Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hepatic inflammatory responses in liver fibrosis

Abstract

Chronic liver diseases such as nonalcoholic fatty liver disease (NAFLD) or viral hepatitis are characterized by persistent inflammation and subsequent liver fibrosis. Liver fibrosis critically determines long-term morbidity (for example, cirrhosis or liver cancer) and mortality in NAFLD and nonalcoholic steatohepatitis (NASH). Inflammation represents the concerted response of various hepatic cell types to hepatocellular death and inflammatory signals, which are related to intrahepatic injury pathways or extrahepatic mediators from the gut–liver axis and the circulation. Single-cell technologies have revealed the heterogeneity of immune cell activation concerning disease states and the spatial organization within the liver, including resident and recruited macrophages, neutrophils as mediators of tissue repair, auto-aggressive features of T cells as well as various innate lymphoid cell and unconventional T cell populations. Inflammatory responses drive the activation of hepatic stellate cells (HSCs), and HSC subsets, in turn, modulate immune mechanisms via chemokines and cytokines or transdifferentiate into matrix-producing myofibroblasts. Current advances in understanding the pathogenesis of inflammation and fibrosis in the liver, mainly focused on NAFLD or NASH owing to the high unmet medical need, have led to the identification of several therapeutic targets. In this Review, we summarize the inflammatory mediators and cells in the diseased liver, fibrogenic pathways and their therapeutic implications.

Key points

  • The liver harbours a dense network of phagocytes that maintain tolerance under non-inflammatory conditions and quickly sense hepatocyte stress and injury signals leading to the activation of pro-inflammatory cascades.

  • Upon injury, leukocytes rapidly infiltrate the liver parenchyma, contributing to inflammation and fibrogenesis by producing soluble mediators that activate other immune cells and non-parenchymal cell populations.

  • Inflammatory mediators can activate hepatic stellate cells (HSCs), the main effector cells during hepatic fibrogenesis, resulting in excessive extracellular matrix deposition as a wound-healing or scarring response.

  • Production of pro-inflammatory mediators by activated HSCs, in turn, perpetuates hepatic inflammation, resulting in a chronic cycle of inflammation and formation of scar tissue, ultimately leading to organ failure.

  • Current technological advances have led to an unprecedented comprehensive understanding of the hepatic inflammatory processes underlying fibrogenesis, resulting in the identification of novel potential anti-inflammatory and antifibrotic targets.

  • Treatment of the underlying liver disease seems the most effective antifibrotic strategy, but developing efficient therapies remains challenging as preclinical results rarely translate to human disease in clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Inflammatory processes modulating fibrogenesis.
Fig. 2: Activation and deactivation of HSCs.

Similar content being viewed by others

References

  1. Henderson, N. C., Rieder, F. & Wynn, T. A. Fibrosis: from mechanisms to medicines. Nature 587, 555–566 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sanyal, A. J. et al. Prospective study of outcomes in adults with nonalcoholic fatty liver disease. N. Engl. J. Med. 385, 1559–1569 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Simon, T. G., Roelstraete, B., Khalili, H., Hagstrom, H. & Ludvigsson, J. F. Mortality in biopsy-confirmed nonalcoholic fatty liver disease: results from a nationwide cohort. Gut 70, 1375–1382 (2021).

    Article  PubMed  Google Scholar 

  4. Lin, M. H. et al. Liver fibrosis in the natural course of chronic hepatitis B viral infection: a systematic review with meta-analysis. Dig. Dis. Sci. 67, 2608–2626 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Calvaruso, V. & Craxi, A. Hepatic benefits of HCV cure. J. Hepatol. 73, 1548–1556 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Marcellin, P. et al. Regression of cirrhosis during treatment with tenofovir disoproxil fumarate for chronic hepatitis B: a 5-year open-label follow-up study. Lancet 381, 468–475 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Vilar-Gomez, E. et al. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology 149, 367–378.e5 (2015).

    Article  PubMed  Google Scholar 

  8. Verrastro, O. et al. Bariatric-metabolic surgery versus lifestyle intervention plus best medical care in non-alcoholic steatohepatitis (BRAVES): a multicentre, open-label, randomised trial. Lancet 401, 1786–1797 (2023).

    Article  PubMed  Google Scholar 

  9. Kisseleva, T. & Brenner, D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat. Rev. Gastroenterol. Hepatol. 18, 151–166 (2021).

    Article  PubMed  Google Scholar 

  10. Elkington, P. T., O’Kane, C. M. & Friedland, J. S. The paradox of matrix metalloproteinases in infectious disease. Clin. Exp. Immunol. 142, 12–20 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wen, Y., Lambrecht, J., Ju, C. & Tacke, F. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities. Cell Mol. Immunol. 18, 45–56 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Mederacke, I. et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat. Commun. 4, 2823 (2013).

    Article  PubMed  Google Scholar 

  13. Lei, L. et al. Portal fibroblasts with mesenchymal stem cell features form a reservoir of proliferative myofibroblasts in liver fibrosis. Hepatology 76, 1360–1375 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Marra, F. Hepatic stellate cells and the regulation of liver inflammation. J. Hepatol. 31, 1120–1130 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Iredale, J. P. Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ. J. Clin. Invest. 117, 539–548 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Friedman, S. L. Seminars in medicine of the Beth Israel Hospital, Boston. The cellular basis of hepatic fibrosis. Mechanisms and treatment strategies. N. Engl. J. Med. 328, 1828–1835 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Mederacke, I. et al. The purinergic P2Y14 receptor links hepatocyte death to hepatic stellate cell activation and fibrogenesis in the liver. Sci. Transl Med. 14, eabe5795 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kao, Y. H. et al. High-mobility group box 1 protein activates hepatic stellate cells in vitro. Transpl. Proc. 40, 2704–2705 (2008).

    Article  CAS  Google Scholar 

  19. Wiesner, R. J., Ruegg, J. C. & Morano, I. Counting target molecules by exponential polymerase chain reaction: copy number of mitochondrial DNA in rat tissues. Biochem. Biophys. Res. Commun. 183, 553–559 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. An, P. et al. Hepatocyte mitochondria-derived danger signals directly activate hepatic stellate cells and drive progression of liver fibrosis. Nat. Commun. 11, 2362 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Knorr, J., Wree, A., Tacke, F. & Feldstein, A. E. The NLRP3 inflammasome in alcoholic and nonalcoholic steatohepatitis. Semin. Liver Dis. 40, 298–306 (2020).

    Article  PubMed  Google Scholar 

  22. McHedlidze, T. et al. Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity 39, 357–371 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tan, Z. et al. Interleukin-33 drives hepatic fibrosis through activation of hepatic stellate cells. Cell Mol. Immunol. 15, 388–398 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Allen, K., Jaeschke, H. & Copple, B. L. Bile acids induce inflammatory genes in hepatocytes: a novel mechanism of inflammation during obstructive cholestasis. Am. J. Pathol. 178, 175–186 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Keitel, V. & Haussinger, D. Role of TGR5 (GPBAR1) in liver disease. Semin. Liver Dis. 38, 333–339 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Guillot, A. et al. Bile acid-activated macrophages promote biliary epithelial cell proliferation through integrin αvβ6 upregulation following liver injury. J. Clin. Invest. 131, e132305 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tacke, F., Puengel, T., Loomba, R. & Friedman, S. L. An integrated view of anti-inflammatory and antifibrotic targets for the treatment of NASH. J. Hepatol. https://doi.org/10.1016/j.jhep.2023.03.038 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tilg, H., Adolph, T. E. & Trauner, M. Gut–liver axis: pathophysiological concepts and clinical implications. Cell Metab. 34, 1700–1718 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Bruneau, A., Hundertmark, J., Guillot, A. & Tacke, F. Molecular and cellular mediators of the gut–liver axis in the progression of liver diseases. Front. Med. 8, 725390 (2021).

    Article  Google Scholar 

  30. Chopyk, D. M. & Grakoui, A. Contribution of the intestinal microbiome and gut barrier to hepatic disorders. Gastroenterology 159, 849–863 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Yuan, J. et al. Fatty liver disease caused by high-alcohol-producing Klebsiella pneumoniae. Cell Metab. 30, 675–688.e7 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Begley, M., Gahan, C. G. & Hill, C. The interaction between bacteria and bile. FEMS Microbiol. Rev. 29, 625–651 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Islam, K. B. et al. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology 141, 1773–1781 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, Y. D. et al. Farnesoid X receptor antagonizes nuclear factor κB in hepatic inflammatory response. Hepatology 48, 1632–1643 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Azzu, V., Vacca, M., Virtue, S., Allison, M. & Vidal-Puig, A. Adipose tissue-liver cross talk in the control of whole-body metabolism: implications in nonalcoholic fatty liver disease. Gastroenterology 158, 1899–1912 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Mandard, S. et al. The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity. J. Biol. Chem. 281, 934–944 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Imajo, K. et al. Hyperresponsivity to low-dose endotoxin during progression to nonalcoholic steatohepatitis is regulated by leptin-mediated signaling. Cell Metab. 16, 44–54 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Chatterjee, S. et al. Leptin is key to peroxynitrite-mediated oxidative stress and Kupffer cell activation in experimental non-alcoholic steatohepatitis. J. Hepatol. 58, 778–784 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, J. et al. Kupffer cells mediate leptin-induced liver fibrosis. Gastroenterology 137, 713–723 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Marra, F. & Tacke, F. Roles for chemokines in liver disease. Gastroenterology 147, 577–594.e1 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Karlmark, K. R. et al. Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology 50, 261–274 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Seki, E. et al. CCR2 promotes hepatic fibrosis in mice. Hepatology 50, 185–197 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Krenkel, O. et al. Therapeutic inhibition of inflammatory monocyte recruitment reduces steatohepatitis and liver fibrosis. Hepatology 67, 1270–1283 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Heinrichs, D. et al. The chemokine CCL3 promotes experimental liver fibrosis in mice. PLoS ONE 8, e66106 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Berres, M. L. et al. Antagonism of the chemokine Ccl5 ameliorates experimental liver fibrosis in mice. J. Clin. Invest. 120, 4129–4140 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Aoyama, T., Inokuchi, S., Brenner, D. A. & Seki, E. CX3CL1-CX3CR1 interaction prevents carbon tetrachloride-induced liver inflammation and fibrosis in mice. Hepatology 52, 1390–1400 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Karlmark, K. R. et al. The fractalkine receptor CX3CR1 protects against liver fibrosis by controlling differentiation and survival of infiltrating hepatic monocytes. Hepatology 52, 1769–1782 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Tacke, F., Zimmermann, H. W., Berres, M. L., Trautwein, C. & Wasmuth, H. E. Serum chemokine receptor CXCR3 ligands are associated with progression, organ dysfunction and complications of chronic liver diseases. Liver Int. 31, 840–849 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Zeremski, M. et al. Intrahepatic levels of CXCR3-associated chemokines correlate with liver inflammation and fibrosis in chronic hepatitis C. Hepatology 48, 1440–1450 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Wasmuth, H. E. et al. Antifibrotic effects of CXCL9 and its receptor CXCR3 in livers of mice and humans. Gastroenterology 137, 309–319.e3 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Zhang, X. et al. CXC chemokine receptor 3 promotes steatohepatitis in mice through mediating inflammatory cytokines, macrophages and autophagy. J. Hepatol. 64, 160–170 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Schrage, A. et al. Enhanced T cell transmigration across the murine liver sinusoidal endothelium is mediated by transcytosis and surface presentation of chemokines. Hepatology 48, 1262–1272 (2008).

    Article  PubMed  Google Scholar 

  53. Eksteen, B. et al. Epithelial inflammation is associated with CCL28 production and the recruitment of regulatory T cells expressing CCR10. J. Immunol. 177, 593–603 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Wehr, A. et al. Chemokine receptor CXCR6-dependent hepatic NK T cell accumulation promotes inflammation and liver fibrosis. J. Immunol. 190, 5226–5236 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Wehr, A. et al. Pharmacological inhibition of the chemokine CXCL16 diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. PLoS ONE 9, e112327 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ma, C. et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science 360, eaan5931 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mossanen, J. C. et al. CXCR6 inhibits hepatocarcinogenesis by promoting natural killer T- and CD4+ T-cell-dependent control of senescence. Gastroenterology 156, 1877–1889.e4 (2019).

    Article  PubMed  Google Scholar 

  58. Dudek, M. et al. Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH. Nature 592, 444–449 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Pfister, D. et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature 592, 450–456 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Affo, S. et al. CCL20 mediates lipopolysaccharide induced liver injury and is a potential driver of inflammation and fibrosis in alcoholic hepatitis. Gut 63, 1782–1792 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Hammerich, L. et al. Chemokine receptor CCR6-dependent accumulation of γδ T cells in injured liver restricts hepatic inflammation and fibrosis. Hepatology 59, 630–642 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Wang, S. et al. Emerging importance of chemokine receptor CXCR4 and its ligand in liver disease. Front. Cell Dev. Biol. 9, 716842 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kim, H. M. et al. iNKT cells prevent obesity-induced hepatic steatosis in mice in a C-C chemokine receptor 7-dependent manner. Int. J. Obes. 42, 270–279 (2018).

    Article  CAS  Google Scholar 

  64. Bonacchi, A. et al. The chemokine CCL21 modulates lymphocyte recruitment and fibrosis in chronic hepatitis C. Gastroenterology 125, 1060–1076 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Guilliams, M. et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell 185, 379–396.e38 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bonnardel, J. et al. Stellate cells, hepatocytes, and endothelial cells imprint the Kupffer cell identity on monocytes colonizing the liver macrophage niche. Immunity 51, 638–654.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gola, A. et al. Commensal-driven immune zonation of the liver promotes host defence. Nature 589, 131–136 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Duan, Y. et al. CRIg on liver macrophages clears pathobionts and protects against alcoholic liver disease. Nat. Commun. 12, 7172 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Heymann, F. et al. Liver inflammation abrogates immunological tolerance induced by Kupffer cells. Hepatology 62, 279–291 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Heymann, F. & Tacke, F. Immunology in the liver – from homeostasis to disease. Nat. Rev. Gastroenterol. Hepatol. 13, 88–110 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Scott, C. L. et al. Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nat. Commun. 7, 10321 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bleriot, C. et al. A subset of Kupffer cells regulates metabolism through the expression of CD36. Immunity 54, 2101–2116.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. Krenkel, O. et al. Myeloid cells in liver and bone marrow acquire a functionally distinct inflammatory phenotype during obesity-related steatohepatitis. Gut 69, 551–563 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Pellicoro, A., Ramachandran, P., Iredale, J. P. & Fallowfield, J. A. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat. Rev. Immunol. 14, 181–194 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Krenkel, O. & Tacke, F. Liver macrophages in tissue homeostasis and disease. Nat. Rev. Immunol. 17, 306–321 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Ramachandran, P. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 575, 512–518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Daemen, S. et al. Dynamic shifts in the composition of resident and recruited macrophages influence tissue remodeling in NASH. Cell Rep. 34, 108626 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Remmerie, A. et al. Osteopontin expression identifies a subset of recruited macrophages distinct from Kupffer cells in the fatty liver. Immunity 53, 641–657.e14 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Seidman, J. S. et al. Niche-specific reprogramming of epigenetic landscapes drives myeloid cell diversity in nonalcoholic steatohepatitis. Immunity 52, 1057–1074.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tran, S. et al. Impaired Kupffer cell self-renewal alters the liver response to lipid overload during non-alcoholic steatohepatitis. Immunity 53, 627–640.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Guillot, A. et al. Mapping the hepatic immune landscape identifies monocytic macrophages as key drivers of steatohepatitis and cholangiopathy progression. Hepatology 78, 150–166 (2023).

    Article  PubMed  Google Scholar 

  82. Connolly, M. K. et al. In liver fibrosis, dendritic cells govern hepatic inflammation in mice via TNF-α. J. Clin. Invest. 119, 3213–3225 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Sutti, S. et al. CX3CR1-expressing inflammatory dendritic cells contribute to the progression of steatohepatitis. Clin. Sci. 129, 797–808 (2015).

    Article  CAS  Google Scholar 

  84. Sutti, S. et al. CX3CR1 mediates the development of monocyte-derived dendritic cells during hepatic inflammation. Cells 8, 1099 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pradere, J. P. et al. Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. Hepatology 58, 1461–1473 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Blois, S. M. et al. Dendritic cells regulate angiogenesis associated with liver fibrogenesis. Angiogenesis 17, 119–128 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Henning, J. R. et al. Dendritic cells limit fibroinflammatory injury in nonalcoholic steatohepatitis in mice. Hepatology 58, 589–602 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Heier, E. C. et al. Murine CD103+ dendritic cells protect against steatosis progression towards steatohepatitis. J. Hepatol. 66, 1241–1250 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Deczkowska, A. et al. XCR1+ type 1 conventional dendritic cells drive liver pathology in non-alcoholic steatohepatitis. Nat. Med. 27, 1043–1054 (2021).

    Article  CAS  PubMed  Google Scholar 

  90. Xu, R., Huang, H., Zhang, Z. & Wang, F. S. The role of neutrophils in the development of liver diseases. Cell Mol. Immunol. 11, 224–231 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Liang, W. et al. Metabolically induced liver inflammation leads to NASH and differs from LPS- or IL-1β-induced chronic inflammation. Lab. Invest. 94, 491–502 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. O’Brien, K. M. et al. IL-17A synergistically enhances bile acid-induced inflammation during obstructive cholestasis. Am. J. Pathol. 183, 1498–1507 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Ma, J. et al. Distinct histopathological phenotypes of severe alcoholic hepatitis suggest different mechanisms driving liver injury and failure. J. Clin. Invest. 132, e157780 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Moles, A. et al. A TLR2/S100A9/CXCL-2 signaling network is necessary for neutrophil recruitment in acute and chronic liver injury in the mouse. J. Hepatol. 60, 782–791 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Calvente, C. J. et al. Neutrophils contribute to spontaneous resolution of liver inflammation and fibrosis via microRNA-223. J. Clin. Invest. 129, 4091–4109 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Weiskirchen, R., Meurer, S. K., Liedtke, C. & Huber, M. Mast cells in liver fibrogenesis. Cells 8, 1429 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Huang, S. et al. Exploring the role of mast cells in the progression of liver disease. Front. Physiol. 13, 964887 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Kennedy, L. et al. Mast cells promote nonalcoholic fatty liver disease phenotypes and microvesicular steatosis in mice fed a western diet. Hepatology 74, 164–182 (2021).

    Article  CAS  PubMed  Google Scholar 

  99. Hargrove, L. et al. Bile duct ligation-induced biliary hyperplasia, hepatic injury, and fibrosis are reduced in mast cell-deficient Kit(W-sh) mice. Hepatology 65, 1991–2004 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. Meadows, V. et al. Downregulation of hepatic stem cell factor by Vivo-Morpholino treatment inhibits mast cell migration and decreases biliary damage/senescence and liver fibrosis in Mdr2−/− mice. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 165557 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Matsunaga, Y. & Terada, T. Mast cell subpopulations in chronic inflammatory hepatobiliary diseases. Liver 20, 152–156 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Koruk, S. T., Ozardali, I., Dincoglu, D. & Bitiren, M. Increased liver mast cells in patients with chronic hepatitis C. Indian J. Pathol. Microbiol. 54, 736–740 (2011).

    PubMed  Google Scholar 

  103. Jones, H. et al. Inhibition of mast cell-secreted histamine decreases biliary proliferation and fibrosis in primary sclerosing cholangitis Mdr2−/− mice. Hepatology 64, 1202–1216 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Kennedy, L. et al. Blocking H1/H2 histamine receptors inhibits damage/fibrosis in Mdr2−/− mice and human cholangiocarcinoma tumorigenesis. Hepatology 68, 1042–1056 (2018).

    Article  CAS  PubMed  Google Scholar 

  105. Ficht, X. & Iannacone, M. Immune surveillance of the liver by T cells. Sci. Immunol. 5, eaba2351 (2020).

    Article  CAS  PubMed  Google Scholar 

  106. Benechet, A. P. et al. Dynamics and genomic landscape of CD8+ T cells undergoing hepatic priming. Nature 574, 200–205 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. De Simone, G. et al. Identification of a Kupffer cell subset capable of reverting the T cell dysfunction induced by hepatocellular priming. Immunity 54, 2089–2100.e8 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Sutti, S. & Albano, E. Adaptive immunity: an emerging player in the progression of NAFLD. Nat. Rev. Gastroenterol. Hepatol. 17, 81–92 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Freitas-Lopes, M. A., Mafra, K., David, B. A., Carvalho-Gontijo, R. & Menezes, G. B. Differential location and distribution of hepatic immune cells. Cells 6, 48 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Thapa, M. et al. Liver fibrosis occurs through dysregulation of MyD88-dependent innate B-cell activity. Hepatology 61, 2067–2079 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Barrow, F. et al. Microbiota-driven activation of intrahepatic B cells aggravates NASH through innate and adaptive signaling. Hepatology 74, 704–722 (2021).

    Article  CAS  PubMed  Google Scholar 

  112. Karl, M. et al. Dual roles of B lymphocytes in mouse models of diet-induced nonalcoholic fatty liver disease. Hepatology 76, 1135–1149 (2022).

    Article  CAS  PubMed  Google Scholar 

  113. Kotsiliti, E. et al. Intestinal B-cells license metabolic T-cell activation in NASH microbiota/antigen-independently and contribute to fibrosis by IgA-FcR signalling. J. Hepatol. https://doi.org/10.1016/j.jhep.2023.04.037 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Cheever, A. W. et al. Anti-IL-4 treatment of Schistosoma mansoni-infected mice inhibits development of T cells and non-B, non-T cells expressing Th2 cytokines while decreasing egg-induced hepatic fibrosis. J. Immunol. 153, 753–759 (1994).

    Article  CAS  PubMed  Google Scholar 

  115. Chiaramonte, M. G., Donaldson, D. D., Cheever, A. W. & Wynn, T. A. An IL-13 inhibitor blocks the development of hepatic fibrosis during a T-helper type 2-dominated inflammatory response. J. Clin. Invest. 104, 777–785 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lee, C. G. et al. Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor β1. J. Exp. Med. 194, 809–821 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wynn, T. A. Fibrotic disease and the TH1/TH2 paradigm. Nat. Rev. Immunol. 4, 583–594 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Gieseck, R. L. III et al. Interleukin-13 activates distinct cellular pathways leading to ductular reaction, steatosis, and fibrosis. Immunity 45, 145–158 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wynn, T. A. et al. An IL-12-based vaccination method for preventing fibrosis induced by schistosome infection. Nature 376, 594–596 (1995).

    Article  CAS  PubMed  Google Scholar 

  120. Fabre, T. et al. Type 3 cytokines IL-17A and IL-22 drive TGF-β-dependent liver fibrosis. Sci. Immunol. 3, eaar7754 (2018).

    Article  PubMed  Google Scholar 

  121. Meng, F. et al. Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology 143, 765–776.e3 (2012).

    Article  CAS  PubMed  Google Scholar 

  122. Lemmers, A. et al. The interleukin-17 pathway is involved in human alcoholic liver disease. Hepatology 49, 646–657 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Li, J. et al. Significance of the balance between regulatory T (Treg) and T helper 17 (Th17) cells during hepatitis B virus related liver fibrosis. PLoS ONE 7, e39307 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Xiang, X. et al. Interleukin-22 ameliorates acute-on-chronic liver failure by reprogramming impaired regeneration pathways in mice. J. Hepatol. 72, 736–745 (2020).

    Article  CAS  PubMed  Google Scholar 

  125. Zenewicz, L. A. et al. Interleukin-22 but not interleukin-17 provides protection to hepatocytes during acute liver inflammation. Immunity 27, 647–659 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kong, X. et al. Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice. Hepatology 56, 1150–1159 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Arab, J. P. et al. An open-label, dose-escalation study to assess the safety and efficacy of IL-22 agonist F-652 in patients with alcohol-associated hepatitis. Hepatology 72, 441–453 (2020).

    Article  CAS  PubMed  Google Scholar 

  128. Wangoo, A., Laban, C., Cook, H. T., Glenville, B. & Shaw, R. J. Interleukin-10- and corticosteroid-induced reduction in type I procollagen in a human ex vivo scar culture. Int. J. Exp. Pathol. 78, 33–41 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Breous, E., Somanathan, S., Vandenberghe, L. H. & Wilson, J. M. Hepatic regulatory T cells and Kupffer cells are crucial mediators of systemic T cell tolerance to antigens targeting murine liver. Hepatology 50, 612–621 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Louis, H. et al. Interleukin-10 controls neutrophilic infiltration, hepatocyte proliferation, and liver fibrosis induced by carbon tetrachloride in mice. Hepatology 28, 1607–1615 (1998).

    Article  CAS  PubMed  Google Scholar 

  131. Zhang, X. et al. Persistence of cirrhosis is maintained by intrahepatic regulatory T cells that inhibit fibrosis resolution by regulating the balance of tissue inhibitors of metalloproteinases and matrix metalloproteinases. Transl. Res. 169, 67–79.e2 (2016).

    Article  CAS  PubMed  Google Scholar 

  132. Novobrantseva, T. I. et al. Attenuated liver fibrosis in the absence of B cells. J. Clin. Invest. 115, 3072–3082 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Safadi, R. et al. Immune stimulation of hepatic fibrogenesis by CD8 cells and attenuation by transgenic interleukin-10 from hepatocytes. Gastroenterology 127, 870–882 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Breuer, D. A. et al. CD8+ T cells regulate liver injury in obesity-related nonalcoholic fatty liver disease. Am. J. Physiol. Gastrointest. Liver Physiol. 318, G211–G224 (2020).

    Article  CAS  PubMed  Google Scholar 

  135. Koda, Y. et al. CD8+ tissue-resident memory T cells promote liver fibrosis resolution by inducing apoptosis of hepatic stellate cells. Nat. Commun. 12, 4474 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Pellicci, D. G., Koay, H. F. & Berzins, S. P. Thymic development of unconventional T cells: how NKT cells, MAIT cells and γδ T cells emerge. Nat. Rev. Immunol. 20, 756–770 (2020).

    Article  CAS  PubMed  Google Scholar 

  137. de Lalla, C. et al. Production of profibrotic cytokines by invariant NKT cells characterizes cirrhosis progression in chronic viral hepatitis. J. Immunol. 173, 1417–1425 (2004).

    Article  PubMed  Google Scholar 

  138. Park, O. et al. Diverse roles of invariant natural killer T cells in liver injury and fibrosis induced by carbon tetrachloride. Hepatology 49, 1683–1694 (2009).

    Article  CAS  PubMed  Google Scholar 

  139. Li, Y. et al. Mucosal-associated invariant T cells improve nonalcoholic fatty liver disease through regulating macrophage polarization. Front. Immunol. 9, 1994 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Hegde, P. et al. Mucosal-associated invariant T cells are a profibrogenic immune cell population in the liver. Nat. Commun. 9, 2146 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Bottcher, K. et al. MAIT cells are chronically activated in patients with autoimmune liver disease and promote profibrogenic hepatic stellate cell activation. Hepatology 68, 172–186 (2018).

    Article  PubMed  Google Scholar 

  142. Mabire, M. et al. MAIT cell inhibition promotes liver fibrosis regression via macrophage phenotype reprogramming. Nat. Commun. 14, 1830 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kurioka, A., Walker, L. J., Klenerman, P. & Willberg, C. B. MAIT cells: new guardians of the liver. Clin. Transl. Immunol. 5, e98 (2016).

    Article  Google Scholar 

  144. Toubal, A., Nel, I., Lotersztajn, S. & Lehuen, A. Mucosal-associated invariant T cells and disease. Nat. Rev. Immunol. 19, 643–657 (2019).

    Article  CAS  PubMed  Google Scholar 

  145. Seo, W. et al. Exosome-mediated activation of toll-like receptor 3 in stellate cells stimulates interleukin-17 production by γδ T cells in liver fibrosis. Hepatology 64, 616–631 (2016).

    Article  CAS  PubMed  Google Scholar 

  146. Liu, M., Hu, Y., Yuan, Y., Tian, Z. & Zhang, C. γδT cells suppress liver fibrosis via strong cytolysis and enhanced NK cell-mediated cytotoxicity against hepatic stellate cells. Front. Immunol. 10, 477 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Vivier, E. et al. Innate lymphoid cells: 10 years on. Cell 174, 1054–1066 (2018).

    Article  CAS  PubMed  Google Scholar 

  148. Curio, S. & Belz, G. T. The unique role of innate lymphoid cells in cancer and the hepatic microenvironment. Cell. Mol. Immunol. 19, 1012–1029 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Muhanna, N. et al. Amelioration of hepatic fibrosis by NK cell activation. Gut 60, 90–98 (2011).

    Article  CAS  PubMed  Google Scholar 

  150. Gur, C. et al. NKp46-mediated killing of human and mouse hepatic stellate cells attenuates liver fibrosis. Gut 61, 885–893 (2012).

    Article  CAS  PubMed  Google Scholar 

  151. Tosello-Trampont, A. C. et al. NKp46+ natural killer cells attenuate metabolism-induced hepatic fibrosis by regulating macrophage activation in mice. Hepatology 63, 799–812 (2016).

    Article  CAS  PubMed  Google Scholar 

  152. Wijaya, R. S. et al. KLRG1+ natural killer cells exert a novel antifibrotic function in chronic hepatitis B. J. Hepatol. 71, 252–264 (2019).

    Article  CAS  PubMed  Google Scholar 

  153. Eisenhardt, M. et al. The CXCR3(+)CD56Bright phenotype characterizes a distinct NK cell subset with anti-fibrotic potential that shows dys-regulated activity in hepatitis C. PLoS ONE 7, e38846 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Jeong, W. I. et al. Suppression of innate immunity (natural killer cell/interferon-γ) in the advanced stages of liver fibrosis in mice. Hepatology 53, 1342–1351 (2011).

    Article  CAS  PubMed  Google Scholar 

  155. Trivedi, P., Wang, S. & Friedman, S. L. The power of plasticity-metabolic regulation of hepatic stellate cells. Cell Metab. 33, 242–257 (2021).

    Article  CAS  PubMed  Google Scholar 

  156. Gilgenkrantz, H., Mallat, A., Moreau, R. & Lotersztajn, S. Targeting cell-intrinsic metabolism for antifibrotic therapy. J. Hepatol. 74, 1442–1454 (2021).

    Article  CAS  PubMed  Google Scholar 

  157. Rosenthal, S. B. et al. Heterogeneity of HSCs in a mouse model of NASH. Hepatology 74, 667–685 (2021).

    Article  CAS  PubMed  Google Scholar 

  158. Krenkel, O., Hundertmark, J., Ritz, T. P., Weiskirchen, R. & Tacke, F. Single cell RNA sequencing identifies subsets of hepatic stellate cells and myofibroblasts in liver fibrosis. Cells 8, 503 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Filliol, A. et al. Opposing roles of hepatic stellate cell subpopulations in hepatocarcinogenesis. Nature 610, 356–365 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Dobie, R. et al. Single-cell transcriptomics uncovers zonation of function in the mesenchyme during liver fibrosis. Cell Rep. 29, 1832–1847.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kisseleva, T. et al. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc. Natl Acad. Sci. USA 109, 9448–9453 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Tsuchida, T. & Friedman, S. L. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol. 14, 397–411 (2017).

    Article  CAS  PubMed  Google Scholar 

  163. Wang, S. et al. An autocrine signaling circuit in hepatic stellate cells underlies advanced fibrosis in nonalcoholic steatohepatitis. Sci. Transl Med. 15, eadd3949 (2023).

    Article  CAS  PubMed  Google Scholar 

  164. Schwabe, R. F., Tabas, I. & Pajvani, U. B. Mechanisms of fibrosis development in nonalcoholic steatohepatitis. Gastroenterology 158, 1913–1928 (2020).

    Article  CAS  PubMed  Google Scholar 

  165. Kourtzelis, I., Hajishengallis, G. & Chavakis, T. Phagocytosis of apoptotic cells in resolution of inflammation. Front. Immunol. 11, 553 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Tacke, F. et al. Bone morphogenetic protein 7 is elevated in patients with chronic liver disease and exerts fibrogenic effects on human hepatic stellate cells. Dig. Dis. Sci. 52, 3404–3415 (2007).

    Article  CAS  PubMed  Google Scholar 

  167. Dewidar, B., Meyer, C., Dooley, S. & Meindl-Beinker, A. N. TGF-β in hepatic stellate cell activation and liver fibrogenesis — updated 2019. Cells 8, 1419 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Fabre, T., Kared, H., Friedman, S. L. & Shoukry, N. H. IL-17A enhances the expression of profibrotic genes through upregulation of the TGF-β receptor on hepatic stellate cells in a JNK-dependent manner. J. Immunol. 193, 3925–3933 (2014).

    Article  CAS  PubMed  Google Scholar 

  169. Wipff, P. J., Rifkin, D. B., Meister, J. J. & Hinz, B. Myofibroblast contraction activates latent TGF-β1 from the extracellular matrix. J. Cell Biol. 179, 1311–1323 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Henderson, N. C. et al. Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat. Med. 19, 1617–1624 (2013).

    Article  CAS  PubMed  Google Scholar 

  171. Zhang, J., Jiang, N., Ping, J. & Xu, L. TGF-β1-induced autophagy activates hepatic stellate cells via the ERK and JNK signaling pathways. Int. J. Mol. Med. 47, 256–266 (2021).

    Article  CAS  PubMed  Google Scholar 

  172. Hernandez-Gea, V. et al. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 142, 938–946 (2012).

    Article  PubMed  Google Scholar 

  173. Ying, H. Z. et al. PDGF signaling pathway in hepatic fibrosis pathogenesis and therapeutics. Mol. Med. Rep. 16, 7879–7889 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Wong, L., Yamasaki, G., Johnson, R. J. & Friedman, S. L. Induction of beta-platelet-derived growth factor receptor in rat hepatic lipocytes during cellular activation in vivo and in culture. J. Clin. Invest. 94, 1563–1569 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Huang, Y. et al. Bevacizumab attenuates hepatic fibrosis in rats by inhibiting activation of hepatic stellate cells. PLoS ONE 8, e73492 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Rangwala, F. et al. Increased production of sonic hedgehog by ballooned hepatocytes. J. Pathol. 224, 401–410 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Povero, D. et al. Lipid-induced hepatocyte-derived extracellular vesicles regulate hepatic stellate cell via microRNAs targeting PPAR-γ. Cell Mol. Gastroenterol. Hepatol. 1, 646–663.e4 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Ioannou, G. N. et al. Cholesterol crystallization within hepatocyte lipid droplets and its role in murine NASH. J. Lipid Res. 58, 1067–1079 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Ioannou, G. N., Haigh, W. G., Thorning, D. & Savard, C. Hepatic cholesterol crystals and crown-like structures distinguish NASH from simple steatosis. J. Lipid Res. 54, 1326–1334 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Kaffe, E. et al. Hepatocyte autotaxin expression promotes liver fibrosis and cancer. Hepatology 65, 1369–1383 (2017).

    Article  CAS  PubMed  Google Scholar 

  181. Li, C. et al. Sphingosine 1-phosphate (S1P)/S1P receptors are involved in human liver fibrosis by action on hepatic myofibroblasts motility. J. Hepatol. 54, 1205–1213 (2011).

    Article  CAS  PubMed  Google Scholar 

  182. Hynes, R. O. The extracellular matrix: not just pretty fibrils. Science 326, 1216–1219 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Arteel, G. E. & Naba, A. The liver matrisome – looking beyond collagens. JHEP Rep. 2, 100115 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Lu, P., Takai, K., Weaver, V. M. & Werb, Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol. 3, a005058 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Beier, J. I. et al. Fibrin accumulation plays a critical role in the sensitization to lipopolysaccharide-induced liver injury caused by ethanol in mice. Hepatology 49, 1545–1553 (2009).

    Article  CAS  PubMed  Google Scholar 

  186. Gillis, S. E. & Nagy, L. E. Deposition of cellular fibronectin increases before stellate cell activation in rat liver during ethanol feeding. Alcohol. Clin. Exp. Res. 21, 857–861 (1997).

    Article  CAS  PubMed  Google Scholar 

  187. Massey, V. L. et al. The hepatic “matrisome” responds dynamically to injury: characterization of transitional changes to the extracellular matrix in mice. Hepatology 65, 969–982 (2017).

    Article  CAS  PubMed  Google Scholar 

  188. Klaas, M. et al. The alterations in the extracellular matrix composition guide the repair of damaged liver tissue. Sci. Rep. 6, 27398 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Mazza, G. et al. Cirrhotic human liver extracellular matrix 3D scaffolds promote Smad-dependent TGF-β1 epithelial mesenchymal transition. Cells 9, 83 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Hinz, B. The extracellular matrix and transforming growth factor-β1: tale of a strained relationship. Matrix Biol. 47, 54–65 (2015).

    Article  CAS  PubMed  Google Scholar 

  191. Manicardi, N. et al. Transcriptomic profiling of the liver sinusoidal endothelium during cirrhosis reveals stage-specific secretory signature. Cancers 13, 2688 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Ley, K., Laudanna, C., Cybulsky, M. I. & Nourshargh, S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7, 678–689 (2007).

    Article  CAS  PubMed  Google Scholar 

  193. Heydtmann, M. et al. CXC chemokine ligand 16 promotes integrin-mediated adhesion of liver-infiltrating lymphocytes to cholangiocytes and hepatocytes within the inflamed human liver. J. Immunol. 174, 1055–1062 (2005).

    Article  CAS  PubMed  Google Scholar 

  194. Monneau, Y., Arenzana-Seisdedos, F. & Lortat-Jacob, H. The sweet spot: how GAGs help chemokines guide migrating cells. J. Leukoc. Biol. 99, 935–953 (2016).

    Article  CAS  PubMed  Google Scholar 

  195. Lassailly, G. et al. Bariatric surgery provides long-term resolution of nonalcoholic steatohepatitis and regression of fibrosis. Gastroenterology 159, 1290–1301.e5 (2020).

    Article  PubMed  Google Scholar 

  196. Tacke, F. & Trautwein, C. Mechanisms of liver fibrosis resolution. J. Hepatol. 63, 1038–1039 (2015).

    Article  PubMed  Google Scholar 

  197. Troeger, J. S. et al. Deactivation of hepatic stellate cells during liver fibrosis resolution in mice. Gastroenterology 143, 1073–1083.e22 (2012).

    Article  CAS  PubMed  Google Scholar 

  198. Liu, X. et al. Identification of lineage-specific transcription factors that prevent activation of hepatic stellate cells and promote fibrosis resolution. Gastroenterology 158, 1728–1744.e14 (2020).

    Article  CAS  PubMed  Google Scholar 

  199. Lefere, S. et al. Differential effects of selective- and pan-PPAR agonists on experimental steatohepatitis and hepatic macrophages. J. Hepatol. 73, 757–770 (2020).

    Article  CAS  PubMed  Google Scholar 

  200. Boettcher, E., Csako, G., Pucino, F., Wesley, R. & Loomba, R. Meta-analysis: pioglitazone improves liver histology and fibrosis in patients with non-alcoholic steatohepatitis. Aliment. Pharmacol. Ther. 35, 66–75 (2012).

    Article  CAS  PubMed  Google Scholar 

  201. Francque, S. M. et al. A randomized, controlled trial of the pan-PPAR agonist lanifibranor in NASH. N. Engl. J. Med. 385, 1547–1558 (2021).

    Article  CAS  PubMed  Google Scholar 

  202. Nakano, Y. et al. A deactivation factor of fibrogenic hepatic stellate cells induces regression of liver fibrosis in mice. Hepatology 71, 1437–1452 (2020).

    Article  CAS  PubMed  Google Scholar 

  203. Arroyo, N. et al. GATA4 induces liver fibrosis regression by deactivating hepatic stellate cells. JCI Insight 6, e150059 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Radaeva, S. et al. Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners. Gastroenterology 130, 435–452 (2006).

    Article  CAS  PubMed  Google Scholar 

  205. Ramachandran, P. et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc. Natl Acad. Sci. USA 109, E3186–E3195 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Popov, Y. et al. Macrophage-mediated phagocytosis of apoptotic cholangiocytes contributes to reversal of experimental biliary fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G323–G334 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Uchinami, H., Seki, E., Brenner, D. A. & D’Armiento, J. Loss of MMP 13 attenuates murine hepatic injury and fibrosis during cholestasis. Hepatology 44, 420–429 (2006).

    Article  CAS  PubMed  Google Scholar 

  208. Fallowfield, J. A. et al. Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J. Immunol. 178, 5288–5295 (2007).

    Article  CAS  PubMed  Google Scholar 

  209. Dal-Secco, D. et al. A dynamic spectrum of monocytes arising from the in situ reprogramming of CCR2+ monocytes at a site of sterile injury. J. Exp. Med. 212, 447–456 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Wan, J. et al. M2 Kupffer cells promote M1 Kupffer cell apoptosis: a protective mechanism against alcoholic and nonalcoholic fatty liver disease. Hepatology 59, 130–142 (2014).

    Article  CAS  PubMed  Google Scholar 

  211. Saijou, E. et al. Neutrophils alleviate fibrosis in the CCl4-induced mouse chronic liver injury model. Hepatol. Commun. 2, 703–717 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Wang, J. et al. Visualizing the function and fate of neutrophils in sterile injury and repair. Science 358, 111–116 (2017).

    Article  CAS  PubMed  Google Scholar 

  213. He, Y. et al. MicroRNA-223 ameliorates nonalcoholic steatohepatitis and cancer by targeting multiple inflammatory and oncogenic genes in hepatocytes. Hepatology 70, 1150–1167 (2019).

    Article  CAS  PubMed  Google Scholar 

  214. He, Y. et al. Neutrophil-to-hepatocyte communication via LDLR-dependent miR-223-enriched extracellular vesicle transfer ameliorates nonalcoholic steatohepatitis. J. Clin. Invest. 131, e141513 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Ratziu, V., Francque, S. & Sanyal, A. Breakthroughs in therapies for NASH and remaining challenges. J. Hepatol. 76, 1263–1278 (2022).

    Article  CAS  PubMed  Google Scholar 

  216. Rinella, M. E., Tacke, F., Sanyal, A. J. & Anstee, Q. M. Report on the AASLD/EASL joint workshop on clinical trial endpoints in NAFLD. J. Hepatol. 71, 823–833 (2019).

    Article  PubMed  Google Scholar 

  217. Intercept Pharmaceuticals. Intercept announces outcome of FDA advisory committee meeting for obeticholic acid as a treatment for pre-cirrhotic fibrosis due to NASH. Intercept https://ir.interceptpharma.com/news-releases/news-release-details/intercept-announces-outcome-fda-advisory-committee-meeting (2023).

  218. Wiering, L. & Tacke, F. Treating inflammation to combat non-alcoholic fatty liver disease. J. Endocrinol. 256, e220194 (2022).

    PubMed  Google Scholar 

  219. Tacke, F. Targeting hepatic macrophages to treat liver diseases. J. Hepatol. 66, 1300–1312 (2017).

    Article  CAS  PubMed  Google Scholar 

  220. Ratziu, V. et al. Cenicriviroc treatment for adults with nonalcoholic steatohepatitis and fibrosis: final analysis of the phase 2b CENTAUR study. Hepatology 72, 892–905 (2020).

    Article  CAS  PubMed  Google Scholar 

  221. Anstee, Q. M. et al. Cenicriviroc lacked efficacy to treat liver fibrosis in nonalcoholic steatohepatitis: AURORA phase III randomized study. Clin. Gastroenterol. Hepatol. https://doi.org/10.1016/j.cgh.2023.04.003 (2023).

    Article  PubMed  Google Scholar 

  222. Liu, S. et al. TAK-242 ameliorates hepatic fibrosis by regulating the liver–gut axis. Biomed. Res. Int. 2022, 4949148 (2022).

    PubMed  PubMed Central  Google Scholar 

  223. Puengel, T. et al. The medium-chain fatty acid receptor GPR84 mediates myeloid cell infiltration promoting steatohepatitis and fibrosis. J. Clin. Med. 9, 1140 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Harrison, S. A. et al. Selonsertib for patients with bridging fibrosis or compensated cirrhosis due to NASH: results from randomized phase III STELLAR trials. J. Hepatol. 73, 26–39 (2020).

    Article  CAS  PubMed  Google Scholar 

  225. Boyer-Diaz, Z. et al. Pan-PPAR agonist lanifibranor improves portal hypertension and hepatic fibrosis in experimental advanced chronic liver disease. J. Hepatol. 74, 1188–1199 (2021).

    Article  CAS  PubMed  Google Scholar 

  226. Francque, S. et al. Nonalcoholic steatohepatitis: the role of peroxisome proliferator-activated receptors. Nat. Rev. Gastroenterol. Hepatol. 18, 24–39 (2021).

    Article  PubMed  Google Scholar 

  227. Ratziu, V. & Charlton, M. Rational combination therapy for NASH: insights from clinical trials and error. J. Hepatol. 78, 1073–1079 (2023).

    Article  CAS  PubMed  Google Scholar 

  228. Puengel, T. et al. Combined therapy with a CCR2/CCR5 antagonist and FGF21 analogue synergizes in ameliorating steatohepatitis and fibrosis. Int. J. Mol. Sci. 23, 6696 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Younossi, Z. M. et al. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review. Hepatology 77, 1335–1347 (2023).

    Article  PubMed  Google Scholar 

  230. Fumagalli, V. et al. Group 1 ILCs regulate T cell-mediated liver immunopathology by controlling local IL-2 availability. Sci. Immunol. 7, eabi6112 (2022).

    Article  CAS  PubMed  Google Scholar 

  231. Iannacone, M., Andreata, F. & Guidotti, L. G. Immunological insights in the treatment of chronic hepatitis B. Curr. Opin. Immunol. 77, 102207 (2022).

    Article  CAS  PubMed  Google Scholar 

  232. Vuerich, M., Wang, N., Kalbasi, A., Graham, J. J. & Longhi, M. S. Dysfunctional immune regulation in autoimmune hepatitis: from pathogenesis to novel therapies. Front. Immunol. 12, 746436 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Liberal, R., de Boer, Y. S. & Heneghan, M. A. Established and novel therapeutic options for autoimmune hepatitis. Lancet Gastroenterol. Hepatol. 6, 315–326 (2021).

    Article  PubMed  Google Scholar 

  234. Gao, B. & Bataller, R. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology 141, 1572–1585 (2011).

    Article  CAS  PubMed  Google Scholar 

  235. Kelly, A. et al. Human monocytes and macrophages regulate immune tolerance via integrin αvβ8-mediated TGFβ activation. J. Exp. Med. 215, 2725–2736 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Rahman, S. R. et al. Integrins as a drug target in liver fibrosis. Liver Int. 42, 507–521 (2022).

    Article  CAS  PubMed  Google Scholar 

  237. Puengel, T. et al. Nuclear receptors linking metabolism, inflammation, and fibrosis in nonalcoholic fatty liver disease. Int. J. Mol. Sci. 23, 2668 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Schwabl, P. et al. The non-steroidal FXR agonist cilofexor improves portal hypertension and reduces hepatic fibrosis in a rat NASH model. Biomedicines 9, 60 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Zhou, J. et al. SUMOylation inhibitors synergize with FXR agonists in combating liver fibrosis. Nat. Commun. 11, 240 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Younossi, Z. M. et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 394, 2184–2196 (2019).

    Article  CAS  PubMed  Google Scholar 

  241. Wirth, E. K., Puengel, T., Spranger, J. & Tacke, F. Thyroid hormones as a disease modifier and therapeutic target in nonalcoholic steatohepatitis. Expert Rev. Endocrinol. Metab. 17, 425–434 (2022).

    Article  CAS  PubMed  Google Scholar 

  242. Kaufmann, B., Reca, A., Kim, A. D. & Feldstein, A. E. Novel mechanisms for resolution of liver inflammation: therapeutic implications. Semin. Liver Dis. 41, 150–162 (2021).

    Article  CAS  PubMed  Google Scholar 

  243. Baeck, C. et al. Pharmacological inhibition of the chemokine C-C motif chemokine ligand 2 (monocyte chemoattractant protein 1) accelerates liver fibrosis regression by suppressing Ly-6C+ macrophage infiltration in mice. Hepatology 59, 1060–1072 (2014).

    Article  CAS  PubMed  Google Scholar 

  244. Thomas, J. A. et al. Macrophage therapy for murine liver fibrosis recruits host effector cells improving fibrosis, regeneration, and function. Hepatology 53, 2003–2015 (2011).

    Article  CAS  PubMed  Google Scholar 

  245. Ma, P. F. et al. Cytotherapy with M1-polarized macrophages ameliorates liver fibrosis by modulating immune microenvironment in mice. J. Hepatol. 67, 770–779 (2017).

    Article  CAS  PubMed  Google Scholar 

  246. Moroni, F. et al. Safety profile of autologous macrophage therapy for liver cirrhosis. Nat. Med. 25, 1560–1565 (2019).

    Article  CAS  PubMed  Google Scholar 

  247. Dwyer, B. J., Macmillan, M. T., Brennan, P. N. & Forbes, S. J. Cell therapy for advanced liver diseases: repair or rebuild. J. Hepatol. 74, 185–199 (2021).

    Article  CAS  PubMed  Google Scholar 

  248. Psaraki, A., Ntari, L., Karakostas, C., Korrou-Karava, D. & Roubelakis, M. G. Extracellular vesicles derived from mesenchymal stem/stromal cells: the regenerative impact in liver diseases. Hepatology 75, 1590–1603 (2022).

    Article  CAS  PubMed  Google Scholar 

  249. Amor, C. et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature 583, 127–132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Kaur, S. et al. In vitro models for the study of liver biology and diseases: advances and limitations. Cell Mol. Gastroenterol. Hepatol. 15, 559–571 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Nevzorova, Y. A., Boyer-Diaz, Z., Cubero, F. J. & Gracia-Sancho, J. Animal models for liver disease – a practical approach for translational research. J. Hepatol. 73, 423–440 (2020).

    Article  PubMed  Google Scholar 

  252. Saviano, A., Henderson, N. C. & Baumert, T. F. Single-cell genomics and spatial transcriptomics: discovery of novel cell states and cellular interactions in liver physiology and disease biology. J. Hepatol. 73, 1219–1230 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Wallace, S. J., Tacke, F., Schwabe, R. F. & Henderson, N. C. Understanding the cellular interactome of non-alcoholic fatty liver disease. JHEP Rep. 4, 100524 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Lambrecht, J., van Grunsven, L. A. & Tacke, F. Current and emerging pharmacotherapeutic interventions for the treatment of liver fibrosis. Expert Opin. Pharmacother. 21, 1637–1650 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

L.H. is supported by the German Research Foundation (DFG SPP2306) and the Else-Kroener-Fresenius-Stiftung (grant ID 2021_EKEA.145). F.T. is supported by the German Research Foundation (DFG SFB/TRR 296 and CRC1382, project ID 403224013) and the German Ministry of Education and Research (BMBF DEEP-HCC consortium, BMBF Immun Avatar consortium).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Frank Tacke.

Ethics declarations

Competing interests

F.T.’s laboratory has received research funding from Allergan, Bristol-Myers Squibb, Gilead and Inventiva (funding to the institution). F.T. has received honoraria for consulting or lectures from Astra Zeneca, Gilead, AbbVie, BMS, Boehringer, Madrigal, Intercept, Falk, Ionis, Inventiva, Merz, Pfizer, Alnylam, NGM, CSL Behring, Novo Nordisk and Novartis. L.H. declares no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Fabio Marra and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

NCT02548351: https://clinicaltrials.gov/ct2/show/NCT02548351

NCT03900429: https://clinicaltrials.gov/ct2/show/NCT03900429

NCT04849728: https://clinicaltrials.gov/ct2/show/NCT04849728

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammerich, L., Tacke, F. Hepatic inflammatory responses in liver fibrosis. Nat Rev Gastroenterol Hepatol 20, 633–646 (2023). https://doi.org/10.1038/s41575-023-00807-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-023-00807-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing