Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The maternal gut microbiome in pregnancy: implications for the developing immune system

Abstract

The gut microbiome has important roles in host metabolism and immunity, and microbial dysbiosis affects human physiology and health. Maternal immunity and microbial metabolites during pregnancy, microbial transfer during birth, and transfer of immune factors, microorganisms and metabolites via breastfeeding provide critical sources of early-life microbial and immune training, with important consequences for human health. Only a few studies have directly examined the interactions between the gut microbiome and the immune system during pregnancy, and the subsequent effect on offspring development. In this Review, we aim to describe how the maternal microbiome shapes overall pregnancy-associated maternal, fetal and early neonatal immune systems, focusing on the existing evidence and highlighting current gaps to promote further research.

Key points

  • Microbiota–host interactions during pregnancy are key for maternal and neonatal health outcomes and healthy offspring development.

  • Little is known regarding how the maternal microbiota and metabolites shape the maternal–fetal immune system during pregnancy.

  • Limited information is available on the factors that contribute to maternal microbiota–immune system feedback during pregnancy and early lactation.

  • Prenatal and postnatal immune system–microbiome interactions are relevant for human health.

  • The role of breast milk compounds in neonatal immune system development and microbial assembly warrants further studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microbial metabolites from the maternal microbiome contribute to fetal and neonatal immune development.
Fig. 2: Human milk microorganisms and their metabolites support the gut microbiome and immune system in the offspring.

Similar content being viewed by others

References

  1. Nuriel-Ohayon, M., Neuman, H. & Koren, O. Microbial changes during pregnancy, birth, and infancy. Front. Microbiol. 7, 1031 (2016).

    PubMed  PubMed Central  Google Scholar 

  2. Gomez de Aguero, M. et al. The maternal microbiota drives early postnatal innate immune development. Science 351, 1296–1302 (2016).

    PubMed  Google Scholar 

  3. Li, Y. et al. In utero human intestine harbors unique metabolome, including bacterial metabolites. JCI Insight 5, e138751 (2020).

    PubMed  PubMed Central  Google Scholar 

  4. Vuong, H. E. et al. The maternal microbiome modulates fetal neurodevelopment in mice. Nature 586, 281–286 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Calatayud, M., Koren, O. & Collado, M. C. Maternal microbiome and metabolic health program microbiome development and health of the offspring. Trends Endocrinol. Metab. 30, 735–744 (2019).

    CAS  PubMed  Google Scholar 

  6. Davenport, E. R. et al. The human microbiome in evolution. BMC Biol. 15, 127 (2017).

    PubMed  PubMed Central  Google Scholar 

  7. Moeller, A. H. et al. Rapid changes in the gut microbiome during human evolution. Proc. Natl Acad. Sci. USA 111, 16431–16435 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Koren, O. et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150, 470–480 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang, X. et al. Altered gut bacterial and metabolic signatures and their interaction in gestational diabetes mellitus. Gut Microbes 12, 1–13 (2020).

    PubMed  Google Scholar 

  10. Stensballe, L. G., Simonsen, J., Jensen, S. M., Bonnelykke, K. & Bisgaard, H. Use of antibiotics during pregnancy increases the risk of asthma in early childhood. J. Pediatr. 162, 832–838.e3 (2013).

    CAS  PubMed  Google Scholar 

  11. Wastyk, H. C. et al. Gut-microbiota-targeted diets modulate human immune status. Cell 184, 4137–4153.e14 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Vento-Tormo, R. et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature 563, 347–353 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nakajima, A. et al. Impact of maternal dietary gut microbial metabolites on an offspring’s systemic immune response in mouse models. Biosci. Microbiota Food Health 39, 33–38 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Thomas, J. R. et al. Human HLFneg placental erythro-myeloid progenitors give rise to HLA class IIneg Hofbauer cells. Preprint at bioRxiv https://doi.org/10.1101/2022.02.26.482080 (2022).

  15. Thomas, J. R. et al. Phenotypic and functional characterization of first-trimester human placental macrophages, Hofbauer cells. J. Exp. Med. 218, 20200891 (2021).

    Google Scholar 

  16. Suryawanshi, H. et al. A single-cell survey of the human first-trimester placenta and decidua. Sci. Adv. 4, eaau4788 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Toothaker, J. M. et al. Immune landscape of human placental villi using single-cell analysis. Development 149, dev200013 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pavlicev, M. et al. Single-cell transcriptomics of the human placenta: inferring the cell communication network of the maternal-fetal interface. Genome Res. 27, 349–361 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Schumacher, A., Sharkey, D. J., Robertson, S. A. & Zenclussen, A. C. Immune cells at the fetomaternal interface: how the microenvironment modulates immune cells to foster fetal development. J. Immunol. 201, 325–334 (2018).

    CAS  PubMed  Google Scholar 

  20. Erlebacher, A. Immunology of the maternal-fetal interface. Annu. Rev. Immunol. 31, 387–411 (2013).

    CAS  PubMed  Google Scholar 

  21. Reyes, L. & Golos, T. G. Hofbauer cells: their role in healthy and complicated pregnancy. Front. Immunol. 9, 2628 (2018).

    PubMed  PubMed Central  Google Scholar 

  22. Hoo, R., Nakimuli, A. & Vento-Tormo, R. Innate immune mechanisms to protect against infection at the human decidual-placental interface. Front. Immunol. 11, 2070 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Thomas, J. R. et al. Primitive haematopoiesis in the human placenta gives rise to macrophages with epigenetically silenced HLA-DR. Nat. Commun. 14, 1764 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Schliefsteiner, C., Ibesich, S. & Wadsack, C. Placental Hofbauer cell polarization resists inflammatory cues in vitro. Int. J. Mol. Sci. 21, 736 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Carosella, E. D., Rouas-Freiss, N., Tronik-Le Roux, D., Moreau, P. & LeMaoult, J. HLA-G: an immune checkpoint molecule. Adv. Immunol. 127, 33–144 (2015).

    CAS  PubMed  Google Scholar 

  26. Richardson, C., King, W. & Vashisht, K. CD28 expression in human CD163+ placental Hofbauer cells. Placenta 89, 8–9 (2020).

    PubMed  Google Scholar 

  27. Estrada-Capetillo, L. et al. CD28 is expressed by macrophages with anti-inflammatory potential and limits their T-cell activating capacity. Eur. J. Immunol. 51, 824–834 (2021).

    CAS  PubMed  Google Scholar 

  28. Stras, S. F. et al. Maturation of the human intestinal immune system occurs early in fetal development. Dev. Cell 51, 357–373.e5 (2019).

    CAS  PubMed  Google Scholar 

  29. Schreurs, R. et al. Human fetal TNF-α-cytokine-producing CD4+ effector memory T cells promote intestinal development and mediate inflammation early in life. Immunity 50, 462–476.e8 (2019).

    CAS  PubMed  Google Scholar 

  30. Li, N. et al. Memory CD4+ T cells are generated in the human fetal intestine. Nat. Immunol. 20, 301–312 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Pique-Regi, R. et al. Single cell transcriptional signatures of the human placenta in term and preterm parturition. eLife 8, e52004 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Angelo, L. S., Bimler, L. H., Nikzad, R., Aviles-Padilla, K. & Paust, S. CXCR6+ NK cells in human fetal liver and spleen possess unique phenotypic and functional capabilities. Front. Immunol. 10, 469 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Halkias, J. et al. CD161 contributes to prenatal immune suppression of IFNγ-producing PLZF+ T cells. J. Clin. Invest. 129, 3562–3577 (2019).

    PubMed  PubMed Central  Google Scholar 

  34. Mishra, A. et al. Microbial exposure during early human development primes fetal immune cells. Cell 184, 3394–3409.e20 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Toothaker, J. M. et al. Immune cells in the placental villi contribute to intra-amniotic inflammation. Front. Immunol. 11, 866 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Odorizzi, P. M. et al. In utero priming of highly functional effector T cell responses to human malaria. Sci. Transl. Med. 10, eaat6176 (2018).

    PubMed  PubMed Central  Google Scholar 

  37. Frascoli, M. et al. Alloreactive fetal T cells promote uterine contractility in preterm labor via IFN-γ and TNF-α. Sci. Transl. Med. 10, eaan2263 (2018).

    PubMed  PubMed Central  Google Scholar 

  38. Zhang, X. et al. CD4 T cells with effector memory phenotype and function develop in the sterile environment of the fetus. Sci. Transl. Med. 6, 238ra72 (2014).

    PubMed  Google Scholar 

  39. Rackaityte, E. & Halkias, J. Mechanisms of fetal T cell tolerance and immune regulation. Front. Immunol. 11, 588 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hossain, Z., Reza, A., Qasem, W. A., Friel, J. K. & Omri, A. Development of the immune system in the human embryo. Pediatr. Res. 92, 951–955 (2022).

    PubMed  Google Scholar 

  41. Brodin, P. Immune-microbe interactions early in life: a determinant of health and disease long term. Science 376, 945–950 (2022).

    CAS  PubMed  Google Scholar 

  42. Grossman, Z. & Paul, W. E. Adaptive cellular interactions in the immune system: the tunable activation threshold and the significance of subthreshold responses. Proc. Natl Acad. Sci. USA 89, 10365–10369 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Gao, Y. et al. Maternal gut microbiota during pregnancy and the composition of immune cells in infancy. Front. Immunol. 13, 986340 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hu, M. et al. Decreased maternal serum acetate and impaired fetal thymic and regulatory T cell development in preeclampsia. Nat. Commun. 10, 3031 (2019).

    PubMed  PubMed Central  Google Scholar 

  45. Miller, D., Gershater, M., Slutsky, R., Romero, R. & Gomez-Lopez, N. Maternal and fetal T cells in term pregnancy and preterm labor. Cell Mol. Immunol. 17, 693–704 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Silverstein, R. B. & Mysorekar, I. U. Group therapy on in utero colonization: seeking common truths and a way forward. Microbiome 9, 7 (2021).

    PubMed  PubMed Central  Google Scholar 

  47. McGovern, N. et al. Human fetal dendritic cells promote prenatal T-cell immune suppression through arginase-2. Nature 546, 662–666 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Rackaityte, E. et al. Viable bacterial colonization is highly limited in the human intestine in utero. Nat. Med. 26, 599–607 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lewis, R. M. et al. 3D visualization of trans-syncytial nanopores provides a pathway for paracellular diffusion across the human placental syncytiotrophoblast. iScience 25, 105453 (2022).

    PubMed  PubMed Central  Google Scholar 

  50. Darby, M. G. et al. Pre-conception maternal helminth infection transfers via nursing long-lasting cellular immunity against helminths to offspring. Sci. Adv. 5, eaav3058 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Theis, K. R. et al. Does the human placenta delivered at term have a microbiota? Results of cultivation, quantitative real-time PCR, 16S rRNA gene sequencing, and metagenomics. Am. J. Obstet. Gynecol. 220, 267.e1–267.e39 (2019).

    CAS  PubMed  Google Scholar 

  52. Kennedy, K. M. et al. Over-celling fetal microbial exposure. Cell 184, 5839–5841 (2021).

    CAS  PubMed  Google Scholar 

  53. Leiby, J. S. et al. Lack of detection of a human placenta microbiome in samples from preterm and term deliveries. Microbiome 6, 196 (2018).

    PubMed  PubMed Central  Google Scholar 

  54. Kennedy, K. M. et al. Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies. Nature 613, 639–649 (2023).

    CAS  PubMed  Google Scholar 

  55. Theis, K. R., Romero, R., Winters, A. D., Jobe, A. H. & Gomez-Lopez, N. Lack of evidence for microbiota in the placental and fetal tissues of rhesus macaques. mSphere 5, e00210–e00220 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Theis, K. R. et al. No consistent evidence for microbiota in murine placental and fetal tissues. mSphere 5, e00933–e01019 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Walker, W. A. & Iyengar, R. S. Breast milk, microbiota, and intestinal immune homeostasis. Pediatr. Res. 77, 220–228 (2015).

    CAS  PubMed  Google Scholar 

  58. Song, X. et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature 577, 410–415 (2020).

    CAS  PubMed  Google Scholar 

  59. Quinn, R. A. et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature 579, 123–129 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. De Angelis, M. et al. Microbiota and metabolome associated with immunoglobulin A nephropathy (IgAN). PLoS ONE 9, e99006 (2014).

    PubMed  PubMed Central  Google Scholar 

  61. Petersen, C. et al. A rich meconium metabolome in human infants is associated with early-life gut microbiota composition and reduced allergic sensitization. Cell Rep. Med. 2, 100260 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Pessa-Morikawa, T. et al. Maternal microbiota-derived metabolic profile in fetal murine intestine, brain and placenta. BMC Microbiol. 22, 46 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ferretti, P. et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24, 133–145.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Turjeman, S., Collado, M. C. & Koren, O. The gut microbiome in pregnancy and pregnancy complications. Curr. Opin. Endocr. Metab. Res. 18, 133–138 (2021).

    CAS  Google Scholar 

  65. Souza, R. T. et al. Metabolomics applied to maternal and perinatal health: a review of new frontiers with a translation potential. Clinics 74, e894 (2019).

    PubMed  PubMed Central  Google Scholar 

  66. Lenicek, M., Olde Damink, S. W. M. & Schaap, F. G. Gut microbes take it to the next level? first insights into farnesoid X receptor agonists of microbial origin. Hepatology 72, 1483–1485 (2020).

    CAS  PubMed  Google Scholar 

  67. Campbell, C. et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature 581, 475–479 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Tenenbaum-Gavish, K. et al. First trimester biomarkers for prediction of gestational diabetes mellitus. Placenta 101, 80–89 (2020).

    CAS  PubMed  Google Scholar 

  69. Vladu, I. M. et al. Maternal and fetal metabolites in gestational diabetes mellitus: a narrative review. Metabolites 12, 383 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang, S., Liu, Y., Qin, S. & Yang, H. Composition of maternal circulating short-chain fatty acids in gestational diabetes mellitus and their associations with placental metabolism. Nutrients 14, 3727 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Huang, X. et al. Decreased monocyte count is associated with gestational diabetes mellitus development, macrosomia, and inflammation. J. Clin. Endocrinol. Metab. 107, 192–204 (2022).

    PubMed  Google Scholar 

  72. McElwain, C. J., McCarthy, F. P. & McCarthy, C. M. Gestational diabetes mellitus and maternal immune dysregulation: what we know so far. Int. J. Mol. Sci. 22, 4261 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Pinto, Y. et al. Gestational diabetes is driven by microbiota-induced inflammation months before diagnosis. Gut 72, 918–928 (2023).

    CAS  PubMed  Google Scholar 

  74. Chen, T. et al. Gestational diabetes mellitus is associated with the neonatal gut microbiota and metabolome. BMC Med. 19, 120 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Lv, L.-J. et al. Deep metagenomic characterization of gut microbial community and function in preeclampsia. Front. Cell Infect. Microbiol. 12, 933523 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang, J., Gu, X., Yang, J., Wei, Y. & Zhao, Y. Gut microbiota dysbiosis and increased plasma LPS and TMAO levels in patients with preeclampsia. Front. Cell Infect. Microbiol. 9, 409 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Chang, Y. et al. Short-chain fatty acids accompanying changes in the gut microbiome contribute to the development of hypertension in patients with preeclampsia. Clin. Sci. 134, 289–302 (2020).

    CAS  Google Scholar 

  78. Ishimwe, J. A. Maternal microbiome in preeclampsia pathophysiology and implications on offspring health. Physiol. Rep. 9, e14875 (2021).

    PubMed  PubMed Central  Google Scholar 

  79. Patel, R. M. Short and long-term outcomes for extremely preterm infants. Am. J. Perinatol. 33, 318–328 (2016).

    PubMed  PubMed Central  Google Scholar 

  80. Melville, J. M. & Moss, T. J. M. The immune consequences of preterm birth. Front. Neurosci. 7, 79 (2013).

    PubMed  PubMed Central  Google Scholar 

  81. Yang, R. et al. Prematurely delivering mothers show reductions of Lachnospiraceae in their gut microbiomes. BMC Microbiol. 23, 169 (2023).

    PubMed  PubMed Central  Google Scholar 

  82. Hiltunen, H. et al. Preterm infant meconium microbiota transplant induces growth failure, inflammatory activation, and metabolic disturbances in germ-free mice. Cell Rep. Med. 2, 100447 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Underwood, M. A. & Sohn, K. The microbiota of the extremely preterm infant. Clin. Perinatol. 44, 407–427 (2017).

    PubMed  PubMed Central  Google Scholar 

  84. Drell, T. et al. The development of gut microbiota in critically ill extremely low birth weight infants assessed with 16S rRNA gene based sequencing. Gut Microbes 5, 304–312 (2014).

    PubMed  PubMed Central  Google Scholar 

  85. Ansari, A., Bose, S., You, Y., Park, S. & Kim, Y. Molecular mechanism of microbiota metabolites in preterm birth: pathological and therapeutic insights. Int. J. Mol. Sci. 22, 8145 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Tabilas, C. et al. Early microbial exposure shapes adult immunity by altering CD8+ T cell development. Proc. Natl Acad. Sci. USA 119, e2212548119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Gensollen, T., Iyer, S. S., Kasper, D. L. & Blumberg, R. S. How colonization by microbiota in early life shapes the immune system. Science 352, 539–544 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Sprockett, D., Fukami, T. & Relman, D. A. Role of priority effects in the early-life assembly of the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 15, 197–205 (2018).

    PubMed  PubMed Central  Google Scholar 

  89. Wesemann, D. R. & Nagler, C. R. The microbiome, timing, and barrier function in the context of allergic disease. Immunity 44, 728–738 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Grigg, J. B. & Sonnenberg, G. F. Host-microbiota interactions shape local and systemic inflammatory diseases. J. Immunol. 198, 564–571 (2017).

    CAS  PubMed  Google Scholar 

  91. Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9, 313–323 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Lotz, M. et al. Postnatal acquisition of endotoxin tolerance in intestinal epithelial cells. J. Exp. Med. 203, 973–984 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Henrick, B. M. et al. Bifidobacteria-mediated immune system imprinting early in life. Cell 184, 3884–3898.e11 (2021).

    CAS  PubMed  Google Scholar 

  94. Olin, A. et al. Stereotypic immune system development in newborn children. Cell 174, 1277–1292.e14 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Knoop, K. A. et al. Microbial antigen encounter during a preweaning interval is critical for tolerance to gut bacteria. Sci. Immunol. 2, eaa01314 (2017).

    Google Scholar 

  96. Al Nabhani, Z. et al. A weaning reaction to microbiota is required for resistance to immunopathologies in the adult. Immunity 50, 1276–1288.e5 (2019).

    CAS  PubMed  Google Scholar 

  97. Sefik, E. et al. Mucosal immunology. individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells. Science 349, 993–997 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Riskin, A. et al. Changes in immunomodulatory constituents of human milk in response to active infection in the nursing infant. Pediatr. Res. 71, 220–225 (2012).

    CAS  PubMed  Google Scholar 

  99. van den Elsen, L. W. J., Kollmann, T. R. & Verhasselt, V. Microbial antigen in human milk: a natural vaccine? Mucosal Immunol. 15, 1058–1059 (2022).

    PubMed  PubMed Central  Google Scholar 

  100. Donaldson, G. P. et al. Gut microbiota utilize immunoglobulin A for mucosal colonization. Science 360, 795–800 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Yokanovich, L. T., Newberry, R. D. & Knoop, K. A. Regulation of oral antigen delivery early in life: implications for oral tolerance and food allergy. Clin. Exp. Allergy 51, 518–526 (2021).

    PubMed  PubMed Central  Google Scholar 

  102. Yang, S., Fujikado, N., Kolodin, D., Benoist, C. & Mathis, D. Immune tolerance. Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. Science 348, 589–594 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Aaltonen, J., Bjorses, P., Sandkuijl, L., Perheentupa, J. & Peltonen, L. An autosomal locus causing autoimmune disease: autoimmune polyglandular disease type I assigned to chromosome 21. Nat. Genet. 8, 83–87 (1994).

    CAS  PubMed  Google Scholar 

  104. Zegarra-Ruiz, D. F. et al. Thymic development of gut-microbiota-specific T cells. Nature 594, 413–417 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Redwine, L. S., Altemus, M., Leong, Y. M. & Carter, C. S. Lymphocyte responses to stress in postpartum women: relationship to vagal tone. Psychoneuroendocrinology 26, 241–251 (2001).

    CAS  PubMed  Google Scholar 

  106. Lovelady, C. A., Fuller, C. J., Geigerman, C. M., Hunter, C. P. & Kinsella, T. C. Immune status of physically active women during lactation. Med. Sci. Sports Exerc. 36, 1001–1007 (2004).

    PubMed  Google Scholar 

  107. Zimmer, J. P., Garza, C., Heller, M. E., Butte, N. & Goldman, A. S. Postpartum maternal blood helper T (CD3+CD4+) and cytotoxic T (CD3+CD8+) cells: correlations with iron status, parity, supplement use, and lactation status. Am. J. Clin. Nutr. 67, 897–904 (1998).

    CAS  PubMed  Google Scholar 

  108. Hu, J. et al. Immune cell profiling of preeclamptic pregnant and postpartum women by single-cell RNA sequencing. Int. Rev. Immunol. 11, 1–12 (2022).

    Google Scholar 

  109. Coley, E. J. L. & Hsiao, E. Y. Malnutrition and the microbiome as modifiers of early neurodevelopment. Trends Neurosci. 44, 753–764 (2021).

    CAS  PubMed  Google Scholar 

  110. Williams, J. E. et al. Strong multivariate relations exist among milk, oral, and fecal microbiomes in mother-infant dyads during the first six months postpartum. J. Nutr. 149, 902–914 (2019).

    PubMed  PubMed Central  Google Scholar 

  111. Carrothers, J. M. et al. Fecal microbial community structure is stable over time and related to variation in macronutrient and micronutrient intakes in lactating women. J. Nutr. 145, 2379–2388 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Nunn, K. L. et al. Changes in the vaginal microbiome during the pregnancy to postpartum transition. Reprod. Sci. 28, 1996–2005 (2021).

    CAS  PubMed  Google Scholar 

  113. Stinson, L. F. & Geddes, D. T. Microbial metabolites: the next frontier in human milk. Trends Microbiol. 30, 408–410 (2022).

    CAS  PubMed  Google Scholar 

  114. Kijner, S., Kolodny, O. & Yassour, M. Human milk oligosaccharides and the infant gut microbiome from an eco-evolutionary perspective. Curr. Opin. Microbiol. 68, 102156 (2022).

    CAS  PubMed  Google Scholar 

  115. Selma-Royo, M., Calvo Lerma, J., Cortes-Macias, E. & Collado, M. C. Human milk microbiome: from actual knowledge to future perspective. Semin. Perinatol. 45, 151450 (2021).

    PubMed  Google Scholar 

  116. Lycke, N. Y. & Bemark, M. The regulation of gut mucosal IgA B-cell responses: recent developments. Mucosal Immunol. 10, 1361–1374 (2017).

    CAS  PubMed  Google Scholar 

  117. Rosa, F. et al. Human milk oligosaccharides impact cellular and inflammatory gene expression and immune response. Front. Immunol. 13, 907529 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Donald, K., Petersen, C., Turvey, S. E., Finlay, B. B. & Azad, M. B. Secretory IgA: linking microbes, maternal health, and infant health through human milk. Cell Host Microbe 30, 650–659 (2022).

    CAS  PubMed  Google Scholar 

  119. Gustafson, C. E. et al. Limited expression of APRIL and its receptors prior to intestinal IgA plasma cell development during human infancy. Mucosal Immunol. 7, 467–477 (2014).

    CAS  PubMed  Google Scholar 

  120. Rogier, E. W. et al. Secretory antibodies in breast milk promote long-term intestinal homeostasis by regulating the gut microbiota and host gene expression. Proc. Natl Acad. Sci. USA 111, 3074–3079 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Gopalakrishna, K. P. et al. Maternal IgA protects against the development of necrotizing enterocolitis in preterm infants. Nat. Med. 25, 1110–1115 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Chutipongtanate, S., Morrow, A. L. & Newburg, D. S. Human milk extracellular vesicles: a biological system with clinical implications. Cells 11, 2345 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Gleeson, J. P. et al. Profiling of mature-stage human breast milk cells identifies six unique lactocyte subpopulations. Sci. Adv. 8, eabm6865 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Dawod, B., Marshall, J. S. & Azad, M. B. Breastfeeding and the developmental origins of mucosal immunity: how human milk shapes the innate and adaptive mucosal immune systems. Curr. Opin. Gastroenterol. 37, 547–556 (2021).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank R. Michita and S. Turjeman for their valuable input. Much appreciation to C. Eke for his contributions to the original version of the Figures. O.K. is supported by the European Research Council Consolidator grant (grant agreement no. 101001355). I.U.M. is supported by NIH/NICHD grant R01 HD091218 and 3R01HD091218-04S1(RADx-UP Supplement). O.K. and M.C.C. acknowledge the support by Biostime Institute Nutrition and Care (BINC) grant. L.K. is supported by Yale University pilot funds, Binational Science Foundation (2019075), and the National Institutes of Health (R21TR002639, R21HD102565, R01DK129552 and R01AI171980). P.B. is supported by grants from Knut and Alice Wallenberg Foundation (2019.0181), Svenska sällskapet för Medicinsk forskning, SSMF (CG-22-0148-H-02), the Swedish Research council (2019-01495, 2022-01567), EU Horizon project grant UNDINE (grant agreement: 101057100) and Wellcome Trust Discovery award (226507/Z/22/Z). M.C.C. was supported by a European Research Council Starting grant (grant agreement no. 639226), the Spanish Ministry of Science and Innovation (grant ref. PID2022-139475OB-I00), PROMETEO GVA (ref. 2020/012) and also from the Horizon Europe Program (INITIALISE- 101094099 project). M.C.C. also acknowledges the Spanish government MCIN/AEI to the Center of Excellence Accreditation Severo Ochoa (CEX2021-001189-S/ MCIN/AEI / 10.13039/501100011033).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the manuscript.

Corresponding author

Correspondence to Maria Carmen Collado.

Ethics declarations

Competing interests

O.K. is a co-founder of Shela Accurate Diagnosis LTD (Israel). I.U.M. serves on the scientific advisory board of Luca Biologics. P.B. serves on the scientific advisory board of Pixelgen Technologies AB (Sweden), Oxford Immune Algorithmics (UK), and Scailyte AG (Switzerland) and is an executive board member of Kancera AB (Sweden) and co-founder of Cytodelics AB (Sweden). The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Nardhy Gomez-Lopez and Gérard Eberl for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koren, O., Konnikova, L., Brodin, P. et al. The maternal gut microbiome in pregnancy: implications for the developing immune system. Nat Rev Gastroenterol Hepatol 21, 35–45 (2024). https://doi.org/10.1038/s41575-023-00864-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-023-00864-2

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology