Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Autism spectrum disorders and the gastrointestinal tract: insights into mechanisms and clinical relevance

Abstract

Autism spectrum disorders (ASDs) are recognized as central neurodevelopmental disorders diagnosed by impairments in social interactions, communication and repetitive behaviours. The recognition of ASD as a central nervous system (CNS)-mediated neurobehavioural disorder has led most of the research in ASD to be focused on the CNS. However, gastrointestinal function is also likely to be affected owing to the neural mechanistic nature of ASD and the nervous system in the gastrointestinal tract (enteric nervous system). Thus, it is unsurprising that gastrointestinal disorders, particularly constipation, diarrhoea and abdominal pain, are highly comorbid in individuals with ASD. Gastrointestinal problems have also been repeatedly associated with increased severity of the core symptoms diagnostic of ASD and other centrally mediated comorbid conditions, including psychiatric issues, irritability, rigid–compulsive behaviours and aggression. Despite the high prevalence of gastrointestinal dysfunction in ASD and its associated behavioural comorbidities, the specific links between these two conditions have not been clearly delineated, and current data linking ASD to gastrointestinal dysfunction have not been extensively reviewed. This Review outlines the established and emerging clinical and preclinical evidence that emphasizes the gut as a novel mechanistic and potential therapeutic target for individuals with ASD.

Key points

  • Autism spectrum disorders (ASDs) are a complex, diverse set of neurodevelopmental disorders accompanied by many psychiatric and peripheral comorbidities.

  • Gastrointestinal issues, in particular, constipation, diarrhoea and abdominal pain, are among the most common comorbidities diagnosed in individuals with ASD.

  • Observations from preclinical and clinical studies have highlighted the potential importance gut luminal factors, including the gut microbiota, its metabolites and/or other enteric neurotransmitters or modulators, in the pathophysiology of ASD.

  • Genetic and/or environmental risk factors that affect central and enteric nervous system development and/or function have increasingly been revealed as causative factors underlying the pathogenesis and/or symptomology of co-occurring gastrointestinal problems in ASD.

  • Some studies have shown that modulation of the gut microbiota or its metabolites might offer potential novel therapeutic options for treating specific phenotypes characteristic of ASD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multiple confounding variables contribute to the heterogeneity of the gut microbiota in ASD.
Fig. 2: Harnessing the MGB axis for mechanistic and therapeutic targets in ASD.

Similar content being viewed by others

References

  1. Hughes, M. M. et al. The prevalence and characteristics of children with profound autism, 15 sites, United States, 2000-2016. Public Health Rep. 138, 971–980 (2023).

    Article  PubMed  Google Scholar 

  2. Maenner, M. J. et al. Prevalence and characteristics of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 sites, United States, 2020. MMWR Surveill. Summ. 72, 1–14 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lord, C. et al. The Lancet Commission on the future of care and clinical research in autism. Lancet 399, 271–334 (2022).

    Article  PubMed  Google Scholar 

  4. Leader, G. et al. Gastrointestinal symptoms in autism spectrum disorder: a systematic review. Nutrients 14, 1471 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lefter, R., Ciobica, A., Timofte, D., Stanciu, C. & Trifan, A. A descriptive review on the prevalence of gastrointestinal disturbances and their multiple associations in autism spectrum disorder. Medicina 56, 11 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Niesler, B. & Rappold, G. A. Emerging evidence for gene mutations driving both brain and gut dysfunction in autism spectrum disorder. Mol. Psychiatry 26, 1442–1444 (2021).

    Article  PubMed  Google Scholar 

  7. Reilly, J., Gallagher, L., Leader, G. & Shen, S. Coupling of autism genes to tissue-wide expression and dysfunction of synapse, calcium signalling and transcriptional regulation. PLoS ONE 15, e0242773 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gorrindo, P. et al. Gastrointestinal dysfunction in autism: parental report, clinical evaluation, and associated factors. Autism Res. 5, 101–108 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chakraborty, P. et al. Gastrointestinal problems are associated with increased repetitive behaviors but not social communication difficulties in young children with autism spectrum disorders. Autism 25, 405–415 (2021).

    Article  PubMed  Google Scholar 

  10. Nikolov, R. N. et al. Gastrointestinal symptoms in a sample of children with pervasive developmental disorders. J. Autism Dev. Disord. 39, 405–413 (2009).

    Article  PubMed  Google Scholar 

  11. Marler, S. et al. Association of rigid-compulsive behavior with functional constipation in autism spectrum disorder. J. Autism Dev. Disord. 47, 1673–1681 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ferguson, B. J. et al. Psychophysiological associations with gastrointestinal symptomatology in autism spectrum disorder. Autism Res. 10, 276–288 (2017).

    Article  PubMed  Google Scholar 

  13. Peters, B. et al. Rigid-compulsive behaviors are associated with mixed bowel symptoms in autism spectrum disorder. J. Autism Dev. Disord. 44, 1425–1432 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kanner, L. Autistic disturbances of affective contact. Nerv. Child 2, 217–250 (1943).

    Google Scholar 

  15. Fulceri, F. et al. Gastrointestinal symptoms and behavioral problems in preschoolers with autism spectrum disorder. Dig. Liver Dis. 48, 248–254 (2016).

    Article  PubMed  Google Scholar 

  16. Neuhaus, E., Bernier, R. A., Tham, S. W. & Webb, S. J. Gastrointestinal and psychiatric symptoms among children and adolescents with autism spectrum disorder. Front. Psychiatry 9, 515 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Khalil, M., Azouz, H. G., Ahmed, S. A., Gad, H. A. & Omar, O. M. Sensory processing and gastrointestinal manifestations in autism spectrum disorders: no relation to Clostridium difficile. J. Mol. Neurosci. 71, 153–161 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Yang, X. L. et al. Are gastrointestinal and sleep problems associated with behavioral symptoms of autism spectrum disorder. Psychiatry Res. 259, 229–235 (2018).

    Article  PubMed  Google Scholar 

  19. Holingue, C., Newill, C., Lee, L. C., Pasricha, P. J. & Fallin, M. D. Gastrointestinal symptoms in autism spectrum disorder: a review of the literature on ascertainment and prevalence. Autism Res. 11, 24–36 (2018).

    Article  PubMed  Google Scholar 

  20. Parracho, H. M., Bingham, M. O., Gibson, G. R. & McCartney, A. L. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J. Med. Microbiol. 54, 987–991 (2005).

    Article  PubMed  Google Scholar 

  21. Achenbach, T. M. & Rescorla, L. A. Manual for the ASEBA preschool forms and profiles Vol. 30 (ASEBA, 2000).

  22. Kohane, I. S. et al. The co-morbidity burden of children and young adults with autism spectrum disorders. PLoS ONE 7, e33224 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Margolis, K. G. et al. Development of a brief parent-report screen for common gastrointestinal disorders in autism spectrum disorder. J. Autism Dev. Disord. 49, 349–362 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Buie, T. et al. Evaluation, diagnosis, and treatment of gastrointestinal disorders in individuals with ASDs: a consensus report. Pediatrics 125, S1–S18 (2010).

    Article  PubMed  Google Scholar 

  25. McElhanon, B. O., McCracken, C., Karpen, S. & Sharp, W. G. Gastrointestinal symptoms in autism spectrum disorder: a meta-analysis. Pediatrics 133, 872–883 (2014).

    Article  PubMed  Google Scholar 

  26. Chaidez, V., Hansen, R. L. & Hertz-Picciotto, I. Gastrointestinal problems in children with autism, developmental delays or typical development. J. Autism Dev. Disord. 44, 1117–1127 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Valicenti-McDermott, M. D., McVicar, K., Cohen, H. J., Wershil, B. K. & Shinnar, S. Gastrointestinal symptoms in children with an autism spectrum disorder and language regression. Pediatr. Neurol. 39, 392–398 (2008).

    Article  PubMed  Google Scholar 

  28. Babinska, K. et al. Gastrointestinal symptoms and feeding problems and their associations with dietary interventions, food supplement use, and behavioral characteristics in a sample of children and adolescents with autism spectrum disorders. Int. J. Environ. Res. Public Health 17, 6372 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mazefsky, C. A., Schreiber, D. R., Olino, T. M. & Minshew, N. J. The association between emotional and behavioral problems and gastrointestinal symptoms among children with high-functioning autism. Autism 18, 493–501 (2014).

    Article  PubMed  Google Scholar 

  30. Prosperi, M. et al. Vocal and motor behaviors as a possible expression of gastrointestinal problems in preschoolers with autism spectrum disorder. BMC Pediatr. 19, 466 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Restrepo, B. et al. Developmental-behavioral profiles in children with autism spectrum disorder and co-occurring gastrointestinal symptoms. Autism Res. 13, 1778–1789 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fouquier, J. et al. The gut microbiome in autism: study-site effects and longitudinal analysis of behavior change. mSystems 6, e00848-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bolte, E. R. Autism and Clostridium tetani. Med. Hypotheses 51, 133–144 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Sandler, R. H. et al. Short-term benefit from oral vancomycin treatment of regressive-onset autism. J. Child Neurol. 15, 429–435 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Finegold, S. M. et al. Gastrointestinal microflora studies in late-onset autism. Clin. Infect. Dis. 35, S6–S16 (2002).

    Article  PubMed  Google Scholar 

  36. Kong, X. et al. New and preliminary evidence on altered oral and gut microbiota in individuals with autism spectrum disorder (ASD): implications for ASD diagnosis and subtyping based on microbial biomarkers. Nutrients 11, 2128 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kong, X. et al. Altered autonomic functions and gut microbiome in individuals with autism spectrum disorder (ASD): implications for assisting ASD screening and diagnosis. J. Autism Dev. Disord. 51, 144–157 (2021).

    Article  PubMed  Google Scholar 

  38. Kang, D. W. et al. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS ONE 8, e68322 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kang, D. W. et al. Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders. Anaerobe 49, 121–131 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Strati, F. et al. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome 5, 24 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Buffington, S. A. et al. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell 165, 1762–1775 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sgritta, M. et al. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron 101, 246–259.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Sharon, G. et al. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell 177, 1600–1618.e17 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hsiao, E. Y. et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155, 1451–1463 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim, S. et al. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature 549, 528–532 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  46. Liu, F. et al. Altered composition and function of intestinal microbiota in autism spectrum disorders: a systematic review. Transl. Psychiatry 9, 43 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Vernocchi, P. et al. Gut microbiota ecology and inferred functions in children with ASD compared to neurotypical subjects. Front. Microbiol. 13, 871086 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pietrucci, D. et al. Machine learning data analysis highlights the role of Parasutterella and Alloprevotella in autism spectrum disorders. Biomedicines 10, 2028 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ho, L. K. H. et al. Gut microbiota changes in children with autism spectrum disorder: a systematic review. Gut Pathog. 12, 6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Huang, M. et al. Microbiome-specific statistical modeling identifies interplay between gastrointestinal microbiome and neurobehavioral outcomes in patients with autism: a case control study. Front. Psychiatry 12, 682454 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Luna, R. A. et al. Distinct microbiome-neuroimmune signatures correlate with functional abdominal pain in children with autism spectrum disorder. Cell Mol. Gastroenterol. Hepatol. 3, 218–230 (2017).

    Article  PubMed  Google Scholar 

  52. Boktor, J. C. et al. Global metabolic profiles in a non-human primate model of maternal immune activation: implications for neurodevelopmental disorders. Mol. Psychiatry 27, 4959–4973 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Morton, J. T. et al. Multi-level analysis of the gut–brain axis shows autism spectrum disorder-associated molecular and microbial profiles. Nat. Neurosci. 26, 1208–1217 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yap, C. X. et al. Autism-related dietary preferences mediate autism–gut microbiome associations. Cell 184, 5916–5931.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Alamoudi, M. U. et al. Comparing the gut microbiome in autism and preclinical models: a systematic review. Front. Cell. Infect. Microbiol. 12, 905841 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Desbonnet, L. et al. Gut microbiota depletion from early adolescence in mice: implications for brain and behaviour. Brain Behav. Immun. 48, 165–173 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Desbonnet, L., Clarke, G., Shanahan, F., Dinan, T. G. & Cryan, J. F. Microbiota is essential for social development in the mouse. Mol. Psychiatry 19, 146–148 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Leclercq, S. et al. Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior. Nat. Commun. 8, 15062 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Clarke, G. et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry 18, 666–673 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Neufeld, K. M., Kang, N., Bienenstock, J. & Foster, J. A. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol. Motil. 23, 255–264.e119 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Nettleton, J. E. et al. Prebiotic, probiotic, and synbiotic consumption alter behavioral variables and intestinal permeability and microbiota in BTBR mice. Microorganisms 9, 1833 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chevalier, G. et al. Effect of gut microbiota on depressive-like behaviors in mice is mediated by the endocannabinoid system. Nat. Commun. 11, 6363 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Needham, B. D. et al. Plasma and fecal metabolite profiles in autism spectrum disorder. Biol. Psychiatry 89, 451–462 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Needham, B. D. et al. A gut-derived metabolite alters brain activity and anxiety behaviour in mice. Nature 602, 647–653 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Campbell, A. S. et al. Safety and target engagement of an oral small-molecule sequestrant in adolescents with autism spectrum disorder: an open-label phase 1b/2a trial. Nat. Med. 28, 528–534 (2022).

    Article  Google Scholar 

  66. Shivers, C. M., Jackson, J. B. & McGregor, C. M. Functioning among typically developing siblings of individuals with autism spectrum disorder: a meta-analysis. Clin. Child Fam. Psychol. Rev. 22, 172–196 (2019).

    Article  PubMed  Google Scholar 

  67. Tartaglione, A. M. et al. Maternal immune activation induces autism-like changes in behavior, neuroinflammatory profile and gut microbiota in mouse offspring of both sexes. Transl. Psychiatry 12, 384 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chu, C. et al. The microbiota regulate neuronal function and fear extinction learning. Nature 574, 543–548 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ogbonnaya, E. S. et al. Adult hippocampal neurogenesis is regulated by the microbiome. Biol. Psychiatry 78, e7–e9 (2015).

    Article  PubMed  Google Scholar 

  70. Hoban, A. E. et al. Regulation of prefrontal cortex myelination by the microbiota. Transl. Psychiatry 6, e774 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Keogh, C. E. et al. Myelin as a regulator of development of the microbiota-gut-brain axis. Brain Behav. Immun. 91, 437–450 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Luczynski, P. et al. Adult microbiota-deficient mice have distinct dendritic morphological changes: differential effects in the amygdala and hippocampus. Eur. J. Neurosci. 44, 2654–2666 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Vuong, H. E. & Hsiao, E. Y. Emerging roles for the gut microbiome in autism spectrum disorder. Biol. Psychiatry 81, 411–423 (2017).

    Article  PubMed  Google Scholar 

  74. Sherwin, E., Bordenstein, S. R., Quinn, J. L., Dinan, T. G. & Cryan, J. F. Microbiota and the social brain. Science 366, eaar2016 (2019).

    Article  CAS  PubMed  Google Scholar 

  75. Olszak, T. et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336, 489–493 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  76. Diaz Heijtz, R. et al. Normal gut microbiota modulates brain development and behavior. Proc. Natl Acad. Sci. USA 108, 3047–3052 (2011).

    Article  ADS  PubMed  Google Scholar 

  77. Sudo, N. et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J. Physiol. 558, 263–275 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Luk, B. et al. Postnatal colonization with human “infant-type” Bifidobacterium species alters behavior of adult gnotobiotic mice. PLoS ONE 13, e0196510 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Olson, C. A. et al. the gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell 174, 497 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gonzales, J. et al. Fecal supernatant from adult with autism spectrum disorder alters digestive functions, intestinal epithelial barrier, and enteric nervous system. Microorganisms 9, 1723 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chen, K. et al. Therapeutic effects of the in vitro cultured human gut microbiota as transplants on altering gut microbiota and improving symptoms associated with autism spectrum disorder. Microb. Ecol. 80, 475–486 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  82. Crouzet, L. et al. The hypersensitivity to colonic distension of IBS patients can be transferred to rats through their fecal microbiota. Neurogastroenterol. Motil. 25, e272–e282 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Constante, M. et al. Saccharomyces boulardii CNCM I-745 modulates the microbiota-gut-brain axis in a humanized mouse model of irritable bowel syndrome. Neurogastroenterol. Motil. 33, e13985 (2021).

    Article  CAS  PubMed  Google Scholar 

  84. De Palma, G. et al. Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice. Sci. Transl Med. 9, eaaf6397 (2017).

    Article  PubMed  Google Scholar 

  85. Sampson, T. R. et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167, 1469–1480.e12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zeliadt, N. Study of microbiome’s importance in autism triggers swift backlash. Spectrum https://www.spectrumnews.org/news/study-microbiomes-importance-autism-triggers-swift-backlash (2019).

  87. Kennedy, E. A., King, K. Y. & Baldridge, M. T. Mouse microbiota models: comparing germ-free mice and antibiotics treatment as tools for modifying gut bacteria. Front. Physiol. 9, 1534 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Chen, Y. et al. Gut bacteria shared by children and their mothers associate with developmental level and social deficits in autism spectrum disorder. mSphere 5, e01044-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Li, N. et al. Correlation of gut microbiome between ASD children and mothers and potential biomarkers for risk assessment. Genomics Proteomics Bioinformatics 17, 26–38 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Bhattarai, Y., Muniz Pedrogo, D. A. & Kashyap, P. C. Irritable bowel syndrome: a gut microbiota-related disorder. Am. J. Physiol. Gastrointest. Liver Physiol. 312, G52–G62 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Anitha, M., Vijay-Kumar, M., Sitaraman, S. V., Gewirtz, A. T. & Srinivasan, S. Gut microbial products regulate murine gastrointestinal motility via Toll-like receptor 4 signaling. Gastroenterology 143, 1006–1016.e4 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Kashyap, P. C. et al. Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice. Gastroenterology 144, 967–977 (2013).

    Article  PubMed  Google Scholar 

  93. Hyland, N. P. & Cryan, J. F. Microbe-host interactions: influence of the gut microbiota on the enteric nervous system. Dev. Biol. 417, 182–187 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. McVey Neufeld, K. A., Mao, Y. K., Bienenstock, J., Foster, J. A. & Kunze, W. A. The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse. Neurogastroenterol. Motil. 25, 183–189.e88 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Luczynski, P. et al. Microbiota regulates visceral pain in the mouse. eLife 6, e25887 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Foong, J. P. P., Hung, L. Y., Poon, S., Savidge, T. C. & Bornstein, J. C. Early life interaction between the microbiota and the enteric nervous system. Am. J. Physiol. Gastrointest. Liver Physiol. 319, G541–G548 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hao, M. M. et al. Enteric nervous system assembly: functional integration within the developing gut. Dev. Biol. 417, 168–181 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Parathan, P., Wang, Y., Leembruggen, A. J., Bornstein, J. C. & Foong, J. P. The enteric nervous system undergoes significant chemical and synaptic maturation during adolescence in mice. Dev. Biol. 458, 75–87 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Laranjeira, C. et al. Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury. J. Clin. Invest. 121, 3412–3424 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kabouridis, P. S. et al. Microbiota controls the homeostasis of glial cells in the gut lamina propria. Neuron 85, 289–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kulkarni, S. et al. Adult enteric nervous system in health is maintained by a dynamic balance between neuronal apoptosis and neurogenesis. Proc. Natl Acad. Sci. USA 114, E3709–E3718 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Roberts, R. R., Murphy, J. F., Young, H. M. & Bornstein, J. C. Development of colonic motility in the neonatal mouse – studies using spatiotemporal maps. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G930–G938 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Obata, Y. & Pachnis, V. The effect of microbiota and the immune system on the development and organization of the enteric nervous system. Gastroenterology 151, 836–844 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Hung, L. Y. et al. Neonatal antibiotics disrupt motility and enteric neural circuits in mouse colon. Cell Mol. Gastroenterol. Hepatol. 8, 298–300.e6 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Hung, L. Y. et al. Antibiotic exposure postweaning disrupts the neurochemistry and function of enteric neurons mediating colonic motor activity. Am. J. Physiol. Gastrointest. Liver Physiol. 318, G1042–G1053 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. De Vadder, F. et al. Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. Proc. Natl Acad. Sci. USA 115, 6458–6463 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  107. Caputi, V. et al. Antibiotic-induced dysbiosis of the microbiota impairs gut neuromuscular function in juvenile mice. Br. J. Pharmacol. 174, 3623–3639 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Verdú, E. F. et al. Specific probiotic therapy attenuates antibiotic induced visceral hypersensitivity in mice. Gut 55, 182–190 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Yarandi, S. S. et al. Intestinal bacteria maintain adult enteric nervous system and nitrergic neurons via toll-like receptor 2-induced neurogenesis in mice. Gastroenterology 159, 200–213.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  110. Hoban, A. E. et al. Behavioural and neurochemical consequences of chronic gut microbiota depletion during adulthood in the rat. Neuroscience 339, 463–477 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Kamm, K., Hoppe, S., Breves, G., Schröder, B. & Schemann, M. Effects of the probiotic yeast Saccharomyces boulardii on the neurochemistry of myenteric neurones in pig jejunum. Neurogastroenterol. Motil. 16, 53–60 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Obata, Y. et al. Neuronal programming by microbiota regulates intestinal physiology. Nature 578, 284–289 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  113. Luczynski, P. et al. Growing up in a bubble: using germ-free animals to assess the influence of the gut microbiota on brain and behavior. Int. J. Neuropsychopharmacol. 19, pyw020 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Braniste, V. et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci. Transl Med. 6, 263ra158 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Walter, J., Armet, A. M., Finlay, B. B. & Shanahan, F. Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents. Cell 180, 221–232 (2020).

    Article  CAS  PubMed  Google Scholar 

  116. Coretti, L. et al. Sex-related alterations of gut microbiota composition in the BTBR mouse model of autism spectrum disorder. Sci. Rep. 7, 45356 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  117. Klein, M. S. et al. Metabolomic modeling to monitor host responsiveness to gut microbiota manipulation in the BTBRT+tf/j mouse. J. Proteome Res. 15, 1143–1150 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  118. Golubeva, A. V. et al. Microbiota-related changes in bile acid & tryptophan metabolism are associated with gastrointestinal dysfunction in a mouse model of autism. EBioMedicine 24, 166–178 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Sen, P. et al. The live biotherapeutic Blautia stercoris MRx0006 attenuates social deficits, repetitive behaviour, and anxiety-like behaviour in a mouse model relevant to autism. Brain Behav. Immun. 106, 115–126 (2022).

    Article  CAS  PubMed  Google Scholar 

  120. Perez-Muñoz, M. E., Arrieta, M. C., Ramer-Tait, A. E. & Walter, J. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome 5, 48 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Chu, D. M. et al. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat. Med. 23, 314–326 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lord, C. et al. Autism from 2 to 9 years of age. Arch. Gen. Psychiatry 63, 694–701 (2006).

    Article  PubMed  Google Scholar 

  123. Vuong, H. E. et al. The maternal microbiome modulates fetal neurodevelopment in mice. Nature 586, 281–286 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  124. Chu, D. M. et al. The early infant gut microbiome varies in association with a maternal high-fat diet. Genome Med. 8, 77 (2016).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  125. Jašarević, E. et al. The maternal vaginal microbiome partially mediates the effects of prenatal stress on offspring gut and hypothalamus. Nat. Neurosci. 21, 1061–1071 (2018).

    Article  PubMed  Google Scholar 

  126. Shin Yim, Y. et al. Reversing behavioural abnormalities in mice exposed to maternal inflammation. Nature 549, 482–487 (2017).

    Article  ADS  PubMed  Google Scholar 

  127. Gill, P. S. et al. Molecular dysregulation in autism spectrum disorder. J. Pers. Med. 11, 848 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Gandhi, T. & Lee, C. C. Neural mechanisms underlying repetitive behaviors in rodent models of autism spectrum disorders. Front. Cell Neurosci. 14, 592710 (2020).

    Article  PubMed  Google Scholar 

  129. Hui, K., Katayama, Y., Nakayama, K. I., Nomura, J. & Sakurai, T. Characterizing vulnerable brain areas and circuits in mouse models of autism: towards understanding pathogenesis and new therapeutic approaches. Neurosci. Biobehav. Rev. 110, 77–91 (2020).

    Article  PubMed  Google Scholar 

  130. Niesler, B., Kuerten, S., Demir, I. E. & Schäfer, K.-H. Disorders of the enteric nervous system–a holistic view. Nat. Rev. Gastroenterol. Hepatol. 18, 393–410 (2021).

    Article  PubMed  Google Scholar 

  131. Hayot, G., Massonot, M., Keime, C., Faure, E. & Golzio, C. Loss of autism-candidate CHD8 perturbs neural crest development and intestinal homeostatic balance. Life Sci. Alliance 6, e202201456 (2023).

    Article  CAS  PubMed  Google Scholar 

  132. Bernier, R. et al. Disruptive CHD8 mutations define a subtype of autism early in development. Cell 158, 263–276 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Coll-Tane, M. et al. The CHD8/CHD7/Kismet family links blood-brain barrier glia and serotonin to ASD-associated sleep defects. Sci. Adv. 7, eabe2626 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zuniga-Kennedy, M. et al. Intestinal predictors of whole blood serotonin levels in children with or without autism. J. Autism Dev. Disord. 52, 3780–3789 (2022).

    Article  PubMed  Google Scholar 

  135. Marler, S. et al. Brief report: whole blood serotonin levels and gastrointestinal symptoms in autism spectrum disorder. J. Autism Dev. Disord. 46, 1124–1130 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Veenstra-Vanderweele, J. et al. Modeling rare gene variation to gain insight into the oldest biomarker in autism: construction of the serotonin transporter Gly56Ala knock-in mouse. J. Neurodev. Disord. 1, 158–171 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Gabriele, S., Sacco, R. & Persico, A. M. Blood serotonin levels in autism spectrum disorder: a systematic review and meta-analysis. Eur. Neuropsychopharmacol. 24, 919–929 (2014).

    Article  CAS  PubMed  Google Scholar 

  138. Israelyan, N. et al. Effects of serotonin and slow-release 5-hydroxytryptophan on gastrointestinal motility in a mouse model of depression. Gastroenterology 157, 507–521.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  139. Margolis, K. G. et al. Serotonin transporter variant drives preventable gastrointestinal abnormalities in development and function. J. Clin. Invest. 126, 2221–2235 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Margolis, K. G. et al. Pharmacological reduction of mucosal but not neuronal serotonin opposes inflammation in mouse intestine. Gut 63, 928–937 (2014).

    Article  CAS  PubMed  Google Scholar 

  141. Gross, E. R. et al. Neuronal serotonin regulates growth of the intestinal mucosa in mice. Gastroenterology 143, 408–417.e2 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Li, Z. et al. Essential roles of enteric neuronal serotonin in gastrointestinal motility and the development/survival of enteric dopaminergic neurons. J. Neurosci. 31, 8998–9009 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Xiao, L. et al. Fecal microbiome transplantation from children with autism spectrum disorder modulates tryptophan and serotonergic synapse metabolism and induces altered behaviors in germ-free mice. mSystems 6, e01343-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Prasad, H. C. et al. Human serotonin transporter variants display altered sensitivity to protein kinase G and p38 mitogen-activated protein kinase. Proc. Natl Acad. Sci. USA 102, 11545–11550 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  145. Sutcliffe, J. S. et al. Allelic heterogeneity at the serotonin transporter locus (SLC6A4) confers susceptibility to autism and rigid-compulsive behaviors. Am. J. Hum. Genet. 77, 265–279 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Prasad, H. C., Steiner, J. A., Sutcliffe, J. S. & Blakely, R. D. Enhanced activity of human serotonin transporter variants associated with autism. Phil. Trans. R. Soc. B 364, 163–173 (2009).

    Article  CAS  PubMed  Google Scholar 

  147. Veenstra-VanderWeele, J. et al. Autism gene variant causes hyperserotonemia, serotonin receptor hypersensitivity, social impairment and repetitive behavior. Proc. Natl Acad. Sci. USA 109, 5469–5474 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kim, H. et al. Rescue of behavioral and electrophysiological phenotypes in a Pitt-Hopkins syndrome mouse model by genetic restoration of Tcf4 expression. eLife 11, e72290 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Grubisic, V., Kennedy, A. J., Sweatt, J. D. & Parpura, V. Pitt-Hopkins mouse model has altered particular gastrointestinal transits in vivo. Autism Res. 8, 629–633 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Zollino, M. et al. Diagnosis and management in Pitt-Hopkins syndrome: first international consensus statement. Clin. Genet. 95, 462–478 (2019).

    Article  CAS  PubMed  Google Scholar 

  151. Siper, P. M. et al. Prospective investigation of FOXP1 syndrome. Mol. Autism 8, 57 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Meerschaut, I. et al. FOXP1-related intellectual disability syndrome: a recognisable entity. J. Med. Genet. 54, 613–623 (2017).

    Article  CAS  PubMed  Google Scholar 

  153. Fröhlich, H. et al. Gastrointestinal dysfunction in autism displayed by altered motility and achalasia in Foxp1+/− mice. Proc. Natl Acad. Sci. USA 116, 22237–22245 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  154. Phelan, K. & McDermid, H. E. The 22q13.3 deletion syndrome (Phelan-McDermid syndrome). Mol. Syndromol. 2, 186–201 (2012).

    Article  CAS  PubMed  Google Scholar 

  155. Soorya, L. et al. Prospective investigation of autism and genotype-phenotype correlations in 22q13 deletion syndrome and SHANK3 deficiency. Mol. Autism 4, 18 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Sarasua, S. M. et al. Clinical and genomic evaluation of 201 patients with Phelan-McDermid syndrome. Hum. Genet. 133, 847–859 (2014).

    Article  CAS  PubMed  Google Scholar 

  157. Oberman, L. M., Boccuto, L., Cascio, L., Sarasua, S. & Kaufmann, W. E. Autism spectrum disorder in Phelan-McDermid syndrome: initial characterization and genotype-phenotype correlations. Orphanet J. Rare Dis. 10, 105 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Philippe, A. et al. Neurobehavioral profile and brain imaging study of the 22q13.3 deletion syndrome in childhood. Pediatrics 122, e376–e382 (2008).

    Article  PubMed  Google Scholar 

  159. Uchino, S. & Waga, C. SHANK3 as an autism spectrum disorder-associated gene. Brain Dev. 35, 106–110 (2013).

    Article  PubMed  Google Scholar 

  160. Leblond, C. S. et al. Meta-analysis of SHANK mutations in autism spectrum disorders: a gradient of severity in cognitive impairments. PLoS Genet. 10, e1004580 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Pfaender, S. et al. Zinc deficiency and low enterocyte zinc transporter expression in human patients with autism related mutations in SHANK3. Sci. Rep. 7, 45190 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  162. Sauer, A. K., Bockmann, J., Steinestel, K., Boeckers, T. M. & Grabrucker, A. M. Altered intestinal morphology and microbiota composition in the autism spectrum disorders associated SHANK3 mouse model. Int. J. Mol. Sci. 20, 2134 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. James, D. M. et al. Intestinal dysmotility in a zebrafish (Danio rerio) shank3a;shank3b mutant model of autism. Mol. Autism 10, 3 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Wei, S. C. et al. SHANK3 regulates intestinal barrier function through modulating ZO-1 expression through the PKCε-dependent pathway. Inflamm. Bowel Dis. 23, 1730–1740 (2017).

    Article  PubMed  Google Scholar 

  165. Heredia, D. J. et al. Important role of mucosal serotonin in colonic propulsion and peristaltic reflexes: in vitro analyses in mice lacking tryptophan hydroxylase 1. J. Physiol. 591, 5939–5957 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Hosie, S. et al. Gastrointestinal dysfunction in patients and mice expressing the autism-associated R451C mutation in neuroligin-3. Autism Res. 12, 1043–1056 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Etherton, M. et al. Autism-linked neuroligin-3 R451C mutation differentially alters hippocampal and cortical synaptic function. Proc. Natl Acad. Sci. USA 108, 13764–13769 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  168. Tabuchi, K. et al. A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science 318, 71–76 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  169. Leembruggen, A. J. L. et al. Colonic dilation and altered ex vivo gastrointestinal motility in the neuroligin-3 knockout mouse. Autism Res. 13, 691–701 (2020).

    Article  PubMed  Google Scholar 

  170. World Health Organization. Obesity and overweight. WHO https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (2021).

  171. Hales, C. M., Carroll, M. D., Fryar, C. D. & Ogden, C. L. Prevalence of obesity and severe obesity among adults: United States, 2017–2018. NCHS Data Brief 360, 1–8 (2020).

    Google Scholar 

  172. Avila, C. et al. An overview of links between obesity and mental health. Curr. Obes. Rep. 4, 303–310 (2015).

    Article  PubMed  Google Scholar 

  173. Van Lieshout, R. J., Taylor, V. H. & Boyle, M. H. Pre-pregnancy and pregnancy obesity and neurodevelopmental outcomes in offspring: a systematic review. Obes. Rev. 12, e548–e559 (2011).

    PubMed  Google Scholar 

  174. Wang, Y., Tang, S., Xu, S., Weng, S. & Liu, Z. Maternal body mass index and risk of autism spectrum disorders in offspring: a meta-analysis. Sci. Rep. 6, 34248 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  175. Lei, X. Y., Li, Y. J., Ou, J. J. & Li, Y. M. Association between parental body mass index and autism spectrum disorder: a systematic review and meta-analysis. Eur. Child Adolesc. Psychiatry 28, 933–947 (2019).

    Article  PubMed  Google Scholar 

  176. Krakowiak, P. et al. Maternal metabolic conditions and risk for autism and other neurodevelopmental disorders. Pediatrics 129, e1121–e1128 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Connolly, N. et al. Maternal metabolic risk factors for autism spectrum disorder – an analysis of electronic medical records and linked birth data. Autism Res. 9, 829–837 (2016).

    Article  PubMed  Google Scholar 

  178. Urbonaite, G., Knyzeliene, A., Bunn, F. S., Smalskys, A. & Neniskyte, U. The impact of maternal high-fat diet on offspring neurodevelopment. Front. Neurosci. 16, 909762 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Hasegawa, Y. et al. Impact of maternal obesity on the gestational metabolome and infant metabolome, brain, and behavioral development in rhesus macaques. Metabolites 12, 764 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Mitchell, A. J. et al. Maternal Western-style diet reduces social engagement and increases idiosyncratic behavior in Japanese macaque offspring. Brain Behav. Immun. 105, 109–121 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Bruce-Keller, A. J. et al. Maternal obese-type gut microbiota differentially impact cognition, anxiety and compulsive behavior in male and female offspring in mice. PLoS ONE 12, e0175577 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Meyer-Lindenberg, A., Domes, G., Kirsch, P. & Heinrichs, M. Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat. Rev. Neurosci. 12, 524–538 (2011).

    Article  CAS  PubMed  Google Scholar 

  183. Striepens, N., Kendrick, K. M., Maier, W. & Hurlemann, R. Prosocial effects of oxytocin and clinical evidence for its therapeutic potential. Front. Neuroendocrinol. 32, 426–450 (2011).

    Article  CAS  PubMed  Google Scholar 

  184. Jiang, H. Y. et al. Maternal infection during pregnancy and risk of autism spectrum disorders: a systematic review and meta-analysis. Brain Behav. Immun. 58, 165–172 (2016).

    Article  PubMed  Google Scholar 

  185. Malkova, N. V., Yu, C. Z., Hsiao, E. Y., Moore, M. J. & Patterson, P. H. Maternal immune activation yields offspring displaying mouse versions of the three core symptoms of autism. Brain Behav. Immun. 26, 607–616 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Estes, M. L. & McAllister, A. K. Maternal immune activation: implications for neuropsychiatric disorders. Science 353, 772–777 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  187. Atladóttir, H. O. et al. Association of hospitalization for infection in childhood with diagnosis of autism spectrum disorders: a Danish cohort study. Arch. Pediatr. Adolesc. Med. 164, 470–477 (2010).

    Article  PubMed  Google Scholar 

  188. Atladóttir, H., Henriksen, T. B., Schendel, D. E. & Parner, E. T. Autism after infection, febrile episodes, and antibiotic use during pregnancy: an exploratory study. Pediatrics 130, e1447–e1454 (2012).

    Article  PubMed  Google Scholar 

  189. Nielsen, T. C. et al. Association of maternal autoimmune disease and early childhood infections with offspring autism spectrum disorder: a population-based cohort study. Autism Res. 15, 2371–2380 (2022).

    Article  PubMed  Google Scholar 

  190. Sadik, A. et al. Parental inflammatory bowel disease and autism in children. Nat. Med. 28, 1406–1411 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Brown, A. S. et al. Elevated maternal C-reactive protein and autism in a national birth cohort. Mol. Psychiatry 19, 259–264 (2014).

    Article  CAS  PubMed  Google Scholar 

  192. Li, W. et al. Maternal immune activation alters adult behavior, intestinal integrity, gut microbiota and the gut inflammation. Brain Behav. 11, e02133 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Mazmanian, S. K., Round, J. L. & Kasper, D. L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453, 620–625 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  194. de Theije, C. G. M. et al. Pathways underlying the gut-to-brain connection in autism spectrum disorders as future targets for disease management. Eur. J. Pharmacol. 668, S70–S80 (2011).

    Article  PubMed  Google Scholar 

  195. de Theije, C. G. M. et al. Altered gut microbiota and activity in a murine model of autism spectrum disorders. Brain Behav. Immun. 37, 197–206 (2014).

    Article  PubMed  Google Scholar 

  196. Wang, X., Yang, J., Zhang, H., Yu, J. & Yao, Z. Oral probiotic administration during pregnancy prevents autism-related behaviors in offspring induced by maternal immune activation via anti-inflammation in mice. Autism Res. 12, 576–588 (2019).

    Article  PubMed  Google Scholar 

  197. Choi, G. B. et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science 351, 933–939 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  198. Kim, E. et al. Maternal gut bacteria drive intestinal inflammation in offspring with neurodevelopmental disorders by altering the chromatin landscape of CD4+ T cells. Immunity 55, 145–158.e7 (2022).

    Article  CAS  PubMed  Google Scholar 

  199. Hsiao, E. Y., McBride, S. W., Chow, J., Mazmanian, S. K. & Patterson, P. H. Modeling an autism risk factor in mice leads to permanent immune dysregulation. Proc. Natl Acad. Sci. USA 109, 12776–12781 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  200. Shahini, A. & Shahini, A. Role of interleukin-6-mediated inflammation in the pathogenesis of inflammatory bowel disease: focus on the available therapeutic approaches and gut microbiome. J. Cell Commun. Signal. 17, 55–74 (2023).

    Article  CAS  PubMed  Google Scholar 

  201. Majerczyk, D., Ayad, E. G., Brewton, K. L., Saing, P. & Hart, P. C. Systemic maternal inflammation promotes ASD via IL-6 and IFN-γ. Biosci. Rep. 42, BSR20220713 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Zhang, J. C. et al. Blockade of interleukin-6 receptor in the periphery promotes rapid and sustained antidepressant actions: a possible role of gut-microbiota-brain axis. Transl. Psychiatry 7, e1138 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Schirmer, M. et al. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 167, 1125–1136.e8 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Wu, W. L., Hsiao, E. Y., Yan, Z., Mazmanian, S. K. & Patterson, P. H. The placental interleukin-6 signaling controls fetal brain development and behavior. Brain Behav. Immun. 62, 11–23 (2017).

    Article  CAS  PubMed  Google Scholar 

  205. Christensen, J. et al. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA 309, 1696–1703 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Bromley, R. L. et al. The prevalence of neurodevelopmental disorders in children prenatally exposed to antiepileptic drugs. J. Neurol. Neurosurg. Psychiatry 84, 637–643 (2013).

    Article  PubMed  Google Scholar 

  207. Kim, J. W. et al. Gastrointestinal tract abnormalities induced by prenatal valproic acid exposure in rat offspring. Toxicol. Res. 29, 173–179 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Liu, F., Horton-Sparks, K., Hull, V., Li, R. W. & Martinez-Cerdeno, V. The valproic acid rat model of autism presents with gut bacterial dysbiosis similar to that in human autism. Mol. Autism 9, 61 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Gu, Y. et al. Correlation among gut microbiota, fecal metabolites and autism-like behavior in an adolescent valproic acid-induced rat autism model. Behav. Brain Res. 417, 113580 (2022).

    Article  CAS  PubMed  Google Scholar 

  210. Spratt, E. G. et al. Enhanced cortisol response to stress in children in autism. J. Autism Dev. Disord. 42, 75–81 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Taylor, J. L. & Corbett, B. A. A review of rhythm and responsiveness of cortisol in individuals with autism spectrum disorders. Psychoneuroendocrinology 49, 207–228 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Tani, P. et al. Higher plasma ACTH levels in adults with Asperger syndrome. J. Psychosom. Res. 58, 533–536 (2005).

    Article  ADS  PubMed  Google Scholar 

  213. Wang, J. et al. Fecal microbiota transplantation improves VPA-induced ASD mice by modulating the serotonergic and glutamatergic synapse signaling pathways. Transl. Psychiatry 13, 17 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Kelly, C. R. et al. Fecal microbiota transplantation is highly effective in real-world practice: initial results from the FMT national registry. Gastroenterology 160, 183–192.e3 (2021).

    Article  PubMed  Google Scholar 

  215. Kang, D. W. et al. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome 5, 10 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Kang, D. W. et al. Long-term benefit of microbiota transfer therapy on autism symptoms and gut microbiota. Sci. Rep. 9, 5821 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  217. Kang, D. W. et al. Distinct fecal and plasma metabolites in children with autism spectrum disorders and their modulation after microbiota transfer therapy. mSphere 5, e00314-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Nirmalkar, K. et al. Shotgun metagenomics study suggests alteration in sulfur metabolism and oxidative stress in children with autism and improvement after microbiota transfer therapy. Int. J. Mol. Sci. 23, 13481 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Li, N. et al. Fecal microbiota transplantation relieves gastrointestinal and autism symptoms by improving the gut microbiota in an open-label study. Front. Cell. Infect. Microbiol. 11, 759435 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Sandler, A. D. et al. Lack of benefit of a single dose of synthetic human secretin in the treatment of autism and pervasive developmental disorder. N. Engl. J. Med. 341, 1801–1806 (1999).

    Article  CAS  PubMed  Google Scholar 

  221. Horvath, K. Secretin treatment for autism. N. Engl. J. Med. 342, 1216; author reply 342, 1218 (2000).

    PubMed  Google Scholar 

  222. Chen, Y. et al. FTACMT study protocol: a multicentre, double-blind, randomised, placebo-controlled trial of faecal microbiota transplantation for autism spectrum disorder. BMJ Open 12, e051613 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Marcella, C. et al. Systematic review: the global incidence of faecal microbiota transplantation-related adverse events from 2000 to 2020. Aliment. Pharmacol. Ther. 53, 33–42 (2021).

    Article  PubMed  Google Scholar 

  224. Dale, H. F., Rasmussen, S. H., Asiller, Ö. Ö. & Lied, G. A. Probiotics in irritable bowel syndrome: an up-to-date systematic review. Nutrients 11, 2048 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Abdellatif, B., McVeigh, C., Bendriss, G. & Chaari, A. The promising role of probiotics in managing the altered gut in autism spectrum disorders. Int. J. Mol. Sci. 21, 4159 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Shaaban, S. Y. et al. The role of probiotics in children with autism spectrum disorder: a prospective, open-label study. Nutr. Neurosci. 21, 676–681 (2018).

    Article  CAS  PubMed  Google Scholar 

  227. Santocchi, E. et al. Effects of probiotic supplementation on gastrointestinal, sensory and core symptoms in autism spectrum disorders: a randomized controlled trial. Front. Psychiatry 11, 550593 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Sanctuary, M. R. et al. Pilot study of probiotic/colostrum supplementation on gut function in children with autism and gastrointestinal symptoms. PLoS ONE 14, e0210064 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Arnold, L. E. et al. Probiotics for gastrointestinal symptoms and quality of life in autism: a placebo-controlled pilot trial. J. Child Adolesc. Psychopharmacol. 29, 659–669 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Parracho, H. et al. A double-blind, placebo-controlled, crossover-designed probiotic feeding study in children diagnosed with autistic spectrum disorders. Int. J. Probiotics Prebiotics 5, 69–74 (2010).

    Google Scholar 

  231. Guidetti, C. et al. Randomized double-blind crossover study for evaluating a probiotic mixture on gastrointestinal and behavioral symptoms of autistic children. J. Clin. Med. 11, 5263 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Wang, Y. et al. Probiotics and fructo-oligosaccharide intervention modulate the microbiota-gut brain axis to improve autism spectrum reducing also the hyper-serotonergic state and the dopamine metabolism disorder. Pharmacol. Res. 157, 104784 (2020).

    Article  CAS  PubMed  Google Scholar 

  233. Tabouy, L. et al. Dysbiosis of microbiome and probiotic treatment in a genetic model of autism spectrum disorders. Brain Behav. Immun. 73, 310–319 (2018).

    Article  PubMed  Google Scholar 

  234. Schmitt, L. M. et al. Results of a phase Ib study of SB-121, an investigational probiotic formulation, a randomized controlled trial in participants with autism spectrum disorder. Sci. Rep. 13, 5192 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  235. Grimaldi, R. et al. A prebiotic intervention study in children with autism spectrum disorders (ASDs). Microbiome 6, 133 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Liu, J. et al. Effect of vitamin A supplementation on gut microbiota in children with autism spectrum disorders – a pilot study. BMC Microbiol. 17, 204 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Inoue, R. et al. Dietary supplementation with partially hydrolyzed guar gum helps improve constipation and gut dysbiosis symptoms and behavioral irritability in children with autism spectrum disorder. J. Clin. Biochem. Nutr. 64, 217–223 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Davies, C. et al. Altering the gut microbiome to potentially modulate behavioral manifestations in autism spectrum disorders: a systematic review. Neurosci. Biobehav. Rev. 128, 549–557 (2021).

    Article  CAS  PubMed  Google Scholar 

  239. Prosperi, M. et al. Interventions on microbiota: where do we stand on a gut–brain link in autism? A systematic review. Nutrients 14, 462 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Yu, Y. et al. Efficacy and safety of diet therapies in children with autism spectrum disorder: a systematic literature review and meta-analysis. Front. Neurol. 13, 844117 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Lee, R. W. Y. et al. A modified ketogenic gluten-free diet with MCT improves behavior in children with autism spectrum disorder. Physiol. Behav. 188, 205–211 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Buie, T. The relationship of autism and gluten. Clin. Ther. 35, 578–583 (2013).

    Article  CAS  PubMed  Google Scholar 

  243. Gillberg, C. Endogenous opioids and opiate antagonists in autism: brief review of empirical findings and implications for clinicians. Dev. Med. Child Neurol. 37, 239–245 (1995).

    Article  CAS  PubMed  Google Scholar 

  244. Reichelt, K. L. et al. Biologically active peptide-containing fractions in schizophrenia and childhood autism. Adv. Biochem. Psychopharmacol. 28, 627–643 (1981).

    CAS  PubMed  Google Scholar 

  245. Hunter, L. C. et al. Opioid peptides and dipeptidyl peptidase in autism. Dev. Med. Child Neurol. 45, 121–128 (2003).

    Article  CAS  PubMed  Google Scholar 

  246. Cass, H. et al. Absence of urinary opioid peptides in children with autism. Arch. Dis. Child. 93, 745 (2008).

    Article  CAS  PubMed  Google Scholar 

  247. Mulloy, A. et al. Gluten-free and casein-free diets in the treatment of autism spectrum disorders: a systematic review. Res. Autism Spectr. Disord. 4, 328–339 (2010).

    Article  ADS  Google Scholar 

  248. Roy, A., Roy, M., Deb, S., Unwin, G. L. & Roy, A. Are opioid antagonists effective in attenuating the core symptoms of autism spectrum conditions in children: a systematic review. J. Intellect. Disabil. Res. 59, 293–306 (2015).

    Article  CAS  PubMed  Google Scholar 

  249. Williams, B. L. et al. Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS ONE 6, e24585 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  250. Lau, N. M. et al. Markers of celiac disease and gluten sensitivity in children with autism. PLoS ONE 8, e66155 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  251. Ghalichi, F., Ghaemmaghami, J., Malek, A. & Ostadrahimi, A. Effect of gluten free diet on gastrointestinal and behavioral indices for children with autism spectrum disorders: a randomized clinical trial. World J. Pediatr. 12, 436–442 (2016).

    Article  CAS  PubMed  Google Scholar 

  252. Quan, L. et al. A systematic review and meta-analysis of the benefits of a gluten-free diet and/or casein-free diet for children with autism spectrum disorder. Nutr. Rev. 80, 1237–1246 (2021).

    Article  PubMed Central  Google Scholar 

  253. Lu, C. et al. Overall rebalancing of gut microbiota is key to autism intervention. Front. Psychol. 13, 862719 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Keller, A. et al. The effect of a combined gluten- and casein-free diet on children and adolescents with autism spectrum disorders: a systematic review and meta-analysis. Nutrients 13, 470 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Baspinar, B. & Yardimci, H. Gluten-free casein-free diet for autism spectrum disorders: can it be effective in solving behavioural and gastrointestinal problems. Eurasian J. Med. 52, 292–297 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. D’Andrea Meira, I. et al. Ketogenic diet and epilepsy: what we know so far. Front. Neurosci. 13, 5 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  257. El-Rashidy, O. et al. Ketogenic diet versus gluten free casein free diet in autistic children: a case-control study. Metab. Brain Dis. 32, 1935–1941 (2017).

    Article  CAS  PubMed  Google Scholar 

  258. Castro, K., Baronio, D., Perry, I. S., Riesgo, R. D. S. & Gottfried, C. The effect of ketogenic diet in an animal model of autism induced by prenatal exposure to valproic acid. Nutr. Neurosci. 20, 343–350 (2017).

    Article  CAS  PubMed  Google Scholar 

  259. Verpeut, J. L., DiCicco-Bloom, E. & Bello, N. T. Ketogenic diet exposure during the juvenile period increases social behaviors and forebrain neural activation in adult Engrailed 2 null mice. Physiol. Behav. 161, 90–98 (2016).

    Article  CAS  PubMed  Google Scholar 

  260. Żarnowska, I. et al. Therapeutic use of carbohydrate-restricted diets in an autistic child; a case report of clinical and 18FDG PET findings. Metab. Brain Dis. 33, 1187–1192 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  261. Evangeliou, A. et al. Application of a ketogenic diet in children with autistic behavior: pilot study. J. Child Neurol. 18, 113–118 (2003).

    Article  PubMed  Google Scholar 

  262. Ruskin, D. N. et al. Ketogenic diet improves core symptoms of autism in BTBR mice. PLoS ONE 8, e65021 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  263. Ruskin, D. N., Fortin, J. A., Bisnauth, S. N. & Masino, S. A. Ketogenic diets improve behaviors associated with autism spectrum disorder in a sex-specific manner in the EL mouse. Physiol. Behav. 168, 138–145 (2017).

    Article  CAS  PubMed  Google Scholar 

  264. Newell, C. et al. Ketogenic diet modifies the gut microbiota in a murine model of autism spectrum disorder. Mol. Autism 7, 37 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  265. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  266. Peretti, S. et al. Diet: the keystone of autism spectrum disorder? Nutr. Neurosci. 22, 825–839 (2019).

    Article  CAS  PubMed  Google Scholar 

  267. Zhu, H. et al. Ketogenic diet for human diseases: the underlying mechanisms and potential for clinical implementations. Signal Transduct. Target. Ther. 7, 11 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Siddiqui, M. F., Elwell, C. & Johnson, M. H. Mitochondrial dysfunction in autism spectrum disorders. Autism Open Access 6, 1000190 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  269. Ahn, Y., Narous, M., Tobias, R., Rho, J. M. & Mychasiuk, R. The ketogenic diet modifies social and metabolic alterations identified in the prenatal valproic acid model of autism spectrum disorder. Dev. Neurosci. 36, 371–380 (2014).

    Article  CAS  PubMed  Google Scholar 

  270. Pietrzak, D., Kasperek, K., Rękawek, P. & Piątkowska-Chmiel, I. The therapeutic role of ketogenic diet in neurological disorders. Nutrients 14, 1952 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Neal, E. G. et al. The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol. 7, 500–506 (2008).

    Article  PubMed  Google Scholar 

  272. Varesio, C. et al. Ketogenic dietary therapies in patients with autism spectrum disorder: facts or fads? A scoping review and a proposal for a shared protocol. Nutrients 13, 2057 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Pugsley, K., Scherer, S. W., Bellgrove, M. A. & Hawi, Z. Environmental exposures associated with elevated risk for autism spectrum disorder may augment the burden of deleterious de novo mutations among probands. Mol. Psychiatry 27, 710–730 (2022).

    Article  CAS  PubMed  Google Scholar 

  274. Di Gesù, C. M. et al. Maternal gut microbiota mediate intergenerational effects of high-fat diet on descendant social behavior. Cell Rep. 41, 111461 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  275. Audet, M.-C. Stress-induced disturbances along the gut microbiota-immune-brain axis and implications for mental health: does sex matter? Front. Neuroendocrinol. 54, 100772 (2019).

    Article  CAS  PubMed  Google Scholar 

  276. Dilmore, A. H. et al. The fecal microbiome and metabolome of Pitt Hopkins syndrome, a severe autism spectrum disorder. mSystems 6, e0100621 (2021).

    Article  PubMed  Google Scholar 

  277. Strati, F. et al. Altered gut microbiota in Rett syndrome. Microbiome 4, 41 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  278. Borghi, E. et al. Rett syndrome: a focus on gut microbiota. Int. J. Mol. Sci. 18, 344 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  279. Chen, K. et al. Drosophila histone demethylase KDM5 regulates social behavior through immune control and gut microbiota maintenance. Cell Host Microbe 25, 537–552.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Yu, Y. et al. Changes to gut amino acid transporters and microbiome associated with increased E/I ratio in Chd8+/− mouse model of ASD-like behavior. Nat. Commun. 13, 1151 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  281. Septyaningtrias, D. E. et al. Altered microbiota composition reflects enhanced communication in 15q11-13 CNV mice. Neurosci. Res. 161, 59–67 (2020).

    Article  PubMed  Google Scholar 

  282. Shaaya, E. A. et al. Gastrointestinal problems in 15q duplication syndrome. Eur. J. Med. Genet. 58, 191–193 (2015).

    Article  PubMed  Google Scholar 

  283. Hua, X. et al. The gut microbiota and associated metabolites are altered in sleep disorder of children with autism spectrum disorders. Front. Psychiatry 11, 855 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  284. Adams, J. B., Johansen, L. J., Powell, L. D., Quig, D. & Rubin, R. A. Gastrointestinal flora and gastrointestinal status in children with autism–comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 11, 22 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  285. Son, J. S. et al. Comparison of fecal microbiota in children with autism spectrum disorders and neurotypical siblings in the Simons Simplex Collection. PLoS ONE 10, e0137725 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  286. Chen, Z. et al. Gut microbial profile is associated with the severity of social impairment and IQ performance in children with autism spectrum disorder. Front. Psychiatry 12, 789864 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  287. Gondalia, S. V. et al. Molecular characterisation of gastrointestinal microbiota of children with autism (with and without gastrointestinal dysfunction) and their neurotypical siblings. Autism Res. 5, 419–427 (2012).

    Article  PubMed  Google Scholar 

  288. Tomova, A. et al. Gastrointestinal microbiota in children with autism in Slovakia. Physiol. Behav. 138, 179–187 (2015).

    Article  CAS  PubMed  Google Scholar 

  289. Finegold, S. M. et al. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe 16, 444–453 (2010).

    Article  CAS  PubMed  Google Scholar 

  290. Ding, X. et al. Gut microbiota changes in patients with autism spectrum disorders. J. Psychiatr. Res. 129, 149–159 (2020).

    Article  PubMed  Google Scholar 

  291. Ding, H. et al. Imbalance in the gut microbiota of children with autism spectrum disorders. Front. Cell. Infect. Microbiol. 11, 572752 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Xu, M., Xu, X., Li, J. & Li, F. Association between gut microbiota and autism spectrum disorder: a systematic review and meta-analysis. Front. Psychiatry 10, 473 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  293. Wang, L. et al. Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children with autism. Appl. Environ. Microbiol. 77, 6718–6721 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  294. West, K. A. et al. Multi-angle meta-analysis of the gut microbiome in autism spectrum disorder: a step toward understanding patient subgroups. Sci. Rep. 12, 17034 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  295. Lou, M. et al. Deviated and early unsustainable stunted development of gut microbiota in children with autism spectrum disorder. Gut 71, 1588–1599 (2022).

    CAS  PubMed  Google Scholar 

  296. Doshi-Velez, F. et al. Prevalence of inflammatory bowel disease among patients with autism spectrum disorders. Inflamm. Bowel Dis. 21, 2281–2288 (2015).

    PubMed  Google Scholar 

  297. Chen, Y.-C. et al. Altered gut microbiota correlates with behavioral problems but not gastrointestinal symptoms in individuals with autism. Brain Behav. Immun. 106, 161–178 (2022).

    Article  CAS  PubMed  Google Scholar 

  298. Vargason, T., McGuinness, D. L. & Hahn, J. Gastrointestinal symptoms and oral antibiotic use in children with autism spectrum disorder: retrospective analysis of a privately insured U.S. population. J. Autism Dev. Disord. 49, 647–659 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  299. Bezawada, N., Phang, T. H., Hold, G. L. & Hansen, R. Autism spectrum disorder and the gut microbiota in children: a systematic review. Ann. Nutr. Metab. 76, 16–29 (2020).

    Article  CAS  PubMed  Google Scholar 

  300. Finegold, S. M. Desulfovibrio species are potentially important in regressive autism. Med. Hypotheses 77, 270–274 (2011).

    Article  PubMed  Google Scholar 

  301. Nikolova, V. L. et al. Perturbations in gut microbiota composition in psychiatric disorders: a review and meta-analysis. JAMA Psychiatry 78, 1343–1354 (2021).

    Article  PubMed  Google Scholar 

  302. Afroz, K. F. et al. Altered gut microbiome and autism like behavior are associated with parental high salt diet in male mice. Sci. Rep. 11, 8364 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  303. Tamang, M. K. et al. Developmental vitamin D-deficiency produces autism-relevant behaviours and gut-health associated alterations in a rat model. Transl. Psychiatry 13, 204 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Yating, W. et al. Underdevelopment of the gut microbiota and bacteria species as non-invasive markers of prediction in children with autism spectrum disorder. Gut 71, 910 (2022).

    Article  Google Scholar 

  305. Dan, Z. et al. Altered gut microbial profile is associated with abnormal metabolism activity of autism spectrum disorder. Gut Microbes 11, 1246–1267 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Healy, S., Aigner, C. J. & Haegele, J. A. Prevalence of overweight and obesity among US youth with autism spectrum disorder. Autism 23, 1046–1050 (2019).

    Article  PubMed  Google Scholar 

  307. Hill, A. P., Zuckerman, K. E. & Fombonne, E. Obesity and autism. Pediatrics 136, 1051–1061 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  308. Zhang, Q. et al. Comparison of gut microbiota between adults with autism spectrum disorder and obese adults. PeerJ 9, e10946 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  309. Wu, H., Zhang, W., Huang, M., Lin, X. & Chiou, J. Prolonged high-fat diet consumption throughout adulthood in mice induced neurobehavioral deterioration via gut-brain axis. Nutrients 15, 392 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Shehata, M. H. et al. Assessment of obesity and its correlation with some gut microbiota in a sample of Egyptian autistic children. Eur. J. Mol. Clin. Med. 7, 4093–4102 (2020).

    Google Scholar 

  311. Panossian, C. et al. Young adults with high autistic-like traits displayed lower food variety and diet quality in childhood. J. Autism Dev. Disord. 51, 685–696 (2021).

    Article  PubMed  Google Scholar 

  312. Kral, T. V. E., Eriksen, W. T., Souders, M. C. & Pinto-Martin, J. A. Eating behaviors, diet quality, and gastrointestinal symptoms in children with autism spectrum disorders: a brief review. J. Pediatr. Nurs. 28, 548–556 (2013).

    Article  PubMed  Google Scholar 

  313. de Magistris, L. et al. Alterations of the intestinal barrier in patients with autism spectrum disorders and in their first-degree relatives. J. Pediatr. Gastroenterol. Nutr. 51, 418–424 (2010).

    Article  PubMed  Google Scholar 

  314. Berding, K. & Donovan, S. M. Diet can impact microbiota composition in children with autism spectrum disorder. Front. Neurosci. 12, 515 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  315. David, M. M. et al. Children with autism and their typically developing siblings differ in amplicon sequence variants and predicted functions of stool-associated microbes. mSystems 6, e00193-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  316. Maenner, M. J. et al. Prevalence and characteristics of autism spectrum disorder among children aged 8 years – autism and developmental disabilities monitoring network, 11 sites, United States, 2018. MMWR Surveill. Summ. 70, 1–16 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  317. Li, M. et al. Performance of gut microbiome as an independent diagnostic tool for 20 diseases: cross-cohort validation of machine-learning classifiers. Gut Microbes 15, 2205386 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  318. Williams, B. L., Hornig, M., Parekh, T. & Lipkin, W. I. Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. mBio 3, e00261-11 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  319. Qiao, Y. et al. Alterations of oral microbiota distinguish children with autism spectrum disorders from healthy controls. Sci. Rep. 8, 1597 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  320. Kushak, R. I. et al. Analysis of the duodenal microbiome in autistic individuals: association with carbohydrate digestion. J. Pediatr. Gastroenterol. Nutr. 64, e110–e116 (2017).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Kara Gross Margolis.

Ethics declarations

Competing interests

Both authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks John Cryan, and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Neurotypical: https://www.healthline.com/health/neurotypical

Simons Foundation for Autism Research Initiative: https://www.sfari.org/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hung, L.Y., Margolis, K.G. Autism spectrum disorders and the gastrointestinal tract: insights into mechanisms and clinical relevance. Nat Rev Gastroenterol Hepatol 21, 142–163 (2024). https://doi.org/10.1038/s41575-023-00857-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-023-00857-1

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research