Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ultra-processed foods and food additives in gut health and disease

Abstract

Ultra-processed foods (UPFs) and food additives have become ubiquitous components of the modern human diet. There is increasing evidence of an association between diets rich in UPFs and gut disease, including inflammatory bowel disease, colorectal cancer and irritable bowel syndrome. Food additives are added to many UPFs and have themselves been shown to affect gut health. For example, evidence shows that some emulsifiers, sweeteners, colours, and microparticles and nanoparticles have effects on a range of outcomes, including the gut microbiome, intestinal permeability and intestinal inflammation. Broadly speaking, evidence for the effect of UPFs on gut disease comes from observational epidemiological studies, whereas, by contrast, evidence for the effect of food additives comes largely from preclinical studies conducted in vitro or in animal models. Fewer studies have investigated the effect of UPFs or food additives on gut health and disease in human intervention studies. Hence, the aim of this article is to critically review the evidence for the effects of UPF and food additives on gut health and disease and to discuss the clinical application of these findings.

Key points

  • Ultra-processed foods (UPFs) are widely consumed in the food chain, and epidemiological studies indicate an increased risk of gut diseases, including inflammatory bowel disease, colorectal cancer and possibly irritable bowel syndrome.

  • A causal role of food processing on disease risk is challenging to identify as the body of evidence, although large, is almost entirely from observational cohorts or case–control studies, many of which measured UPF exposure using dietary methodologies not validated for this purpose and few were adjusted for the known dietary risk factors for those diseases.

  • Food additives commonly added to UPFs, including emulsifiers, sweeteners, colours, and microparticles and nanoparticles, have been shown in preclinical studies to affect the gut, including the microbiome, intestinal permeability and intestinal inflammation.

  • Although a randomized controlled trial demonstrated that consumption of UPF resulted in increased energy intake and body weight, no studies have yet investigated the effect of UPFs, or their restriction, on gut health or disease.

  • Few studies have investigated the effect of dietary restriction of food additives on the risk or management of gut disease, although multicomponent diets have shown some initial promise.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Different effects of emulsifiers, sweeteners, colours and nanoparticles on the microbiome, mucosal barrier and inflammation in the gut.

Similar content being viewed by others

References

  1. Baker, P. et al. Ultra-processed foods and the nutrition transition: global, regional and national trends, food systems transformations and political economy drivers. Obes. Rev. 21, e13126 (2020).

    Article  PubMed  Google Scholar 

  2. Sadler, C. R. et al. Processed food classification: conceptualisation and challenges. Trends Food Sci. Technol. 112, 149–162 (2021).

    Article  CAS  Google Scholar 

  3. Monteiro, C. A., Cannon, G., Lawrence, M., Costa Louzada, M.L. & Pereira Machado, P. Ultra-Processed Foods, Diet Quality, and Health Using the NOVA Classification System (FAO, 2019).

  4. Marino, M. et al. A systematic review of worldwide consumption of ultra-processed foods: findings and criticisms. Nutrients 13, 2778 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bonaccio, M. et al. Ultra-processed food consumption is associated with increased risk of all-cause and cardiovascular mortality in the Moli-Sani study. Am. J. Clin. Nutr. 113, 446–455 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Gupta, S. et al. Characterising percentage energy from ultra-processed foods by participant demographics, diet quality and diet cost: findings from the Seattle Obesity Study (SOS) III. Br. J. Nutr. 126, 773–781 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Moubarac, J. C. et al. Processed and ultra-processed food products: consumption trends in Canada from 1938 to 2011. Can. J. Diet. Pract. Res. 75, 15–21 (2014).

    Article  PubMed  Google Scholar 

  8. Juul, F. & Hemmingsson, E. Trends in consumption of ultra-processed foods and obesity in Sweden between 1960 and 2010. Public Health Nutr. 18, 3096–3107 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang, L. et al. Trends in consumption of ultraprocessed foods among US Youths aged 2-19 years, 1999-2018. JAMA 326, 519–530 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Schnabel, L. et al. Association between ultraprocessed food consumption and risk of mortality among middle-aged adults in France. JAMA Intern. Med. 179, 490–498 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ruggiero, E. et al. Ultra-processed food consumption and its correlates among Italian children, adolescents and adults from the Italian Nutrition & Health Survey (INHES) cohort study. Public Health Nutr. 24, 6258–6271 (2021).

    Article  PubMed  Google Scholar 

  12. Marron-Ponce, J. A., Flores, M., Cediel, G., Monteiro, C. A. & Batis, C. Associations between consumption of ultra-processed foods and intake of nutrients related to chronic non-communicable diseases in Mexico. J. Acad. Nutr. Diet. 119, 1852–1865 (2019).

    Article  PubMed  Google Scholar 

  13. Martini, D., Godos, J., Bonaccio, M., Vitaglione, P. & Grosso, G. Ultra-processed foods and nutritional dietary profile: a meta-analysis of nationally representative samples. Nutrients 13, 3390 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Griffin, J., Albaloul, A., Kopytek, A., Elliott, P. & Frost, G. Effect of ultraprocessed food intake on cardiometabolic risk is mediated by diet quality: a cross-sectional study. BMJ Nutr. Prev. Health 4, 174–180 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gehring, J. et al. Consumption of ultra-processed foods by pesco-vegetarians, vegetarians, and vegans: associations with duration and age at diet initiation. J. Nutr. 151, 120–131 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Julia, C. et al. Respective contribution of ultra-processing and nutritional quality of foods to the overall diet quality: results from the NutriNet-Santé study. Eur. J. Nutr. 62, 157–164 (2023).

    Article  PubMed  Google Scholar 

  17. Dicken, S. J. & Batterham, R. L. The role of diet quality in mediating the association between ultra-processed food intake, obesity and health-related outcomes: a review of prospective cohort studies. Nutrients 14, 23 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hess, J. M. et al. Dietary guidelines meet NOVA: developing a menu for a healthy dietary pattern using ultra-processed foods. J. Nutr. 153, 2472–2481 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Suksatan, W. et al. Ultra-processed food consumption and adult mortality risk: a systematic review and dose-response meta-analysis of 207,291 participants. Nutrients 14, 174 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rico-Campa, A. et al. Association between consumption of ultra-processed foods and all cause mortality: SUN prospective cohort study. BMJ 365, l1949 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Du, S., Kim, H. & Rebholz, C. M. Higher ultra-processed food consumption is associated with increased risk of incident coronary artery disease in the atherosclerosis risk in communities study. J. Nutr. 151, 3746–3754 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Srour, B. et al. Ultra-processed food intake and risk of cardiovascular disease: prospective cohort study (NutriNet-Santé). BMJ 365, l1451 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Juul, F., Vaidean, G., Lin, Y., Deierlein, A. L. & Parekh, N. Ultra-processed foods and incident cardiovascular disease in the Framingham offspring study. J. Am. Coll. Cardiol. 77, 1520–1531 (2021).

    Article  PubMed  Google Scholar 

  24. Duan, M. J., Vinke, P. C., Navis, G., Corpeleijn, E. & Dekker, L. H. Ultra-processed food and incident type 2 diabetes: studying the underlying consumption patterns to unravel the health effects of this heterogeneous food category in the prospective Lifelines cohort. BMC Med. 20, 7 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fiolet, T. et al. Consumption of ultra-processed foods and cancer risk: results from NutriNet-Santé prospective cohort. BMJ 360, k322 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lane, M. M. et al. Ultraprocessed food and chronic noncommunicable diseases: a systematic review and meta-analysis of 43 observational studies. Obes. Rev. 22, e13146 (2021).

    Article  PubMed  Google Scholar 

  27. Hall, K. D. et al. Ultra-processed diets cause excess calorie intake and weight gain: an inpatient randomized controlled trial of ad libitum food intake. Cell Metab. 30, 226 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Scientific Advisory Committee on Nutrition. SACN Statement on Processed Foods and Health. gov.uk https://www.gov.uk/government/publications/sacn-statement-on-processed-foods-and-health (2023).

  29. Chen, J. et al. Intake of ultra-processed foods is associated with an increased risk of Crohn’s disease: a cross-sectional and prospective analysis of 187,154 participants in the UK Biobank. J. Crohns Colitis 17, 535–552 (2022).

    Article  PubMed Central  Google Scholar 

  30. Vasseur, P. et al. Dietary patterns, ultra-processed food, and the risk of inflammatory bowel diseases in the NutriNet-Santé cohort. Inflamm. Bowel Dis. 27, 65–73 (2021).

    Article  PubMed  Google Scholar 

  31. Narula, N. et al. Association of ultra-processed food intake with risk of inflammatory bowel disease: prospective cohort study. BMJ 374, n1554 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Meyer, A. et al. Food processing and risk of Crohn’s disease and ulcerative colitis: a European prospective cohort study. Clin. Gastroenterol. Hepatol. 21, 1607–1616.e6 (2022).

    Article  PubMed  Google Scholar 

  33. Lo, C. H. et al. Ultra-processed foods and risk of Crohn’s disease and ulcerative colitis: a prospective cohort study. Clin. Gastroenterol. Hepatol. 20, e1323–e1337 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Narula, N. et al. Food processing and risk of inflammatory bowel disease: a systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 21, 2483–2495.e1 (2023).

    Article  PubMed  Google Scholar 

  35. Piovani, D. et al. Environmental risk factors for inflammatory bowel diseases: an umbrella review of meta-analyses. Gastroenterology 157, 647–659.e4 (2019).

    Article  PubMed  Google Scholar 

  36. Narula, N. et al. Enteral nutritional therapy for induction of remission in Crohn’s disease. Cochrane Database Syst. Rev. 4, CD000542 (2018).

    PubMed  Google Scholar 

  37. Rutgeerts, P. et al. Effect of faecal stream diversion on recurrence of Crohn’s disease in the neoterminal ileum. Lancet 338, 771–774 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Schnabel, L. et al. Association between ultra-processed food consumption and functional gastrointestinal disorders: results from the French NutriNet-Santé cohort. Am. J. Gastroenterol. 113, 1217–1228 (2018).

    Article  PubMed  Google Scholar 

  39. Wang, L. et al. Association of ultra-processed food consumption with colorectal cancer risk among men and women: results from three prospective US cohort studies. BMJ 378, e068921 (2022).

    Article  PubMed Central  Google Scholar 

  40. Zhong, G. C. et al. Ultra-processed food consumption and the risk of pancreatic cancer in the prostate, lung, colorectal and ovarian cancer screening trial. Int. J. Cancer 152, 835–844 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. El Kinany, K. et al. Food processing groups and colorectal cancer risk in Morocco: evidence from a nationally representative case-control study. Eur. J. Nutr. 61, 2507–2515 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. Fliss-Isakov, N., Zelber-Sagi, S., Ivancovsky-Wajcman, D., Shibolet, O. & Kariv, R. Ultra-processed food intake and smoking interact in relation with colorectal adenomas. Nutrients 12, 3507 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Romaguera, D. et al. Consumption of ultra-processed foods and drinks and colorectal, breast, and prostate cancer. Clin. Nutr. 40, 1537–1545 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Shu, L. et al. Association between ultra-processed food intake and risk of colorectal cancer: a systematic review and meta-analysis. Front. Nutr. 10, 1170992 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Arayici, M. E., Mert-Ozupek, N., Yalcin, F., Basbinar, Y. & Ellidokuz, H. Soluble and insoluble dietary fiber consumption and colorectal cancer risk: a systematic review and meta-analysis. Nutr. Cancer 74, 2412–2425 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Di, Y., Ding, L., Gao, L. & Huang, H. Association of meat consumption with the risk of gastrointestinal cancers: a systematic review and meta-analysis. BMC Cancer 23, 782 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Khandpur, N. et al. Categorising ultra-processed foods in large-scale cohort studies: evidence from the Nurses’ Health Studies, the Health Professionals Follow-up Study, and the Growing Up Today Study. J. Nutr. Sci. 10, e77 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lo, C. H. et al. Ultra-processed foods and risk of Crohn’s disease and ulcerative colitis: a prospective cohort study. Clin. Gastroenterol. Hepatol. 20, e1323–e1337 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chervy, M., Barnich, N. & Denizot, J. Adherent-invasive E. coli: update on the lifestyle of a troublemaker in Crohn’s disease. Int. J. Mol. Sci. 21, 3734 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nagao-Kitamoto, H. et al. Functional characterization of inflammatory bowel disease-associated gut dysbiosis in gnotobiotic mice. Cell Mol. Gastroenterol. Hepatol. 2, 468–481 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Travinsky-Shmul, T. et al. Ultra-processed food impairs bone quality, increases marrow adiposity and alters gut microbiome in mice. Foods 10, 3107 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cuevas-Sierra, A., Milagro, F. I., Aranaz, P., Martinez, J. A. & Riezu-Boj, J. I. Gut microbiota differences according to ultra-processed food consumption in a Spanish population. Nutrients 13, 2710 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hidalgo-Cantabrana, C. et al. Bifidobacteria and their health-promoting effects. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.BAD-0010-2016 (2017).

    Article  PubMed  Google Scholar 

  55. Garcia-Vega, A. S., Corrales-Agudelo, V., Reyes, A. & Escobar, J. S. Diet quality, food groups and nutrients associated with the gut microbiota in a nonwestern population. Nutrients 12, 2938 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Regulation (EC) No 1333/2008 of the European Parliament and the Council of 16 December 2008 on Food Additives. gov.uk https://www.legislation.gov.uk/eur/2008/1333/contents#:~:Text=Regulation%20(EC)%20No%201333%2F,additives%20(Text%20with%20EEA%20relevance (2008).

  57. Fennema, O. R. Food additives — an unending controversy. Am. J. Clin. Nutr. 46, 201–203 (1987).

    Article  CAS  PubMed  Google Scholar 

  58. Food Standards Agency. Approved additives and E numbers. Food Standards Agency https://www.food.gov.uk/business-guidance/approved-additives-and-e-numbers (2018).

  59. CODEX Alimentarius: International Food Standards. Class Names and the International Numbering System for Food Additives. Report no. CAC/GL 36-1989 (FAO & WHO, 2015).

  60. Trakman, G. L. et al. Processed food as a risk factor for the development and perpetuation of Crohn’s disease — the ENIGMA study. Nutrients 14, 3627 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Srour, B. & Touvier, M. Ultra-processed foods and human health: what do we already know and what will further research tell us? EClinicalMedicine 32, 100747 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Cox, S., Sandall, A., Smith, L., Rossi, M. & Whelan, K. Food additive emulsifiers: a review of their role in foods, legislation and classifications, presence in food supply, dietary exposure, and safety assessment. Nutr. Rev. 79, 726–741 (2020).

    Article  Google Scholar 

  63. Chazelas, E. et al. Exposure to food additive mixtures in 106,000 French adults from the NutriNet-Santé cohort. Sci. Rep. 11, 19680 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vin, K. et al. Estimation of the dietary intake of 13 priority additives in France, Italy, the UK and Ireland as part of the FACET project. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 30, 2050–2080 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Swidsinski, A. et al. Bacterial overgrowth and inflammation of small intestine after carboxymethylcellulose ingestion in genetically susceptible mice. Inflamm. Bowel Dis. 15, 359–364 (2009).

    Article  PubMed  Google Scholar 

  66. Roberts, C. L. et al. Translocation of Crohn’s disease Escherichia coli across M-cells: contrasting effects of soluble plant fibres and emulsifiers. Gut 59, 1331–1339 (2010).

    Article  PubMed  Google Scholar 

  67. Maronpot, R. R., Davis, J., Moser, G., Giri, D. K. & Hayashi, S. M. Evaluation of 90-day oral rat toxicity studies on the food additive, gum ghatti. Food Chem. Toxicol. 51, 215–224 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Chassaing, B. et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519, 92–96 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lecomte, M. et al. Dietary emulsifiers from milk and soybean differently impact adiposity and inflammation in association with modulation of colonic goblet cells in high-fat fed mice. Mol. Nutr. Food Res. 60, 609–620 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Viennois, E., Merlin, D., Gewirtz, A. T. & Chassaing, B. Dietary emulsifier-induced low-grade inflammation promotes colon carcinogenesis. Cancer Res. 77, 27–40 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Chassaing, B., Van de Wiele, T., De Bodt, J., Marzorati, M. & Gewirtz, A. T. Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut 66, 1414–1427 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Jiang, Z. et al. Antimicrobial emulsifier-glycerol monolaurate induces metabolic syndrome, gut microbiota dysbiosis, and systemic low-grade inflammation in low-fat diet fed mice. Mol. Nutr. Food Res. 62, 1700547 (2018).

    Article  Google Scholar 

  73. Lock, J. Y., Carlson, T. L., Wang, C. M., Chen, A. & Carrier, R. L. Acute exposure to commonly ingested emulsifiers alters intestinal mucus structure and transport properties. Sci. Rep. 8, 10008 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  74. Laudisi, F. et al. The food additive maltodextrin promotes endoplasmic reticulum stress-driven mucus depletion and exacerbates intestinal inflammation. Cell Mol. Gastroenterol. Hepatol. 7, 457–473 (2019).

    Article  PubMed  Google Scholar 

  75. Holder, M. K. et al. Dietary emulsifiers consumption alters anxiety-like and social-related behaviors in mice in a sex-dependent manner. Sci. Rep. 9, 172 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  76. Temkin, A. M. et al. Increased adiposity, inflammation, metabolic disruption and dyslipidemia in adult male offspring of DOSS treated C57BL/6 dams. Sci. Rep. 9, 1530 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  77. Furuhashi, H. et al. Dietary emulsifier polysorbate-80-induced small-intestinal vulnerability to indomethacin-induced lesions via dysbiosis. J. Gastroenterol. Hepatol. 35, 110–117 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Zhao, M. et al. Modulation of the gut microbiota during high-dose glycerol monolaurate-mediated amelioration of obesity in mice fed a high-fat diet. mBio 11, e00190-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Sandall, A. M. et al. Emulsifiers impact colonic length in mice and emulsifier restriction is feasible in people with Crohn’s disease. Nutrients 12, 2827 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Miclotte, L. et al. Dietary emulsifiers alter composition and activity of the human gut microbiota in vitro, irrespective of chemical or natural emulsifier origin. Front. Microbiol. 11, 577474 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Nishimura, S. et al. Polysorbate 80-induced leaky gut impairs skeletal muscle metabolism in mice. Physiol. Rep. 8, e14629 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Viennois, E. et al. Dietary emulsifiers directly impact adherent-invasive E. coli gene expression to drive chronic intestinal inflammation. Cell Rep. 33, 108229 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Viennois, E. & Chassaing, B. Consumption of select dietary emulsifiers exacerbates the development of spontaneous intestinal adenoma. Int. J. Mol. Sci. 22, 2602 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Naimi, S., Viennois, E., Gewirtz, A. T. & Chassaing, B. Direct impact of commonly used dietary emulsifiers on human gut microbiota. Microbiome 9, 66 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Um, C. Y. et al. Association of emulsifier and highly processed food intake with circulating markers of intestinal permeability and inflammation in the cancer prevention study-3 diet assessment sub-study. Nutr. Cancer 74, 1701–1711 (2021).

    Article  PubMed  Google Scholar 

  86. Rousta, E. et al. The emulsifier carboxymethylcellulose induces more aggressive colitis in humanized mice with inflammatory bowel disease microbiota than polysorbate-80. Nutrients 13, 3565 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chassaing, B. et al. Randomized controlled-feeding study of dietary emulsifier carboxymethylcellulose reveals detrimental impacts on the gut microbiota and metabolome. Gastroenterology 162, 743–756 (2022).

    Article  CAS  PubMed  Google Scholar 

  88. Viennois, E. & Chassaing, B. First victim, later aggressor: how the intestinal microbiota drives the pro-inflammatory effects of dietary emulsifiers? Gut Microbes 9, 1–4 (2018).

    Article  PubMed  Google Scholar 

  89. Daniel, N., Lecuyer, E. & Chassaing, B. Host/microbiota interactions in health and diseases — time for mucosal microbiology! Mucosal Immunol. 14, 1006–1016 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jin, G. et al. Maternal emulsifier p80 intake induces gut dysbiosis in offspring and increases their susceptibility to colitis in adulthood. mSystems 6, e01337-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Tang, Q. et al. Early life dietary emulsifier exposure predisposes the offspring to obesity through gut microbiota-FXR axis. Food Res. Int. 162, 111921 (2022).

    Article  CAS  PubMed  Google Scholar 

  92. Bhattacharyya, S. et al. A randomized trial of the effects of the no-carrageenan diet on ulcerative colitis disease activity. Nutr. Healthy Aging 4, 181–192 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04046913 (2024).

  94. Gardner, C. et al. Nonnutritive sweeteners: current use and health perspectives: a scientific statement from the American Heart Association and the American Diabetes Association. Diabetes Care 35, 1798–1808 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Roberts, A., Renwick, A. G., Sims, J. & Snodin, D. J. Sucralose metabolism and pharmacokinetics in man. Food Chem. Toxicol. 38, S31–41 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Byard, J. L. & Goldberg, L. The metabolism of saccharin in laboratory animals. Food Cosmet. Toxicol. 11, 391–402 (1973).

    Article  CAS  PubMed  Google Scholar 

  97. Asif, M. The prevention and control the type-2 diabetes by changing lifestyle and dietary pattern. J. Educ. Health Promot. 3, 1 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Sylvetsky, A. C., Welsh, J. A., Brown, R. J. & Vos, M. B. Low-calorie sweetener consumption is increasing in the United States. Am. J. Clin. Nutr. 96, 640–646 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Fitch, S. E. et al. Use of acceptable daily intake (ADI) as a health-based benchmark in nutrition research studies that consider the safety of low-calorie sweeteners (LCS): a systematic map. BMC Public Health 21, 956 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Qin, X. Etiology of inflammatory bowel disease: a unified hypothesis. World J. Gastroenterol. 18, 1708–1722 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Suez, J. et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 514, 181–186 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  102. Rodriguez-Palacios, A. et al. The artificial sweetener splenda promotes gut proteobacteria, dysbiosis, and myeloperoxidase reactivity in Crohn’s disease-like ileitis. Inflamm. Bowel Dis. 24, 1005–1020 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Magnuson, B. A. et al. Aspartame: a safety evaluation based on current use levels, regulations, and toxicological and epidemiological studies. Crit. Rev. Toxicol. 37, 629–727 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Palmnas, M. S. et al. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat. PLoS ONE 9, e109841 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  105. Zani, F. et al. The dietary sweetener sucralose is a negative modulator of T cell-mediated responses. Nature 615, 705–711 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bian, X. et al. Gut microbiome response to sucralose and its potential role in inducing liver inflammation in mice. Front. Physiol. 8, 487 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Bian, X. et al. Saccharin induced liver inflammation in mice by altering the gut microbiota and its metabolic functions. Food Chem. Toxicol. 107, 530–539 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Markus, V. et al. Inhibitory effects of artificial sweeteners on bacterial quorum sensing. Int. J. Mol. Sci. 22, 9863 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Landman, C. et al. Inter-kingdom effect on epithelial cells of the N-Acyl homoserine lactone 3-oxo-C12:2, a major quorum-sensing molecule from gut microbiota. PLoS ONE 13, e0202587 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Li, X. et al. Sucralose promotes colitis-associated colorectal cancer risk in a murine model along with changes in microbiota. Front. Oncol. 10, 710 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Shil, A. et al. Artificial sweeteners disrupt tight junctions and barrier function in the intestinal epithelium through activation of the sweet taste receptor, T1R3. Nutrients 12, 1862 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Guo, M. et al. Sucralose enhances the susceptibility to dextran sulfate sodium (DSS) induced colitis in mice with changes in gut microbiota. Food Funct. 12, 9380–9390 (2021).

    Article  CAS  PubMed  Google Scholar 

  113. Hanawa, Y. et al. Acesulfame potassium induces dysbiosis and intestinal injury with enhanced lymphocyte migration to intestinal mucosa. J. Gastroenterol. Hepatol. 36, 3140–3148 (2021).

    Article  CAS  PubMed  Google Scholar 

  114. Basson, A. R., Rodriguez-Palacios, A. & Cominelli, F. Artificial sweeteners: history and new concepts on inflammation. Front. Nutr. 8, 746247 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Lobach, A. R., Roberts, A. & Rowland, I. R. Assessing the in vivo data on low/no-calorie sweeteners and the gut microbiota. Food Chem. Toxicol. 124, 385–399 (2019).

    Article  CAS  PubMed  Google Scholar 

  116. Hugenholtz, F. & de Vos, W. M. Mouse models for human intestinal microbiota research: a critical evaluation. Cell Mol. Life Sci. 75, 149–160 (2018).

    Article  CAS  PubMed  Google Scholar 

  117. Seok, J. et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl Acad. Sci. USA 110, 3507–3512 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  118. Frankenfeld, C. L., Sikaroodi, M., Lamb, E., Shoemaker, S. & Gillevet, P. M. High-intensity sweetener consumption and gut microbiome content and predicted gene function in a cross-sectional study of adults in the United States. Ann. Epidemiol. 25, 736–742.e4 (2015).

    Article  PubMed  Google Scholar 

  119. Thomson, P., Santibanez, R., Aguirre, C., Galgani, J. E. & Garrido, D. Short-term impact of sucralose consumption on the metabolic response and gut microbiome of healthy adults. Br. J. Nutr. 122, 856–862 (2019).

    Article  CAS  PubMed  Google Scholar 

  120. Serrano, J. et al. High-dose saccharin supplementation does not induce gut microbiota changes or glucose intolerance in healthy humans and mice. Microbiome 9, 11 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ahmad, S. Y., Friel, J. & Mackay, D. The effects of non-nutritive artificial sweeteners, aspartame and sucralose, on the gut microbiome in healthy adults: secondary outcomes of a randomized double-blinded crossover clinical trial. Nutrients 12, 3408 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Mendoza-Martinez, V. M. et al. Is a non-caloric sweetener-free diet good to treat functional gastrointestinal disorder symptoms? A randomized controlled trial. Nutrients 14, 1095 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Riboli, E. et al. Carcinogenicity of aspartame, methyleugenol, and isoeugenol. Lancet Oncol. 24, 848–850 (2023).

    Article  CAS  PubMed  Google Scholar 

  124. Stepien, M. et al. Consumption of soft drinks and juices and risk of liver and biliary tract cancers in a European cohort. Eur. J. Nutr. 55, 7–20 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Jones, G. S. et al. Sweetened beverage consumption and risk of liver cancer by diabetes status: a pooled analysis. Cancer Epidemiol. 79, 102201 (2022).

    Article  PubMed  Google Scholar 

  126. McCullough, M. L., Hodge, R. A., Campbell, P. T., Guinter, M. A. & Patel, A. V. Sugar- and artificially-sweetened beverages and cancer mortality in a large U.S. prospective cohort. Cancer Epidemiol. Biomark. Prev. 31, 1907–1918 (2022).

    Article  Google Scholar 

  127. Zhao, L. et al. Sugar-sweetened and artificially sweetened beverages and risk of liver cancer and chronic liver disease mortality. JAMA 330, 537–546 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. European Food Safety Authority. Food colours. European Food Safety Authority https://www.efsa.europa.eu/en/topics/topic/food-colours (2023).

  129. Sharma, V., McKone, H. T. & Markow, P. G. A global perspective on the history, use, and identification of synthetic food dyes. J. Chem. Educ. 88, 24–28 (2011).

    Article  CAS  Google Scholar 

  130. Bastaki, M., Farrell, T., Bhusari, S., Bi, X. & Scrafford, C. Estimated daily intake and safety of FD&C food-colour additives in the US population. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 34, 891–904 (2017).

    Article  CAS  PubMed  Google Scholar 

  131. He, Z. et al. Food colorants metabolized by commensal bacteria promote colitis in mice with dysregulated expression of interleukin-23. Cell Metab. 33, 1358–1371.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Chen, L. et al. Diet modifies colonic microbiota and CD4+ T-cell repertoire to induce flares of colitis in mice with myeloid-cell expression of interleukin 23. Gastroenterology 155, 1177–1191.e16 (2018).

    Article  CAS  PubMed  Google Scholar 

  133. Feng, J., Cerniglia, C. E. & Chen, H. Toxicological significance of azo dye metabolism by human intestinal microbiota. Front. Biosci. 4, 568–586 (2012).

    Article  Google Scholar 

  134. Zou, L. et al. Bacterial metabolism rescues the inhibition of intestinal drug absorption by food and drug additives. Proc. Natl Acad. Sci. USA 117, 16009–16018 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kwon, Y. H. et al. Chronic exposure to synthetic food colorant Allura Red AC promotes susceptibility to experimental colitis via intestinal serotonin in mice. Nat. Commun. 13, 7617 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lomer, M. C., Thompson, R. P. & Powell, J. J. Fine and ultrafine particles of the diet: influence on the mucosal immune response and association with Crohn’s disease. Proc. Nutr. Soc. 61, 123–130 (2002).

    Article  PubMed  Google Scholar 

  137. Becker, H. M., Bertschinger, M. M. & Rogler, G. Microparticles and their impact on intestinal immunity. Dig. Dis. 30, 47–54 (2012).

    Article  PubMed  Google Scholar 

  138. European Food Safety Authority. Safety assessment of titanium dioxide (e171) as a food additive. EFSA J. 19, e06585 (2021).

    Google Scholar 

  139. Lomer, M. C. et al. Dietary sources of inorganic microparticles and their intake in healthy subjects and patients with Crohn’s disease. Br. J. Nutr. 92, 947–955 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Huybrechts, I. et al. Long-term dietary exposure to different food colours in young children living in different European countries. EFSA Supporting Publ. 7, 53E (2010).

    Google Scholar 

  141. Ruiz, P. A. et al. Titanium dioxide nanoparticles exacerbate DSS-induced colitis: role of the NLRP3 inflammasome. Gut 66, 1216–1224 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Bettini, S. et al. Food-grade TiO2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon. Sci. Rep. 7, 40373 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  143. Proquin, H. et al. Transcriptomics analysis reveals new insights in E171-induced molecular alterations in a mouse model of colon cancer. Sci. Rep. 8, 9738 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  144. Urrutia-Ortega, I. M. et al. Food-grade titanium dioxide exposure exacerbates tumor formation in colitis associated cancer model. Food Chem. Toxicol. 93, 20–31 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. Pineton de Chambrun, G. et al. Aluminum enhances inflammation and decreases mucosal healing in experimental colitis in mice. Mucosal Immunol. 7, 589–601 (2014).

    Article  CAS  PubMed  Google Scholar 

  146. Talbot, P. et al. Food-grade TiO2 is trapped by intestinal mucus in vitro but does not impair mucin O-glycosylation and short-chain fatty acid synthesis in vivo: implications for gut barrier protection. J. Nanobiotechnol. 16, 53 (2018).

    Article  Google Scholar 

  147. Powell, J. J. et al. Characterisation of inorganic microparticles in pigment cells of human gut associated lymphoid tissue. Gut 38, 390–395 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lomer, M. C. et al. Lack of efficacy of a reduced microparticle diet in a multi-centred trial of patients with active Crohn’s disease. Eur. J. Gastroenterol. Hepatol. 17, 377–384 (2005).

    Article  PubMed  Google Scholar 

  149. Lomer, M. C., Harvey, R. S., Evans, S. M., Thompson, R. P. & Powell, J. J. Efficacy and tolerability of a low microparticle diet in a double blind, randomized, pilot study in Crohn’s disease. Eur. J. Gastroenterol. Hepatol. 13, 101–106 (2001).

    Article  CAS  PubMed  Google Scholar 

  150. Vasant, D. H. & Ford, A. C. Functional gastrointestinal disorders in inflammatory bowel disease: time for a paradigm shift? World J. Gastroenterol. 26, 3712–3719 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Cox, S. R. et al. Effects of low FODMAP diet on symptoms, fecal microbiome, and markers of inflammation in patients with quiescent inflammatory bowel disease in a randomized trial. Gastroenterology 158, 176–188.e7 (2020).

    Article  CAS  PubMed  Google Scholar 

  152. Levine, A. et al. Crohn’s disease exclusion diet plus partial enteral nutrition induces sustained remission in a randomized controlled trial. Gastroenterology 157, 440–450.e8 (2019).

    Article  PubMed  Google Scholar 

  153. Logan, M. et al. Analysis of 61 exclusive enteral nutrition formulas used in the management of active Crohn’s disease — new insights into dietary disease triggers. Aliment. Pharmacol. Ther. 51, 935–947 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Yanai, H. et al. The Crohn’s disease exclusion diet for induction and maintenance of remission in adults with mild-to-moderate Crohn’s disease (CDED-AD): an open-label, pilot, randomised trial. Lancet Gastroenterol. Hepatol. 7, 49–59 (2022).

    Article  PubMed  Google Scholar 

  155. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03171246 (2024).

  156. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04225689 (2020).

  157. Koios, D., Machado, P. & Lacy-Nichols, J. Representations of ultra-processed foods: a global analysis of how dietary guidelines refer to levels of food processing. Int. J. Health Policy Manag. 11, 2588–2599 (2022).

    PubMed  PubMed Central  Google Scholar 

  158. Global Food Research Program. Fiscal policies. Global Food Research Program https://www.globalfoodresearchprogram.org/policy-research/fiscal-policies/ (2023).

  159. Srour, B. et al. Effect of a new graphically modified Nutri-Score on the objective understanding of foods’ nutrient profile and ultraprocessing: a randomised controlled trial. BMJ Nutr. Prev. Health 6, 108–118 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Tobias, D. K. & Hall, K. D. Eliminate or reformulate ultra-processed foods? Biological mechanisms matter. Cell Metab. 33, 2314–2315 (2021).

    Article  CAS  PubMed  Google Scholar 

  161. Braesco, V. et al. Ultra-processed foods: how functional is the NOVA system? Eur. J. Clin. Nutr. 76, 1245–1253 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Institute of Grocery Distribution. Ultraprocessed foods: a consumer perspective. IGD https://www.igd.com/articles/article-viewer/t/ultra-processed-foods-a-consumer-perspective/i/30969 (2023).

  163. Staudacher, H. M., Yao, C. K., Chey, W. D. & Whelan, K. Optimal design of clinical trials of dietary interventions in disorders of gut-brain interaction. Am. J. Gastroenterol. 117, 973–984 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Sandall, A., Smith, L., Svensen, E. & Whelan, K. Emulsifiers in ultra-processed foods in the United Kingdom food supply. Public Health Nutr. 26, 2256–2270 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Chazelas, E. et al. Food additives: distribution and co-occurrence in 126,000 food products of the French market. Sci. Rep. 10, 3980 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  166. Staudacher, H. M., Irving, P. M., Lomer, M. C. E. & Whelan, K. The challenges of control groups, placebos and blinding in clinical trials of dietary interventions. Proc. Nutr. Soc. 76, 203–212 (2017).

    Article  PubMed  Google Scholar 

  167. Ramirez Carnero, A. et al. Presence of perfluoroalkyl and polyfluoroalkyl substances (PFAS) in food contact materials (FCM) and its migration to food. Foods 10, 1443 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Li, J. et al. Per- and polyfluoroalkyl substances exposure and its influence on the intestinal barrier: an overview on the advances. Sci. Total. Env. 852, 158362 (2022).

    Article  CAS  Google Scholar 

  169. Daniel, N., Gewirtz, A. T. & Chassaing, B. Akkermansia muciniphila counteracts the deleterious effects of dietary emulsifiers on microbiota and host metabolism. Gut 72, 906–917 (2023).

    Article  CAS  PubMed  Google Scholar 

  170. Kordahi, M. C., Delaroque, C., Bredeche, M. F., Gewirtz, A. T. & Chassaing, B. Vaccination against microbiota motility protects mice from the detrimental impact of dietary emulsifier consumption. PLoS Biol. 21, e3002289 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Bian, X. et al. The artificial sweetener acesulfame potassium affects the gut microbiome and body weight gain in CD-1 mice. PLoS ONE 12, e0178426 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Wang, Q. P., Browman, D., Herzog, H. & Neely, G. G. Non-nutritive sweeteners possess a bacteriostatic effect and alter gut microbiota in mice. PLoS ONE 13, e0199080 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Van den Abbeele, P. et al. Low-no-calorie sweeteners exert marked compound-specific impact on the human gut microbiota ex vivo. Int. J. Food Sci. Nutr. 74, 630–644 (2023).

    Article  PubMed  Google Scholar 

  174. Chi, L. et al. Effects of the artificial sweetener neotame on the gut microbiome and fecal metabolites in mice. Molecules 23, 367 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Anderson, R. L. & Kirkland, J. J. The effect of sodium saccharin in the diet on caecal microflora. Food Cosmet. Toxicol. 18, 353–355 (1980).

    Article  CAS  PubMed  Google Scholar 

  176. Becker, S. L. et al. Effect of stevia on the gut microbiota and glucose tolerance in a murine model of diet-induced obesity. FEMS Microbiol. Ecol. 96, fiaa079 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Shil, A. & Chichger, H. Artificial sweeteners negatively regulate pathogenic characteristics of two model gut bacteria, E. coli and E. faecalis. Int. J. Mol. Sci. 22, 5228 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Abou-Donia, M. B., El-Masry, E. M., Abdel-Rahman, A. A., McLendon, R. E. & Schiffman, S. S. Splenda alters gut microflora and increases intestinal p-glycoprotein and cytochrome p-450 in male rats. J. Toxicol. Env. Health A 71, 1415–1429 (2008).

    Article  CAS  Google Scholar 

  179. Zheng, Z. et al. Low dose of sucralose alter gut microbiome in mice. Front. Nutr. 9, 848392 (2022).

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  180. Uebanso, T. et al. Effects of low-dose non-caloric sweetener consumption on gut microbiota in mice. Nutrients 9, 560 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Escoto, J. A. et al. Chronic consumption of sweeteners in mice and its effect on the immune system and the small intestine microbiota. Biomedica 41, 504–530 (2021).

    Article  PubMed  Google Scholar 

  182. Rosales-Gomez, C. A. et al. Chronic consumption of sweeteners and its effect on glycaemia, cytokines, hormones, and lymphocytes of GALT in CD1 mice. Biomed. Res. Int. 2018, 1345282 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Gerasimidis, K. et al. The impact of food additives, artificial sweeteners and domestic hygiene products on the human gut microbiome and its fibre fermentation capacity. Eur. J. Nutr. 59, 3213–3230 (2020).

    Article  CAS  PubMed  Google Scholar 

  184. Suez, J. et al. Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance. Cell 185, 3307–3328.e19 (2022).

    Article  CAS  PubMed  Google Scholar 

  185. Svolos, V. et al. Treatment of active Crohn’s disease with an ordinary food-based diet that replicates exclusive enteral nutrition. Gastroenterology 156, 1354–1367.e6 (2019).

    Article  PubMed  Google Scholar 

  186. Lewis, J. D. et al. A randomized trial comparing the specific carbohydrate diet to a Mediterranean diet in adults with Crohn’s disease. Gastroenterology 161, 837–852.e9 (2021).

    Article  CAS  PubMed  Google Scholar 

  187. Konijeti, G. G. et al. Efficacy of the autoimmune protocol diet for inflammatory bowel disease. Inflamm. Bowel Dis. 23, 2054–2060 (2017).

    Article  PubMed  Google Scholar 

  188. Albenberg, L. et al. A diet low in red and processed meat does not reduce rate of Crohn’s disease flares. Gastroenterology 157, 128–136.e5 (2019).

    Article  PubMed  Google Scholar 

  189. Slimani, N. et al. Contribution of highly industrially processed foods to the nutrient intakes and patterns of middle-aged populations in the European Prospective Investigation into Cancer and Nutrition study. Eur. J. Clin. Nutr. 63, S206–225, (2009).

    Article  CAS  PubMed  Google Scholar 

  190. Eicher-Miller, H. A., Fulgoni, V. L. III & Keast, D. R. Energy and nutrient intakes from processed foods differ by sex, income status, and race/ethnicity of US adults. J. Acad. Nutr. Diet. 115, 907–918.e6 (2015).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge research funding from The Leona M. and Harry B. Helmsley Charitable Trust. The funder had no role in the design, performance or approval of this Review.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the manuscript.

Corresponding author

Correspondence to Kevin Whelan.

Ethics declarations

Competing interests

K.W. has received research grants related to diet and gut health and disease from government agencies, including the Medical Research Council and National Institute of Health Research, charities, including Crohn’s & Colitis UK, The Helmsley Charitable Trust, Kenneth Rainin Foundation, and commercial funders, including Almond Board of California, Danone, and International Nut and Dried Fruit Council. K.W. has received speaker fees from Danone. K.W. is the holder of a joint patent to use volatile organic compounds as biomarkers in irritable bowel syndrome (PCT/GB2020/051604). A.S.B. is funded through a fellowship from The Helmsley Charitable Trust. J.O.L. has received research grants related to diet and gut health and disease from The Helmsley Charitable Trust. B.C. is supported by a starting grant from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC-2018-StG-804135), a Chaire d’Excellence from IdEx Université de Paris (ANR-18-IDEX-0001), an Innovator Award from the Kenneth Rainin Foundation, an award from the Fondation de l’Avenir (AP-RM-21-032), ANR grants EMULBIONT (ANR-21-CE15-0042-01) and DREAM (ANR-20-PAMR-0002) and the national programme “Microbiote” from INSERM. B.C. reports honorarium and consulting fees from Nestlé, Procter and Gamble, and Qiagen.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Andrew Chan, Gerhard Rogler and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Review criteria An online literature search was performed using the Medline database for studies investigating mechanisms (for example, in vitro, animal studies), associations from observational studies (for example, case–control, cohort), and causal or effectiveness outcomes from intervention studies (for example, randomized controlled trials) in relation to ultra-processed food and food additives in gut health and disease. All studies that addressed the aim of this Review were potentially eligible, and strengths and limitations of study design that influence interpretation of the outcome are discussed.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whelan, K., Bancil, A.S., Lindsay, J.O. et al. Ultra-processed foods and food additives in gut health and disease. Nat Rev Gastroenterol Hepatol (2024). https://doi.org/10.1038/s41575-024-00893-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41575-024-00893-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing