapaglia, D. Examining the cause of high inbreeding depression: analysis of whole‐genome sequence data in 28 selfed progeny of Eucalyptus grandis. N. Phytol. 209, 600–611 (2016).

    Article  CAS  Google Scholar 

  111. Kardos, M. et al. Inbreeding depression explains killer whale population dynamics. Nat. Ecol. Evol. 7, 675–686 (2023).

    Article  PubMed  Google Scholar 

  112. Wright, B. et al. Variants in the host genome may inhibit tumour growth in devil facial tumours: evidence from genome-wide association. Sci. Rep. https://doi.org/10.1038/s41598-017-00439-7 (2017).

  113. Margres, M. J. et al. The genomic basis of tumor regression in Tasmanian devils (Sarcophilus harrisii). Genome Biol. Evol. 10, 3012–3025 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Elbers, J. P., Brown, M. B. & Taylor, S. S. Identifying genome-wide immune gene variation underlying infectious disease in wildlife populations — a next generation sequencing approach in the gopher tortoise. BMC Genom. 19, 64 (2018).

    Article  Google Scholar 

  115. Fernandes, P., Colavolpe, M. B., Serrazina, S. & Costa, R. L. European and American chestnuts: an overview of the main threats and control efforts. Front. Plant. Sci. 13, 951844 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Vatsiou, A. I., Bazin, E. & Gaggiotti, O. E. Detection of selective sweeps in structured populations: a comparison of recent methods. Mol. Ecol. 25, 89–103 (2016).

    Article  CAS  PubMed  Google Scholar 

  117. Dauphin, B. et al. Genomic vulnerability to rapid climate warming in a tree species with a long generation time. Glob. Chang. Biol. 27, 1181–1195 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Hoffmann, A. A., Weeks, A. R. & Sgrò, C. M. Opportunities and challenges in assessing climate change vulnerability through genomics. Cell 184, 1420–1425 (2021).

    Article  CAS  PubMed  Google Scholar 

  119. Brauer, C. J. et al. Natural hybridization reduces vulnerability to climate change. Nat. Clim. Chang. 13, 282–289 (2023).

    Google Scholar 

  120. Edelman, N. B. & Mallet, J. Prevalence and adaptive impact of introgression. Annu. Rev. Genet. 55, 265–283 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. Martin, S. H. & Jiggins, C. D. Interpreting the genomic landscape of introgression. Curr. Opin. Genet. Dev. 47, 69–74 (2017).

    Article  CAS  PubMed  Google Scholar 

  122. Gante, H. F. et al. Genomics of speciation and introgression in princess cichlid fishes from lake Tanganyika. Mol. Ecol. 25, 6143–6161 (2016).

    Article  PubMed  Google Scholar 

  123. Owens, G. L., Baute, G. J. & Rieseberg, L. H. Revisiting a classic case of introgression: hybridization and gene flow in Californian sunflowers. Mol. Ecol. 25, 2630–2643 (2016).

    Article  PubMed  Google Scholar 

  124. Martin, S. H., Davey, J. W., Salazar, C. & Jiggins, C. D. Recombination rate variation shapes barriers to introgression across butterfly genomes. PLoS Biol. 17, e2006288 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wringe, B. F., Stanley, R. R., Jeffery, N. W., Anderson, E. C. & Bradbury, I. R. hybriddetective: a workflow and package to facilitate the detection of hybridization using genomic data in R. Mol. Ecol. Resour. 17, e275–e284 (2017).

    Article  CAS  PubMed  Google Scholar 

  126. van Wyk, A. M. et al. Quantitative evaluation of hybridization and the impact on biodiversity conservation. Ecol. Evol. 7, 320–330 (2017).

    Article  PubMed  Google Scholar 

  127. Goulet, B. E., Roda, F. & Hopkins, R. Hybridization in plants: old ideas, new techniques. Plant Physiol. 173, 65–78 (2017).

    Article  CAS  PubMed  Google Scholar 

  128. Frankham, R. Genetic rescue of small inbred populations: meta‐analysis reveals large and consistent benefits of gene flow. Mol. Ecol. 24, 2610–2618 (2015).

    Article  PubMed  Google Scholar 

  129. Frankham, R. et al. Predicting the probability of outbreeding depression. Conserv. Biol. 25, 465–475 (2011).

    Article  PubMed  Google Scholar 

  130. Potter, S. et al. Chromosomal speciation in the genomics era: disentangling phylogenetic evolution of rock-wallabies. Front. Genet. 8, 10 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Potter, S., Moritz, C. & Eldridge, M. D. Gene flow despite complex Robertsonian fusions among rock-wallaby (Petrogale) species. Biol. Lett. 11, 20150731 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Hogg, C. J. et al. Founder relationships and conservation management: empirical kinships reveal the effect on breeding programmes when founders are assumed to be unrelated. Anim. Conserv. 22, 348–361 (2019).

    Article  Google Scholar 

  133. Ogden, R. et al. Benefits and pitfalls of captive conservation genetic management: evaluating diversity in scimitar-horned oryx to support reintroduction planning. Biol. Conserv. 241, 108244 (2020).

    Article  Google Scholar 

  134. Zilko, J. P., Harley, D., Hansen, B., Pavlova, A. & Sunnucks, P. Accounting for cryptic population substructure enhances detection of inbreeding depression with genomic inbreeding coefficients: an example from a critically endangered marsupial. Mol. Ecol. 29, 2978–2993 (2020).

    Article  CAS  PubMed  Google Scholar 

  135. Hoffman, J. I. et al. High-throughput sequencing reveals inbreeding depression in a natural population. Proc. Natl Acad. Sci. USA 111, 3775–3780 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Robinson, J. A. et al. The critically endangered vaquita is not doomed to extinction by inbreeding depression. Science 376, 635–639 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Fitzpatrick, S. W. et al. Genomic and fitness consequences of genetic rescue in wild populations. Curr. Biol. 30, 517–522.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  138. Fitzpatrick, S. W. & Funk, W. C. in Population Genomics: Wildlife (eds Hohenlohe, P. A. & Rajora, O. P.) 437–471 (Springer Nature, 2021).

  139. Melis, C. et al. Genetic rescue of the highly inbred Norwegian Lundehund. Genes 13, 163 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Willoughby, J. R., Ivy, J. A., Lacy, R. C., Doyle, J. M. & DeWoody, J. A. Inbreeding and selection shape genomic diversity in captive populations: implications for the conservation of endangered species. PLoS ONE 12, e0175996 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Waters, C. D. et al. Effectiveness of managed gene flow in reducing genetic divergence associated with captive breeding. Evol. Appl. 8, 956–971 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Purohit, D. et al. Genetic effects of long-term captive breeding on the endangered pygmy hog. PeerJ 9, e12212 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Uliano-Silva, M. et al. MitoHiFi: a python pipeline for mitochondrial genome assembly from PacBio high fidelity reads. BMC Bioinform. 24, 288 (2023).

    Article  CAS  Google Scholar 

  144. Knight, A. T. et al. Knowing but not doing: selecting priority conservation areas and the research–implementation gap. Conserv. Biol. 22, 610–617 (2008).

    Article  PubMed  Google Scholar 

  145. Soulé, M. E. (ed) Conservation Biology: The Science of Scarcity and Diversity (Oxford Univ. Press, 1986).

  146. Bertuol‐Garcia, D., Morsello, C., N. El‐Hani, C. & Pardini, R. A conceptual framework for understanding the perspectives on the causes of the science–practice gap in ecology and conservation. Biol. Rev. 93, 1032–1055 (2018).

    Article  PubMed  Google Scholar 

  147. Smith, D. et al. Extinct in the wild: the precarious state of Earth’s most threatened group of species. Science 379, eadd2889 (2023).

    Article  CAS  PubMed  Google Scholar 

  148. Chuven, J. et al. in Global Reintroduction Perspectives 2018: Case Studies from Around the Globe (ed. Soorae, P. S.) 165–169 (IUCN/SSC Reintroduction Specialist Group: Gland, Switzerland, 2018).

  149. Majaliwa, M. et al. Experience and social factors influence movement and habitat selection in scimitar-horned oryx (Oryx dammah) reintroduced into Chad. Mov. Ecol. 10, 47 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Humble, E. et al. Chromosomal-level genome assembly of the scimitar-horned oryx: insights into diversity and demography of a species extinct in the wild. Mol. Ecol. Resour. 20, 1668–1681 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Humble, E. et al. Conservation management strategy impacts inbreeding and mutation load in scimitar-horned oryx. Proc. Natl Acad. Sci. USA 120, e2210756120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Grueber, C. E. & McLennan, E. A. in Saving the Tasmanian Devil: Recovery Through Science-Based Management (eds Hogg, C. J. et al.) p. 55–65 (CSIRO, 2019).

  153. Murchison, E. P. et al. Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer. Cell 148, 780–791 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Morris, K. M., Wright, B., Grueber, C. E., Hogg, C. & Belov, K. Lack of genetic diversity across diverse immune genes in an endangered mammal, the Tasmanian devil (Sarcophilus harrisii). Mol. Ecol. 24, 3860–3872 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. Stammnitz, M. R. et al. The evolution of two transmissible cancers in Tasmanian devils. Science 380, 283–293 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Cheng, Y., Grueber, C., Hogg, C. J. & Belov, K. Improved high-throughput MHC typing for non-model species using long-read sequencing. Mol. Ecol. Resour. 22, 862–876 (2022).

    Article  PubMed  Google Scholar 

  157. Hogg, C. J. et al. Preserving the demographic and genetic integrity of a single source population during multiple translocations. Biol. Conserv. 241, 108318 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks the past and current team of the Australasian Wildlife Genomics Group, particularly K. Belov, whom the author has had many discussions with over the years on how we can better integrate genomic technologies into conservation management. These discussions formed the basis of this Perspective.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn J. Hogg.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Marty Kardos and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

California Conservation Genomics Project: https://www.ccgproject.org/

Conservation Evidence Initiative: https://www.conservationevidence.com/

Essential Biodiversity Variables: https://geobon.org/ebvs/what-are-ebvs/

European Reference Genome Atlas: https://www.erga-biodiversity.eu/

Genomes on a Tree: https://goat.genomehubs.org/

Illumina: https://www.illumina.com/company/about-us/corporate-social-responsibility.html

Oxford Nanopore Technology: https://nanoporetech.com/about-us

Taskforce on Nature-related Financial Disclosures: https://tnfd.global/

Threatened Species Initiative: https://threatenedspeciesinitiative.com/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hogg, C.J. Translating genomic advances into biodiversity conservation. Nat Rev Genet 25, 362–373 (2024). https://doi.org/10.1038/s41576-023-00671-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-023-00671-0

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene