Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The appendix and ulcerative colitis — an unsolved connection

Abstract

The appendix is thought to have a role in the pathogenesis of ulcerative colitis, but the nature and basis of this association remains unclear. In this Perspective, we consider the biology of the appendix with respect to its immunological function and the microbiome, and how this relates to evidence that supports the involvement of the appendix in ulcerative colitis. In experimental models, removal of the inflamed appendix prevents colitis, and in human observational studies, appendectomy is associated with protection against ulcerative colitis. Further, among people who develop ulcerative colitis, appendectomy before diagnosis might influence the course and outcomes of the disease — some evidence suggests that it protects against colectomy but could increase the risk of colorectal cancer. Appendectomy after onset of ulcerative colitis seems to have disparate consequences. Clinical trials to understand whether appendectomy has a role in the treatment of ulcerative colitis are ongoing. Major questions about the role of the appendix in the pathogenesis of ulcerative colitis remain unanswered, and further research is needed to establish whether the connection is clinically relevant.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The immunological composition and function of the appendix in health and ulcerative colitis.
Fig. 2: Proposed relationships between appendicitis, appendectomy and the risk of ulcerative colitis and its outcomes.

Similar content being viewed by others

References

  1. Agrawal, M., Allin, K. H., Petralia, F., Colombel, J. F. & Jess, T. Multiomics to elucidate inflammatory bowel disease risk factors and pathways. Nat. Rev. Gastroenterol. Hepatol. 19, 399–409 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gilat, T., Hacohen, D., Lilos, P. & Langman, M. J. Childhood factors in ulcerative colitis and Crohn’s disease. an international cooperative study. Scand. J. Gastroenterol. 22, 1009–1024 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Darwin, C. The Descent Of Man And Selection In Relation To Sex (John Murray, 1871).

  4. Scott, G. B. The primate caecum and appendix vermiformis: a comparative study. J. Anat. 131, 549–563 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Spencer, J., Finn, T. & Isaacson, P. G. Gut associated lymphoid tissue: a morphological and immunocytochemical study of the human appendix. Gut 26, 672–679 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Smith, H. F. et al. Comparative anatomy and phylogenetic distribution of the mammalian cecal appendix. J. Evol. Biol. 22, 1984–1999 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Smith, H. F., Parker, W., Kotzé, S. H. & Laurin, M. Multiple independent appearances of the cecal appendix in mammalian evolution and an investigation of related ecological and anatomical factors. C. R. Palevol. 12, 339–354 (2013).

    Article  Google Scholar 

  8. Collard, M. K., Bardin, J., Laurin, M. & Ogier-Denis, E. The cecal appendix is correlated with greater maximal longevity in mammals. J. Anat. 239, 1157–1169 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Randal Bollinger, R., Barbas, A. S., Bush, E. L., Lin, S. S. & Parker, W. Biofilms in the large bowel suggest an apparent function of the human vermiform appendix. J. Theor. Biol. 249, 826–831 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Bharath, N. V., Swayam jothi, S. & Janaki, M. Evolution of lymphoid tissue in the vermiform appendix in human fetuses. J. Dent. Med. Sci. 13, 16–19 (2014).

    Google Scholar 

  11. Gebbers, J. O. & Laissue, J. A. Bacterial translocation in the normal human appendix parallels the development of the local immune system. Ann. NY Acad. Sci. 1029, 337–343 (2004).

    Article  PubMed  Google Scholar 

  12. Vitetta, L., Chen, J. & Clarke, S. The vermiform appendix: an immunological organ sustaining a microbiome inoculum. Clin. Sci. 133, 1–8 (2019).

    Article  CAS  Google Scholar 

  13. Ishimoto, Y. et al. Age-dependent variation in the proportion and number of intestinal lymphocyte subsets, especially natural killer T cells, double-positive CD4+CD8+ cells and B220+ T cells, in mice. Immunology 113, 371–377 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Deniz, K., Sökmensüer, L. K., Sökmensüer, C. & Patiroğlu, T. E. Significance of intraepithelial lymphocytes in appendix. Pathol. Res. Pract. 203, 731–735 (2007).

    Article  PubMed  Google Scholar 

  15. Kooij, I. A., Sahami, S., Meijer, S. L., Buskens, C. J. & Te Velde, A. A. The immunology of the vermiform appendix: a review of the literature. Clin. Exp. Immunol. 186, 1–9 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Corr, S. C., Gahan, C. C. & Hill, C. M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis. FEMS Immunol. Med. Microbiol. 52, 2–12 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Clark, M. A., Jepson, M. A., Simmons, N. L. & Hirst, B. H. Differential surface characteristics of M cells from mouse intestinal Peyer’s and caecal patches. Histochem. J. 26, 271–280 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Rhee, K. J., Sethupathi, P., Driks, A., Lanning, D. K. & Knight, K. L. Role of commensal bacteria in development of gut-associated lymphoid tissues and preimmune antibody repertoire. J. Immunol. 172, 1118–1124 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Hanson, N. B. & Lanning, D. K. Microbial induction of B and T cell areas in rabbit appendix. Dev. Comp. Immunol. 32, 980–991 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bjerke, K., Brandtzaeg, P. & Rognum, T. O. Distribution of immunoglobulin producing cells is different in normal human appendix and colon mucosa. Gut 27, 667–674 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fujihashi, K. et al. Human appendix B cells naturally express receptors for and respond to interleukin 6 with selective IgA1 and IgA2 synthesis. J. Clin. Invest. 88, 248–252 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mowat, A. M. & Viney, J. L. The anatomical basis of intestinal immunity. Immunol. Rev. 156, 145–166 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Masahata, K. et al. Generation of colonic IgA-secreting cells in the caecal patch. Nat. Commun. 5, 3704 (2014).

    Article  PubMed  Google Scholar 

  24. Matsushita, M. et al. Appendix is a priming site in the development of ulcerative colitis. World J. Gastroenterol. 11, 4869–4874 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bradshaw, D. J., Homer, K. A., Marsh, P. D. & Beighton, D. Metabolic cooperation in oral microbial communities during growth on mucin. Microbiology 140, 3407–3412 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Palestrant, D. et al. Microbial biofilms in the gut: visualization by electron microscopy and by acridine orange staining. Ultrastruct. Pathol. 28, 23–27 (2009).

    Article  Google Scholar 

  27. Duncan, K., Carey-Ewend, K. & Vaishnava, S. Spatial analysis of gut microbiome reveals a distinct ecological niche associated with the mucus layer. Gut Microbes 13, 1874815 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dutton, L. C. et al. O-mannosylation in Candida albicans enables development of interkingdom biofilm communities. mBio 5, e00911 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nickerson, K. P. & McDonald, C. Crohn’s disease-associated adherent-invasive Escherichia coli adhesion is enhanced by exposure to the ubiquitous dietary polysaccharide maltodextrin. PLoS ONE 7, e52132 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sonnenburg, J. L., Angenent, L. T. & Gordon, J. I. Getting a grip on things: how do communities of bacterial symbionts become established in our intestine? Nat. Immunol. 5, 569–573 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Bollinger, R. R. et al. Secretory IgA and mucin-mediated biofilm formation by environmental strains of Escherichia coli: role of type 1 pili. Mol. Immunol. 43, 378–387 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Gibbins, H. L., Proctor, G. B., Yakubov, G. E., Wilson, S. & Carpenter, G. H. SIgA binding to mucosal surfaces is mediated by mucin–mucin interactions. PLoS ONE 10, e0119677 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bollinger, R. R. et al. Human secretory immunoglobulin A may contribute to biofilm formation in the gut. Immunology 109, 580–587 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Donaldson, G. P. et al. Gut microbiota utilize immunoglobulin A for mucosal colonization. Science 360, 795–800 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Guinane, C. M. et al. Microbial composition of human appendices from patients following appendectomy. mBio https://doi.org/10.1128/mBio.00366-12 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rogers, M. B., Brower-Sinning, R., Firek, B., Zhong, D. & Morowitz, M. J. Acute appendicitis in children is associated with a local expansion of fusobacteria. Clin. Infect. Dis. 63, 71–78 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Oh, S. J. et al. Acute appendicitis is associated with appendiceal microbiome changes including elevated Campylobacter jejuni levels. BMJ Open Gastroenterol. https://doi.org/10.1136/bmjgast-2020-000412 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Swidsinski, A. et al. Acute appendicitis is characterised by local invasion with Fusobacterium nucleatum/necrophorum. Gut 60, 34–40 (2011).

    Article  PubMed  Google Scholar 

  39. Swidsinski, A. et al. Mucosal invasion by fusobacteria is a common feature of acute appendicitis in Germany, Russia, and China. Saudi J. Gastroenterol. 18, 55–58 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Salö, M. et al. Evaluation of the microbiome in children’s appendicitis. Int. J. Colorectal Dis. 32, 19–28 (2017).

    Article  PubMed  Google Scholar 

  41. Jackson, H. T. et al. Culture-independent evaluation of the appendix and rectum microbiomes in children with and without appendicitis. PLoS ONE 9, e95414 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Peeters, T. et al. The fecal and mucosal microbiome in acute appendicitis patients: an observational study. Future Microbiol. 14, 111–127 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Cai, S. et al. Appendectomy is associated with alteration of human gut bacterial and fungal communities. Front. Microbiol. 12, 724980 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sanchez-Alcoholado, L. et al. Incidental prophylactic appendectomy is associated with a profound microbial dysbiosis in the long-term. Microorganisms https://doi.org/10.3390/microorganisms8040609 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mizoguchi, A., Mizoguchi, E., Chiba, C. & Bhan, A. K. Role of appendix in the development of inflammatory bowel disease in TCR-alpha mutant mice. J. Exp. Med. 184, 707–715 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Krieglstein, C. F. et al. Role of appendix and spleen in experimental colitis. J. Surg. Res. 101, 166–175 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Harnoy, Y. et al. Effect of appendicectomy on colonic inflammation and neoplasia in experimental ulcerative colitis. Br. J. Surg. 103, 1530–1538 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Farkas, S. A. et al. Preferential migration of CD62L cells into the appendix in mice with experimental chronic colitis. Eur. Surg. Res. 37, 115–122 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Ebert, E. C., Geng, X., Lin, J. & Das, K. M. Autoantibodies against human tropomyosin isoform 5 in ulcerative colitis destroys colonic epithelial cells through antibody and complement-mediated lysis. Cell Immunol. 244, 43–49 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Powrie, F. et al. Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. Immunity 1, 553–562 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Collard, M. K. et al. The appendix orchestrates T-cell mediated immunosurveillance in colitis-associated cancer. Cell. Mol. Gastroenterol. Hepatol. 15, 665–687 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Roblin, X., Neut, C., Darfeuille-Michaud, A. & Colombel, J. F. Local appendiceal dysbiosis: the missing link between the appendix and ulcerative colitis? Gut 61, 635–636 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Sahami, S. et al. The link between the appendix and ulcerative colitis: clinical relevance and potential immunological mechanisms. Am. J. Gastroenterol. 111, 163–169 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Koutroubakis, I. E. et al. Appendectomy, tonsillectomy, and risk of inflammatory bowel disease: case-controlled study in Crete. Dis. Colon Rectum 42, 225–230 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Naganuma, M. et al. Appendectomy protects against the development of ulcerative colitis and reduces its recurrence: results of a multicenter case-controlled study in Japan. Am. J. Gastroenterol. 96, 1123–1126 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Florin, T. H., Pandeya, N. & Radford-Smith, G. L. Epidemiology of appendicectomy in primary sclerosing cholangitis and ulcerative colitis: its influence on the clinical behaviour of these diseases. Gut 53, 973–979 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Andersson, R. E., Olaison, G., Tysk, C. & Ekbom, A. Appendectomy and protection against ulcerative colitis. N. Engl. J. Med. 344, 808–814 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Frisch, M., Pedersen, B. V. & Andersson, R. E. Appendicitis, mesenteric lymphadenitis, and subsequent risk of ulcerative colitis: cohort studies in Sweden and Denmark. BMJ 338, b716 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Koutroubakis, I. E. & Vlachonikolis, I. G. Appendectomy and the development of ulcerative colitis: results of a metaanalysis of published case-control studies. Am. J. Gastroenterol. 95, 171–176 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Deng, P. & Wu, J. Meta-analysis of the association between appendiceal orifice inflammation and appendectomy and ulcerative colitis. Rev. Esp. Enferm. Dig. 108, 401–410 (2016).

    Article  PubMed  Google Scholar 

  61. Nyboe Andersen, N., Gørtz, S., Frisch, M. & Jess, T. Reduced risk of UC in families affected by appendicitis: a Danish national cohort study. Gut 66, 1398–1402 (2017).

    Article  PubMed  Google Scholar 

  62. Kiasat, A., Ekstrom, L. D., Marsk, R., Lof-Granstrom, A. & Gustafsson, U. O. Childhood appendicitis and future risk of inflammatory bowel disease — a nationwide cohort study in Sweden 1973–2017. Colorectal Dis. 24, 975–983 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Podda, M. et al. Antibiotic treatment and appendectomy for uncomplicated acute appendicitis in adults and children: a systematic review and meta-analysis. Ann. Surg. 270, 1028–1040 (2019).

    Article  PubMed  Google Scholar 

  64. Bakman, Y., Katz, J. & Shepela, C. Clinical significance of isolated peri-appendiceal lesions in patients with left sided ulcerative colitis. Gastroenterol. Res. 4, 58–63 (2011).

    Google Scholar 

  65. Heuthorst, L. et al. High prevalence of ulcerative appendicitis in patients with ulcerative colitis. U Eur. Gastroenterol. J. 9, 1148–1156 (2021).

    Article  CAS  Google Scholar 

  66. Park, S. H. et al. Long term follow-up of appendiceal and distal right-sided colonic inflammation. Endoscopy 44, 95–98 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Park, S. H., Loftus, E. V. Jr. & Yang, S. K. Appendiceal skip inflammation and ulcerative colitis. Dig. Dis. Sci. 59, 2050–2057 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Cosnes, J. et al. Effects of appendicectomy on the course of ulcerative colitis. Gut 51, 803–807 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Parian, A. et al. Appendectomy does not decrease the risk of future colectomy in UC: results from a large cohort and meta-analysis. Gut 66, 1390–1397 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. Welsh, S., Sam, Z., Seenan, J. P. & Nicholson, G. A. The role of appendicectomy in ulcerative colitis: systematic review and meta-analysis. Inflamm. Bowel Dis. https://doi.org/10.1093/ibd/izac127 (2022).

    Article  PubMed  Google Scholar 

  71. Stellingwerf, M. E. et al. The risk of colectomy and colorectal cancer after appendectomy in patients with ulcerative colitis: a systematic review and meta-analysis. J. Crohn’s Colitis 13, 309–318 (2019).

    Article  Google Scholar 

  72. Rothwell, J. A. et al. Colorectal cancer risk following appendectomy: a pooled analysis of three large prospective cohort studies. Cancer Commun. 42, 486–489 (2022).

    Article  Google Scholar 

  73. Hallas, J., Gaist, D., Vach, W. & Sorensen, H. T. Appendicectomy has no beneficial effect on admission rates in patients with ulcerative colitis. Gut 53, 351–354 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bolin, T. D., Wong, S., Crouch, R., Engelman, J. L. & Riordan, S. M. Appendicectomy as a therapy for ulcerative proctitis. Am. J. Gastroenterol. 104, 2476–2482 (2009).

    Article  PubMed  Google Scholar 

  75. Stellingwerf, M. E. et al. Prospective cohort study of appendicectomy for treatment of therapy-refractory ulcerative colitis. Br. J. Surg. 106, 1697–1704 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Sahami, S. et al. Appendectomy for therapy-refractory ulcerative colitis results in pathological improvement of colonic inflammation: short-term results of the PASSION study. J. Crohn’s Colitis 13, 165–171 (2019).

    Article  CAS  Google Scholar 

  77. Gardenbroek, T. J. et al. The ACCURE-trial: the effect of appendectomy on the clinical course of ulcerative colitis, a randomised international multicenter trial (NTR2883) and the ACCURE-UK trial: a randomised external pilot trial (ISRCTN56523019). BMC Surg. 15, 30 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  78. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03912714 (2019).

  79. Nepogodiev, D. et al. The ACCURE-UK trial: the effect of appendectomy on the clinical course of ulcerative colitis — a feasibility study. Int. J. Surg. https://doi.org/10.1016/j.ijsu.2016.08.031 (2016).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank J. Gregory, Certified Medical Illustrator, Icahn School of Medicine at Mount Sinai, for the original versions of the figures.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the article.

Corresponding author

Correspondence to Manasi Agrawal.

Ethics declarations

Competing interests

M.A. is supported by the National Institute of Diabetes and Digestive and Kidney Diseases (K23DK129762-02). S.M. has received research grants from Genentech and Takeda; payment for lectures from Genentech, Morphic and Taleda; and consulting fees from Arena Pharmaceuticals, Ferring, Morphic and Takeda. J.F. has received consulting fees from Vedanta Biosciences. J.-F.C. has received research grants from AbbVie, Janssen Pharmaceuticals and Takeda; payment for lectures from AbbVie, Amgen, Allergan, Ferring Pharmaceuticals, Shire and Takeda; has received consulting fees from AbbVie, Amgen, Arena Pharmaceuticals, Boehringer Ingelheim, BMS, Celgene Corporation, Eli Lilly, Ferring Pharmaceuticals, Galmed Research, Genentech, Glaxo Smith Kline, Janssen Pharmaceuticals, Kaleido Biosciences, Imedex, Immunic, Iterative Scopes, Merck, Microbia, Novartis, PBM Capital, Pfizer, Protagonist Therapeutics, Sanofi, Takeda, TiGenix and Vifor; and holds stock options in Intestinal Biotech Development. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks C. Buskens, C. Fiocchi, E. Mizoguchi and K. Okazaki for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, M., Allin, K.H., Mehandru, S. et al. The appendix and ulcerative colitis — an unsolved connection. Nat Rev Gastroenterol Hepatol 20, 615–624 (2023). https://doi.org/10.1038/s41575-023-00774-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-023-00774-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing