Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Commensal fungi in intestinal health and disease

Abstract

The microbiota is known to influence several facets of mammalian development, digestion and disease. Most studies of the microbiota have focused on the bacterial component, but the importance of commensal fungi in health and disease is becoming increasingly clear. Although fungi account for a smaller proportion of the microbiota than bacteria by number, they are much larger and therefore account for a substantial proportion of the biomass. Moreover, as fungi are eukaryotes, their metabolic pathways are complex and unique. In this Review, we discuss the evidence for involvement of specific members of the mycobiota in intestinal diseases, including inflammatory bowel disease, colorectal cancer and pancreatic cancer. We also highlight the importance of fungal interactions with intestinal bacteria and with the immune system. Although most studies of commensal fungi have focused on their role in disease, we also consider the beneficial effects of fungal colonies in the gut. The evidence highlights potential opportunities to target fungi and their interactions for therapeutic purposes.

Key points

  • Fungi are normal members of the human intestinal microbiome that activate immune pathways that are distinct from those activated by bacteria.

  • Intestinal fungal populations expand and their normal colonization niches change during inflammation or cancer.

  • Fungal colonization of inflamed intestinal epithelial tissue in inflammatory bowel disease or of tumours activate immune responses that exacerbate pathogenic inflammation, inhibit damage repair pathways and/or inhibit antitumour immune responses.

  • During homeostasis, some fungi — including those in the Candida genus — activate T helper 17 cells and antibody-producing plasma cells that protect against intestinal and systemic infections.

  • Intestinal bacteria limit fungal colonization through production of antifungal toxins and metabolites and by activating immune pathways; consequently, broad spectrum antibiotics are associated with increased fungal colonization, especially by Candida species.

  • Fungi have complex life cycles that often include morphological transitions that influence their ability to adhere to host tissue, secretion of host-damaging toxins, proficiency for gut colonization, and secretion of metabolites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of the mycobiome on homeostatic immunity and disease.

Similar content being viewed by others

References

  1. Auchtung, T. A. et al. Investigating colonization of the healthy adult gastrointestinal tract by fungi. mSphere 3, e00092-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Auchtung, T. A. et al. Temporal changes in gastrointestinal fungi and the risk of autoimmunity during early childhood: the TEDDY study. Nat. Commun. 13, 3151 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Doron, I. et al. Human gut mycobiota tune immunity via CARD9-dependent induction of anti-fungal IgG antibodies. Cell 184, 1017–1031.e4 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Samonis, G. et al. Prospective evaluation of effects of broad-spectrum antibiotics on gastrointestinal yeast colonization of humans. Antimicrob. Agents Chemother. 37, 51–53 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dollive, S. et al. Fungi of the murine gut: episodic variation and proliferation during antibiotic treatment. PLoS ONE 8, e71806 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sokol, H. et al. Fungal microbiota dysbiosis in IBD. Gut 66, 1039–1048 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Iliev, I. D. et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science 336, 1314–1317 (2012). This study was one of the first to show that dectin 1 is important for commensal fungal interactions within the gut.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Douglass, A. P. et al. Population genomics shows no distinction between pathogenic Candida krusei and environmental Pichia kudriavzevii: one species, four names. PLoS Pathog. 14, e1007138 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Arrieta, M. C. et al. Associations between infant fungal and bacterial dysbiosis and childhood atopic wheeze in a nonindustrialized setting. J. Allergy Clin. Immunol. 142, 424–434.e10 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Boutin, R. C. T. et al. Bacterial–fungal interactions in the neonatal gut influence asthma outcomes later in life. Elife 10, e67740 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liguori, G. et al. Fungal dysbiosis in mucosa-associated microbiota of Crohn’s disease patients. J. Crohns Colitis 10, 296–305 (2016).

    Article  PubMed  Google Scholar 

  12. Limon, J. J. et al. Malassezia is associated with Crohn’s disease and exacerbates colitis in mouse models. Cell Host Microbe 25, 377–388 e376 (2019). This study showed that Malassezia is increased in patients with IBD and exacerbates disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yeung, F. et al. Altered immunity of laboratory mice in the natural environment is associated with fungal colonization. Cell Host Microbe 27, 809–822.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee, E. H. et al. Dysbiotic but nonpathogenic shift in the fecal mycobiota of patients with rheumatoid arthritis. Gut Microbes 14, 2149020 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chiaro, T. R. et al. A member of the gut mycobiota modulates host purine metabolism exacerbating colitis in mice. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aaf9044 (2017). This study showed that the common gut fungus S. cerevisiae exacerbates IBD in mice through induction of purine metabolism.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jain, U. et al. Debaryomyces is enriched in Crohn’s disease intestinal tissue and impairs healing in mice. Science 371, 1154–1159 (2021). This study showed that Debaryomyces, a fungus that is common in food, is more abundant in individuals with IBD and prevents mucosal healing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ost, K. S. & Round, J. L. Communication between the microbiota and mammalian immunity. Annu. Rev. Microbiol. 72, 399–422 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ott, S. J. et al. Fungi and inflammatory bowel diseases: alterations of composition and diversity. Scand. J. Gastroenterol. 43, 831–841 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Chehoud, C. et al. Fungal signature in the gut microbiota of pediatric patients with inflammatory bowel disease. Inflamm. Bowel Dis. 21, 1948–1956 (2015).

    Article  PubMed  Google Scholar 

  20. Lewis, J. D. et al. Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric Crohn’s disease. Cell Host Microbe 18, 489–500 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hoarau, G. et al. Bacteriome and mycobiome interactions underscore microbial dysbiosis in familial Crohn’s disease. mBio https://doi.org/10.1128/mBio.01250-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schirmer, M., Garner, A., Vlamakis, H. & Xavier, R. J. Microbial genes and pathways in inflammatory bowel disease. Nat. Rev. Microbiol. 17, 497–511 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hoggard, M. et al. Characterizing the human mycobiota: a comparison of small subunit rRNA, ITS1, ITS2, and large subunit rRNA genomic targets. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.02208 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nash, A. K. et al. The gut mycobiome of the human microbiome project healthy cohort. Microbiome 5, 153 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Raimondi, S. et al. Longitudinal survey of fungi in the human gut: ITS profiling, phenotyping, and colonization. Front. Microbiol. 10, 1575 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Main, J. et al. Antibody to Saccharomyces cerevisiae (bakers’ yeast) in Crohn’s disease. Br. Med. J. 297, 1105–1106 (1988).

    Article  CAS  Google Scholar 

  27. McKenzie, H., Main, J., Pennington, C. R. & Parratt, D. Antibody to selected strains of Saccharomyces cerevisiae (baker’s and brewer’s yeast) and Candida albicans in Crohn’s disease. Gut 31, 536–538 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Quinton, J. F. et al. Anti-Saccharomyces cerevisiae mannan antibodies combined with antineutrophil cytoplasmic autoantibodies in inflammatory bowel disease: prevalence and diagnostic role. Gut 42, 788–791 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Peeters, M. et al. Diagnostic value of anti-Saccharomyces cerevisiae and antineutrophil cytoplasmic autoantibodies in inflammatory bowel disease. Am. J. Gastroenterol. 96, 730–734 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Sendid, B. et al. Specific antibody response to oligomannosidic epitopes in Crohn’s disease. Clin. Diagn. Lab. Immunol. 3, 219–226 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Israeli, E. et al. Anti-Saccharomyces cerevisiae and antineutrophil cytoplasmic antibodies as predictors of inflammatory bowel disease. Gut 54, 1232–1236 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Standaert-Vitse, A. et al. Candida albicans is an immunogen for anti-Saccharomyces cerevisiae antibody markers of Crohn’s disease. Gastroenterology 130, 1764–1775 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Aschard, H. et al. Genetic effects on the commensal microbiota in inflammatory bowel disease patients. PLoS Genet. 15, e1008018 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Leonardi, I. et al. CX3CR1+ mononuclear phagocytes control immunity to intestinal fungi. Science 359, 232–236 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ost, K. S. et al. Adaptive immunity induces mutualism between commensal eukaryotes. Nature 596, 114–118 (2021). This study showed that IgA controls C. albicans hyphal formation, which exacerbates IBD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Charlet, R., Bortolus, C., Barbet, M., Sendid, B. & Jawhara, S. A decrease in anaerobic bacteria promotes Candida glabrata overgrowth while β-glucan treatment restores the gut microbiota and attenuates colitis. Gut Pathog. 10, 50 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Qiu, X. et al. Changes in the composition of intestinal fungi and their role in mice with dextran sulfate sodium-induced colitis. Sci. Rep. 5, 10416 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fan, D. et al. Activation of HIF-1α and LL-37 by commensal bacteria inhibits Candida albicans colonization. Nat. Med. 21, 808–814 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li, X. V. et al. Immune regulation by fungal strain diversity in inflammatory bowel disease. Nature 603, 672–678 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. McDonough, L. D. et al. Candida albicans isolates 529L and CHN1 exhibit stable colonization of the murine gastrointestinal tract. mBio 12, e0287821 (2021).

    Article  PubMed  Google Scholar 

  41. Jawhara, S. et al. Colonization of mice by Candida albicans is promoted by chemically induced colitis and augments inflammatory responses through galectin-3. J. Infect. Dis. 197, 972–980 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Sovran, B. et al. Enterobacteriaceae are essential for the modulation of colitis severity by fungi. Microbiome 6, 152 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Schmitt, H., Neurath, M. F. & Atreya, R. Role of the IL23/IL17 pathway in Crohn’s disease. Front. Immunol. 12, 622934 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Atarashi, K. et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 163, 367–380 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huber, S., Gagliani, N. & Flavell, R. A. Life, death, and miracles: Th17 cells in the intestine. Eur. J. Immunol. 42, 2238–2245 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Moyes, D. L. et al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 532, 64–68 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Naglik, J. R., Gaffen, S. L. & Hube, B. Candidalysin: discovery and function in Candida albicans infections. Curr. Opin. Microbiol. 52, 100–109 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Leonardi, I. et al. Mucosal fungi promote gut barrier function and social behavior via type 17 immunity. Cell 185, 831–846.e14 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hatinguais, R., Willment, J. A. & Brown, G. D. C-type lectin receptors in antifungal immunity: current knowledge and future developments. Parasite Immunol. 45, e12951 (2023).

    Article  CAS  PubMed  Google Scholar 

  50. Roth, S. & Ruland, J. Caspase recruitment domain-containing protein 9 signaling in innate immunity and inflammation. Trends Immunol. 34, 243–250 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Wymore Brand, M. et al. The altered Schaedler flora: continued applications of a defined murine microbial community. ILAR J. 56, 169–178 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Edozien, J. C., Udo, U. U., Young, V. R. & Scrimshaw, N. S. Effects of high levels of yeast feeding on uric acid metabolism of young man. Nature 228, 180 (1970).

    Article  CAS  PubMed  Google Scholar 

  53. Lin, Y. et al. Altered mycobiota signatures and enriched pathogenic Aspergillus rambellii are associated with colorectal cancer based on multicohort fecal metagenomic analyses. Gastroenterology 163, 908–921 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Liu, N.-N. et al. Multi-kingdom microbiota analyses identify bacterial–fungal interactions and biomarkers of colorectal cancer across cohorts. Nat. Microbiol. 7, 238–250 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Coker, O. O. et al. Enteric fungal microbiota dysbiosis and ecological alterations in colorectal cancer. Gut 68, 654–662 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Parang, B., Barrett, C. W. & Williams, C. S. AOM/DSS model of colitis-associated cancer. Methods Mol. Biol. 1422, 297–307 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang, T. et al. The adaptor protein CARD9 protects against colon cancer by restricting mycobiota-mediated expansion of myeloid-derived suppressor cells. Immunity 49, 504–514.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Malik, A. et al. SYK-CARD9 signaling axis promotes gut fungi-mediated inflammasome activation to restrict colitis and colon cancer. Immunity 49, 515–530.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dohlman, A. B. et al. A pan-cancer mycobiome analysis reveals fungal involvement in gastrointestinal and lung tumors. Cell 185, 3807–3822.e12 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yu, T. et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 170, 548–563.e16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Aykut, B. et al. The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. Nature 574, 264–267 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Alam, A. et al. Fungal mycobiome drives IL-33 secretion and type 2 immunity in pancreatic cancer. Cancer Cell 40, 153–167.e11 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shiao, S. L. et al. Commensal bacteria and fungi differentially regulate tumor responses to radiation therapy. Cancer Cell 39, 1202–1213.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Narunsky-Haziza, L. et al. Pan-cancer analyses reveal cancer-type-specific fungal ecologies and bacteriome interactions. Cell 185, 3789–3806.e17 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Santus, W., Devlin, J. R. & Behnsen, J. Crossing kingdoms: how the mycobiota and fungal-bacterial interactions impact host health and disease. Infect. Immun. https://doi.org/10.1128/IAI.00648-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Seelbinder, B. et al. Antibiotics create a shift from mutualism to competition in human gut communities with a longer-lasting impact on fungi than bacteria. Microbiome 8, 133 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Noverr, M. C., Noggle, R. M., Toews, G. B. & Huffnagle, G. B. Role of antibiotics and fungal microbiota in driving pulmonary allergic responses. Infect. Immun. 72, 4996–5003 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pande, K., Chen, C. & Noble, S. M. Passage through the mammalian gut triggers a phenotypic switch that promotes Candida albicans commensalism. Nat. Genet. 45, 1088–1091 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. van Tilburg Bernardes, E. et al. Intestinal fungi are causally implicated in microbiome assembly and immune development in mice. Nat. Commun. 11, 2577 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Guinan, J., Wang, S., Hazbun, T. R., Yadav, H. & Thangamani, S. Antibiotic-induced decreases in the levels of microbial-derived short-chain fatty acids correlate with increased gastrointestinal colonization of Candida albicans. Sci. Rep. 9, 8872 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Zeise, K. D., Woods, R. J. & Huffnagle, G. B. Interplay between Candida albicans and lactic acid bacteria in the gastrointestinal tract: impact on colonization resistance, microbial carriage, opportunistic infection, and host immunity. Clin. Microbiol. Rev. 34, e0032320 (2021).

    Article  PubMed  Google Scholar 

  72. MacAlpine, J. et al. A small molecule produced by Lactobacillus species blocks Candida albicans filamentation by inhibiting a DYRK1-family kinase. Nat. Commun. 12, 6151 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Alonso-Roman, R. et al. Lactobacillus rhamnosus colonisation antagonizes Candida albicans by forcing metabolic adaptations that compromise pathogenicity. Nat. Commun. 13, 3192 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Drummond, R. A. et al. Long-term antibiotic exposure promotes mortality after systemic fungal infection by driving lymphocyte dysfunction and systemic escape of commensal bacteria. Cell Host Microbe 30, 1020–1033.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Xu, X. L. et al. Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclase Cyr1p. Cell Host Microbe 4, 28–39 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Tan, C. T., Xu, X., Qiao, Y. & Wang, Y. A peptidoglycan storm caused by β-lactam antibiotic’s action on host microbiota drives Candida albicans infection. Nat. Commun. 12, 2560 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cruz, M. R. et al. Structural and functional analysis of EntV reveals a 12 amino acid fragment protective against fungal infections. Nat. Commun. 13, 6047 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cruz, M. R., Graham, C. E., Gagliano, B. C., Lorenz, M. C. & Garsin, D. A. Enterococcus faecalis inhibits hyphal morphogenesis and virulence of Candida albicans. Infect. Immun. 81, 189–200 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rao, C. et al. Multi-kingdom ecological drivers of microbiota assembly in preterm infants. Nature 591, 633–638 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Doron, I. et al. Mycobiota-induced IgA antibodies regulate fungal commensalism in the gut and are dysregulated in Crohn’s disease. Nat. Microbiol. 6, 1493–1504 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shao, T. Y. et al. Commensal Candida albicans positively calibrates systemic Th17 immunological responses. Cell Host Microbe 25, 404–417.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jiang, T. T. et al. Commensal fungi recapitulate the protective benefits of intestinal bacteria. Cell Host Microbe 22, 809–816.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. LeibundGut-Landmann, S. et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat. Immunol. 8, 630–638 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Choi, G. B. et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science 351, 933–939 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Markey, L. et al. Pre-colonization with the commensal fungus Candida albicans reduces murine susceptibility to Clostridium difficile infection. Gut Microbes 9, 497–509 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Lin, L. et al. Th1-Th17 cells mediate protective adaptive immunity against Staphylococcus aureus and Candida albicans infection in mice. PLoS Pathog. 5, e1000703 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Bacher, P. et al. Human anti-fungal Th17 immunity and pathology rely on cross-reactivity against Candida albicans. Cell 176, 1340–1355.e15 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Acosta-Rodriguez, E. V. et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat. Immunol. 8, 639–646 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Huertas, B. et al. Serum antibody profile during colonization of the mouse gut by Candida albicans: relevance for protection during systemic infection. J. Proteome Res. 16, 335–345 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Watkins, R. R., Gowen, R., Lionakis, M. S. & Ghannoum, M. Update on the pathogenesis, virulence, and treatment of Candida auris. Pathog. Immun. 7, 46–65 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Singh, S. et al. The NDV-3A vaccine protects mice from multidrug resistant Candida auris infection. PLoS Pathog. 15, e1007460 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mochon, A. B. et al. Serological profiling of a Candida albicans protein microarray reveals permanent host–pathogen interplay and stage-specific responses during candidemia. PLoS Pathog. 6, e1000827 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Weis, A. M. & Round, J. L. Microbiota–antibody interactions that regulate gut homeostasis. Cell Host Microbe 29, 334–346 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Edwards, J. E. Jr. et al. A fungal immunotherapeutic vaccine (NDV-3A) for treatment of recurrent vulvovaginal candidiasis – a phase 2 randomized, double-blind, placebo-controlled trial. Clin. Infect. Dis. 66, 1928–1936 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Palm, N. W. et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 158, 1000–1010 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Witchley, J. N. et al. Candida albicans morphogenesis programs control the balance between gut commensalism and invasive infection. Cell Host Microbe 25, 432–443.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tso, G. H. W. et al. Experimental evolution of a fungal pathogen into a gut symbiont. Science 362, 589–595 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. Perez, J. C., Kumamoto, C. A. & Johnson, A. D. Candida albicans commensalism and pathogenicity are intertwined traits directed by a tightly knit transcriptional regulatory circuit. PLoS Biol. 11, e1001510 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Bohm, L. et al. The yeast form of the fungus Candida albicans promotes persistence in the gut of gnotobiotic mice. PLoS Pathog. 13, e1006699 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Shao, T. Y. et al. Candida albicans oscillating UME6 expression during intestinal colonization primes systemic Th17 protective immunity. Cell Rep. 39, 110837 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Richardson, J. P., Ho, J. & Naglik, J. R. Candida–epithelial interactions. J. Fungi https://doi.org/10.3390/jof4010022 (2018).

    Article  Google Scholar 

  103. Allert, S. et al. Candida albicans-induced epithelial damage mediates translocation through intestinal barriers. mBio https://doi.org/10.1128/mBio.00915-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Rosshart, S. P. et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science https://doi.org/10.1126/science.aaw4361 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Netea, M. G., Joosten, L. A. & van der Meer, J. W. Adaptation and memory in innate immunity. Semin. Immunol. 28, 317–318 (2016).

    Article  PubMed  Google Scholar 

  106. Cheng, S. C. et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345, 1250684 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Bradford, L. L. & Ravel, J. The vaginal mycobiome: a contemporary perspective on fungi in women’s health and diseases. Virulence 8, 342–351 (2017).

    Article  PubMed  Google Scholar 

  108. Khalid, S. & Keller, N. P. Chemical signals driving bacterial–fungal interactions. Environ. Microbiol. 23, 1334–1347 (2021).

    Article  CAS  PubMed  Google Scholar 

  109. Eckstein, M. T., Moreno-Velasquez, S. D. & Perez, J. C. Gut bacteria shape intestinal microhabitats occupied by the fungus Candida albicans. Curr. Biol. 30, 4799–4807.e4 (2020).

    Article  CAS  PubMed  Google Scholar 

  110. Kashem, S. W. et al. Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation. Immunity 42, 356–366 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chen, C., Pande, K., French, S. D., Tuch, B. B. & Noble, S. M. An iron homeostasis regulatory circuit with reciprocal roles in Candida albicans commensalism and pathogenesis. Cell Host Microbe 10, 118–135 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Liang, S. H. et al. Hemizygosity enables a mutational transition governing fungal virulence and commensalism. Cell Host Microbe 25, 418–431.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Znaidi, S. et al. Systematic gene overexpression in Candida albicans identifies a regulator of early adaptation to the mammalian gut. Cell Microbiol. 20, e12890 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Kyla S. Ost or June L. Round.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks D. Moyes, who co-reviewed with S. dokht Sadeghi Nasab, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ost, K.S., Round, J.L. Commensal fungi in intestinal health and disease. Nat Rev Gastroenterol Hepatol 20, 723–734 (2023). https://doi.org/10.1038/s41575-023-00816-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-023-00816-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing