Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Environmental enteric dysfunction: gut and microbiota adaptation in pregnancy and infancy

Abstract

Environmental enteric dysfunction (EED) is a subclinical syndrome of intestinal inflammation, malabsorption and barrier disruption that is highly prevalent in low- and middle-income countries in which poverty, food insecurity and frequent exposure to enteric pathogens impair growth, immunity and neurodevelopment in children. In this Review, we discuss advances in our understanding of EED, intestinal adaptation and the gut microbiome over the ‘first 1,000 days’ of life, spanning pregnancy and early childhood. Data on maternal EED are emerging, and they mirror earlier findings of increased risks for preterm birth and fetal growth restriction in mothers with either active inflammatory bowel disease or coeliac disease. The intense metabolic demands of pregnancy and lactation drive gut adaptation, including dramatic changes in the composition, function and mother-to-child transmission of the gut microbiota. We urgently need to elucidate the mechanisms by which EED undermines these critical processes so that we can improve global strategies to prevent and reverse intergenerational cycles of undernutrition.

Key points

  • Maternal and neonatal anthropometry are key predictors of childhood stunting, highlighting the intergenerational nature of undernutrition and pinpointing the first 1,000 days of life as a critical window for development.

  • Pregnancy and lactation are metabolically demanding, requiring an expansion of small intestinal absorptive capacity; enteropathies adversely affect perinatal outcomes.

  • Environmental enteric dysfunction (EED) is characterized by inflammation, increased barrier permeability, and reduced absorptive capacity. Its prevalence and consequences in mothers in low and middle-income countries warrant urgent investigation.

  • Gut microbial communities are disrupted during EED and undernutrition in humans, and confer aspects of these phenotypes to gnotobiotic mice; nutrient processing, absorption and regulation of immunity are potential mechanisms.

  • Infants inherit a substantial portion of their microbiome from their mothers. Maternal microorganisms, breast milk and epigenetics are implicated in intergenerational undernutrition.

  • Gut microbial communities in early life shape host immunity, with potential consequences for survival, growth and cognitive development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Maternal gut health and fetal growth in the context of environmental enteric dysfunction.
Fig. 2: Expansion of small intestinal absorptive capacity during pregnancy and lactation.
Fig. 3: The effect of maternal environmental enteric dysfunction on child development: potential mechanisms and consequences.
Fig. 4: Long-term implications of maternal environmental enteric dysfunction.

Similar content being viewed by others

References

  1. Prendergast, A. J. & Humphrey, J. H. The stunting syndrome in developing countries. Paediatr. Int. Child. Health 34, 250–265 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gomes, C. F., Sousa, M., Lourenço, I., Martins, D. & Torres, J. Gastrointestinal diseases during pregnancy: what does the gastroenterologist need to know? Ann. Gastroenterol. 31, 385–394 (2018).

    PubMed  PubMed Central  Google Scholar 

  3. Guerrant, R. L., DeBoer, M. D., Moore, S. R., Scharf, R. J. & Lima, A. A. M. The impoverished gut—a triple burden of diarrhoea, stunting and chronic disease. Nat. Rev. Gastroenterol. Hepatol. 10, 220–229 (2013).

    Article  PubMed  Google Scholar 

  4. Syed, S., Ali, A. & Duggan, C. Environmental enteric dysfunction in children. J. Pediatr. Gastroenterol. Nutr. 63, 6–14 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Watanabe, K. & Petri, W. A. Environmental enteropathy: elusive but significant subclinical abnormalities in developing countries. EBioMedicine 10, 25–32 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fagundes-Neto, U., Viaro, T., Wehba, J., Patrício, F. R. & Machado, N. L. Tropical enteropathy (environmental enteropathy) in early childhood: a syndrome caused by contaminated environment. J. Trop. Pediatr. 30, 204–209 (1984).

    Article  CAS  PubMed  Google Scholar 

  7. Campbell, R. K. et al. Biomarkers of environmental enteric dysfunction among children in rural Bangladesh. J. Pediatr. Gastroenterol. Nutr. 65, 40–46 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kosek, M. et al. Fecal markers of intestinal inflammation and permeability associated with the subsequent acquisition of linear growth deficits in infants. Am. J. Trop. Med. Hyg. 88, 390–396 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  9. McCormick, B. J. J. et al. Dynamics and trends in fecal biomarkers of gut function in children from 1–24 months in the MAL-ED study. Am. J. Trop. Med. Hyg. 96, 465–472 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tickell, K. D., Atlas, H. E. & Walson, J. L. Environmental enteric dysfunction: a review of potential mechanisms, consequences and management strategies. BMC Med. 17, 181 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kosek, M. N. & MAL-ED Network Investigators. Causal pathways from enteropathogens to environmental enteropathy: findings from the MAL-ED birth cohort study. EBioMedicine 18, 109–117 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Marie, C., Ali, A., Chandwe, K., Petri, W. A. & Kelly, P. Pathophysiology of environmental enteric dysfunction and its impact on oral vaccine efficacy. Mucosal Immunol. 11, 1290–1298 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Levine, M. M. Immunogenicity and efficacy of oral vaccines in developing countries: lessons from a live cholera vaccine. BMC Biol. 8, 129 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  14. WHO. Levels and trends in child malnutrition: UNICEF/WHO/The World Bank Group joint child malnutrition estimates: key findings of the 2021 edition. WHO https://www.who.int/publications-detail-redirect/9789240025257 (2021).

  15. Olofin, I. et al. Associations of suboptimal growth with all-cause and cause-specific mortality in children under five years: a pooled analysis of ten prospective studies. PLoS ONE 8, e64636 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Black, R. E. et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 382, 427–451 (2013).

    Article  PubMed  Google Scholar 

  17. Moore, S. R., Lima, A. A. M. & Guerrant, R. L. Preventing 5 million child deaths from diarrhea in the next 5 years. Nat. Rev. Gastroenterol. Hepatol. 8, 363–364 (2011).

    Article  PubMed  Google Scholar 

  18. United Nations. Transforming our world: the 2030 agenda for sustainable development. United Nations Department of Economic and Social Affairs https://sdgs.un.org/2030agenda (2015).

  19. Matonhodze, C. R. Leaving no one behind: impact of COVID-19 on the Sustainable Development Goals (SDGs). United Nations Development Programme https://www.undp.org/publications/leaving-no-one-behind-impact-covid-19-sustainable-development-goals-sdgs (2021).

  20. de Onis, M. & Branca, F. Childhood stunting: a global perspective. Matern. Child. Nutr. 12, 12–26 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chen, R. Y. et al. A microbiota-directed food intervention for undernourished children. N. Engl. J. Med. 384, 1517–1528 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Crookston, B. T. et al. Postinfancy growth, schooling, and cognitive achievement: young lives. Am. J. Clin. Nutr. 98, 1555–1563 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Prentice, A. M. et al. Critical windows for nutritional interventions against stunting. Am. J. Clin. Nutr. 97, 911–918 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lima, A. A. M. et al. Intestinal barrier function and weight gain in malnourished children taking glutamine supplemented enteral formula. J. Pediatr. Gastroenterol. Nutr. 40, 28–35 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Chen, R. Y. et al. Duodenal microbiota in stunted undernourished children with enteropathy. N. Engl. J. Med. 383, 321–333 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Haberman, Y. et al. Mucosal genomics implicate lymphocyte activation and lipid metabolism in refractory environmental enteric dysfunction. Gastroenterology 160, 2055–2071.e0 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Hodges, P., Tembo, M. & Kelly, P. Intestinal biopsies for the evaluation of environmental enteropathy and environmental enteric dysfunction. J. Infect. Dis. 224, S856–S863 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Vonaesch, P. et al. Stunted childhood growth is associated with decompartmentalization of the gastrointestinal tract and overgrowth of oropharyngeal taxa. Proc. Natl Acad. Sci. 115, E8489–E8498 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ordiz, M. I. et al. Environmental enteric dysfunction is associated with poor linear growth and can be identified by host fecal mRNAs. J. Pediatr. Gastroenterol. Nutr. 63, 453–459 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. DeBoer, M. D. et al. Effect of scheduled antimicrobial and nicotinamide treatment on linear growth in children in rural Tanzania: a factorial randomized, double-blind, placebo-controlled trial. PLoS Med. 18, e1003617 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tickell, K. D. & Walson, J. L. Nutritional enteric failure: neglected tropical diseases and childhood stunting. PLoS Negl. Trop. Dis. 10, e0004523 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Richard, S. A. et al. Enteric dysfunction and other factors associated with attained size at 5 years: MAL-ED birth cohort study findings. Am. J. Clin. Nutr. https://doi.org/10.1093/ajcn/nqz004 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Arndt, M. B. et al. Fecal markers of environmental enteropathy and subsequent growth in Bangladeshi children. Am. J. Trop. Med. Hyg. 95, 694–701 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. WHO Multicentre Growth Reference Study Group. WHO child growth standards based on length/height, weight and age. Acta Paediatr. Suppl. 450, 76–85 (2006).

    Google Scholar 

  35. Grantz, K. L. et al. Unified standard for fetal growth: the Eunice Kennedy Shriver National Institute of Child Health and Human Development Fetal Growth Studies. Am. J. Obstet. Gynecol. 226, 576–587.e2 (2022).

    Article  PubMed  Google Scholar 

  36. Papageorghiou, A. T. et al. The INTERGROWTH-21st fetal growth standards: toward the global integration of pregnancy and pediatric care. Am. J. Obstet. Gynecol. 218, S630–S640 (2018).

    Article  PubMed  Google Scholar 

  37. Kiserud, T. et al. The World Health Organization fetal growth charts: a multinational longitudinal study of ultrasound biometric measurements and estimated fetal weight. PLoS Med. 14, e1002220 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wells, J. C. K. The new ‘obstetrical dilemma’: stunting, obesity and the risk of obstructed labour. Anat. Rec. 300, 716–731 (2017).

    Article  Google Scholar 

  39. Dunsworth, H. M., Warrener, A. G., Deacon, T., Ellison, P. T. & Pontzer, H. Metabolic hypothesis for human altriciality. Proc. Natl Acad. Sci. USA 109, 15212–15216 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schwarzenberg, S. J., Georgieff, M. K. & Committee on Nutrition. Advocacy for improving nutrition in the first 1000 days to support childhood development and adult health. Pediatrics 141, e20173716 (2018).

    Article  PubMed  Google Scholar 

  41. Lauer, J. M. et al. Biomarkers of maternal environmental enteric dysfunction are associated with shorter gestation and reduced length in newborn infants in Uganda. Am. J. Clin. Nutr. 108, 889–896 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kirby, M. A. et al. Biomarkers of environmental enteric dysfunction and adverse birth outcomes: an observational study among pregnant women living with HIV in Tanzania. eBioMedicine 84, 104257 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tersigni, C. et al. Celiac disease and reproductive disorders: meta-analysis of epidemiologic associations and potential pathogenic mechanisms. Hum. Reprod. Update 20, 582–593 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Cornish, J. et al. A meta-analysis on the influence of inflammatory bowel disease on pregnancy. Gut 56, 830–837 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Alstead, E. M. & Nelson-Piercy, C. Inflammatory bowel disease in pregnancy. Gut 52, 159–161 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Leonard, M. M. et al. Value of IgA tTG in predicting mucosal recovery in children with celiac disease on a gluten-free diet. J. Pediatr. Gastroenterol. Nutr. 64, 286–291 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, T.-C. et al. A novel histological index for evaluation of environmental enteric dysfunction identifies geographic-specific features of enteropathy among children with suboptimal growth. PLoS Negl. Trop. Dis. 14, e0007975 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Thurber, C. et al. Extreme events reveal an alimentary limit on sustained maximal human energy expenditure. Sci. Adv. 5, eaaw0341 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hammond, K. A., Konarzewski, M., Torres, R. M. & Diamond, J. Metabolic ceilings under a combination of peak energy demands. Physiological Zool. 67, 1479–1506 (1994).

    Article  Google Scholar 

  50. Hammond, K. A. & Diamond, J. Maximal sustained energy budgets in humans and animals. Nature 386, 457–462 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Hammond, K. A. Adaptation of the maternal intestine during lactation. J. Mammary Gland. Biol. Neoplasia 2, 243–252 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Butte, N. F., Wong, W. W., Treuth, M. S., Ellis, K. J. & O’Brian Smith, E. Energy requirements during pregnancy based on total energy expenditure and energy deposition. Am. J. Clin. Nutr. 79, 1078–1087 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Kominiarek, M. A. & Rajan, P. Nutrition recommendations in pregnancy and lactation. Med. Clin. North Am. 100, 1199–1215 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Butte, N. F. & King, J. C. Energy requirements during pregnancy and lactation. Public Health Nutr. 8, 1010–1027 (2005).

    Article  PubMed  Google Scholar 

  55. Nakada, D. et al. Oestrogen increases haematopoietic stem-cell self-renewal in females and during pregnancy. Nature 505, 555–558 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sabet Sarvestani, F., Rahmanifar, F. & Tamadon, A. Histomorphometric changes of small intestine in pregnant rat. Vet. Res. Forum 6, 69–73 (2015).

    PubMed  PubMed Central  Google Scholar 

  57. Prieto, R. M., Ferrer, M., Fe, J. M., Rayó, J. M. & Tur, J. A. Morphological adaptive changes of small intestinal tract regions due to pregnancy and lactation in rats. Ann. Nutr. Metab. 38, 295–300 (1994).

    Article  CAS  PubMed  Google Scholar 

  58. Boyne, R., Fell, B. F. & Robb, I. The surface area of the intestinal mucosa in the lactating rat. J. Physiol. 183, 570–575 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Casirola, D. M. & Ferraris, R. P. Role of the small intestine in postpartum weight retention in mice. Am. J. Clin. Nutr. 78, 1178–1187 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Şensoy, E. & Öznurlu, Y. Determination of the changes on the small intestine of pregnant mice by histological, enzyme histochemical, and immunohistochemical methods. Turk. J. Gastroenterol. 30, 917–924 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhou, Z. et al. Progesterone decreases gut permeability through upregulating occludin expression in primary human gut tissues and Caco-2 cells. Sci. Rep. 9, 8367 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Drucker, D. J. The discovery of GLP-2 and development of teduglutide for short bowel syndrome. ACS Pharmacol. Transl. Sci. 2, 134–142 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Guan, X. et al. GLP-2 receptor localizes to enteric neurons and endocrine cells expressing vasoactive peptides and mediates increased blood flow. Gastroenterology 130, 150–164 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Kahr, M. K. et al. SERUM GLP-2 is increased in association with excess gestational weight gain. Am. J. Perinatol. https://doi.org/10.1055/s-0041-1728828 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Garella, R., Squecco, R. & Baccari, M. C. Site-related effects of relaxin in the gastrointestinal tract through nitric oxide signalling: an updated report. Curr. Protein Pept. Sci. 18, 1254–1262 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Lemmens, K., Doggen, K. & De Keulenaer, G. W. Activation of the neuregulin/ErbB system during physiological ventricular remodeling in pregnancy. Am. J. Physiol. Heart Circ. Physiol. 300, H931–H942 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Kilik, U. et al. Maturation of human intestinal epithelium from pluripotency in vitro. Preprint at bioRxiv https://doi.org/10.1101/2021.09.24.460132 (2021).

    Article  Google Scholar 

  68. Collado, M. C., Isolauri, E., Laitinen, K. & Salminen, S. Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am. J. Clin. Nutr. 88, 894–899 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Koren, O. et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150, 470–480 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. García-Gómez, E., González-Pedrajo, B. & Camacho-Arroyo, I. Role of sex steroid hormones in bacterial–host interactions. BioMed. Res. Int. 2013, e928290 (2012).

    Google Scholar 

  71. Gohir, W. et al. Pregnancy-related changes in the maternal gut microbiota are dependent upon the mother’s periconceptional diet. Gut Microbes 6, 310–320 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nuriel-Ohayon, M. et al. Progesterone increases bifidobacterium relative abundance during late pregnancy. Cell Rep. 27, 730–736.e3 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. DiGiulio, D. B. et al. Temporal and spatial variation of the human microbiota during pregnancy. Proc. Natl Acad. Sci. USA 112, 11060–11065 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bisanz, J. E. et al. Microbiota at multiple body sites during pregnancy in a rural Tanzanian population and effects of moringa-supplemented probiotic yogurt. Appl. Environ. Microbiol. 81, 4965–4975 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gough, E. K. et al. Maternal fecal microbiome predicts gestational age, birth weight and neonatal growth in rural Zimbabwe. EBioMedicine 68, 103421 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Lammert, C. R. et al. Cutting edge: critical roles for microbiota-mediated regulation of the immune system in a prenatal immune activation model of autism. J. Immunol. https://doi.org/10.4049/jimmunol.1701755 (2018).

    Article  PubMed  Google Scholar 

  77. Kim, S. et al. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature 549, 528–532 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Choi, G. B. et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science 351, 933–939 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Vuong, H. E. et al. The maternal microbiome modulates fetal neurodevelopment in mice. Nature https://doi.org/10.1038/s41586-020-2745-3 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    Article  PubMed  Google Scholar 

  81. Ahmed, T., Hossain, M. & Sanin, K. I. Global burden of maternal and child undernutrition and micronutrient deficiencies. Ann. Nutr. Metab. 61, 8–17 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. McGuire, S. WHO guideline: vitamin A supplementation in pregnant women. Geneva: WHO, 2011; WHO guideline: vitamin A supplementation in postpartum women. Geneva: WHO, 2011. Adv. Nutr. 3, 215–216 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Grizotte-Lake, M. et al. Commensals suppress intestinal epithelial cell retinoic acid synthesis to regulate interleukin-22 activity and prevent microbial dysbiosis. Immunity 49, 1103–1115.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jijon, H. B. et al. Intestinal epithelial cell-specific RARα depletion results in aberrant epithelial cell homeostasis and underdeveloped immune system. Mucosal Immunol. 11, 703–715 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Kheirouri, S. & Alizadeh, M. Decreased serum and mucosa immunoglobulin A levels in vitamin A and zinc-deficient mice. Cent. Eur. J. Immunol. 39, 165–169 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hibberd, M. C. et al. The effects of micronutrient deficiencies on bacterial species from the human gut microbiota. Sci. Transl. Med. 9, eaal4069 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Alves da Silva, A. V. et al. Murine methyl donor deficiency impairs early growth in association with dysmorphic small intestinal crypts and reduced gut microbial community diversity. Curr. Dev. Nutr. 3, nzy070 (2019).

    Article  Google Scholar 

  88. Forgie, A. J. et al. The impact of maternal and early life malnutrition on health: a diet-microbe perspective. BMC Med. 18, 135 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Mayneris-Perxachs, J. et al. Protein- and zinc-deficient diets modulate the murine microbiome and metabolic phenotype. Am. J. Clin. Nutr. 104, 1253–1262 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Preidis, G. A. et al. Composition and function of the undernourished neonatal mouse intestinal microbiome. J. Nutr. Biochem. 26, 1050–1057 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Marwarha, G., Claycombe-Larson, K., Schommer, J. & Ghribi, O. Maternal low protein diet decreases brain-derived neurotrophic factor expression in the brains of the neonatal rat offspring. J. Nutr. Biochem. 45, 54–66 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hashimoto, T. et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature 487, 477–481 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Martinez-Guryn, K. et al. Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids. Cell Host Microbe 23, 458–469.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sayin, S. I. et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 17, 225–235 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Semova, I. et al. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host Microbe 12, 277–288 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Makki, K., Deehan, E. C., Walter, J. & Bäckhed, F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 23, 705–715 (2018).

    Article  CAS  PubMed  Google Scholar 

  97. Priyadarshini, M. et al. Maternal short-chain fatty acids are associated with metabolic parameters in mothers and newborns. Transl. Res. 164, 153–157 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nakajima, A. et al. Maternal high fiber diet during pregnancy and lactation influences regulatory T cell differentiation in offspring in mice. J. Immunol. 199, 3516–3524 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Thorburn, A. N. et al. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat. Commun. 6, 7320 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Tolhurst, G. et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein–coupled receptor FFAR2. Diabetes 61, 364–371 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cani, P. D. et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58, 1091–1103 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Yu, Y., Raka, F. & Adeli, K. The role of the gut microbiota in lipid and lipoprotein metabolism. J. Clin. Med. 8, 2227 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. de Onis, M., Blössner, M. & Villar, J. Levels and patterns of intrauterine growth retardation in developing countries. Eur. J. Clin. Nutr. 52, S5–S15 (1998).

    PubMed  Google Scholar 

  104. Christian, P. et al. Risk of childhood undernutrition related to small-for-gestational age and preterm birth in low- and middle-income countries. Int. J. Epidemiol. 42, 1340–1355 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Arifeen, S. E. et al. Infant growth patterns in the slums of Dhaka in relation to birth weight, intrauterine growth retardation, and prematurity. Am. J. Clin. Nutr. 72, 1010–1017 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Sato, Y. et al. Maternal gut microbiota is associated with newborn anthropometrics in a sex-specific manner. J. Dev. Orig. Health Dis. https://doi.org/10.1017/S2040174419000138 (2019).

    Article  PubMed  Google Scholar 

  107. Shiozaki, A. et al. Intestinal microbiota is different in women with preterm birth: results from terminal restriction fragment length polymorphism analysis. PLoS ONE 9, e111374 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Dahl, C. et al. Gut microbiome of mothers delivering prematurely shows reduced diversity and lower relative abundance of Bifidobacterium and Streptococcus. PLoS ONE 12, e0184336 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Kimura, I. et al. Maternal gut microbiota in pregnancy influences offspring metabolic phenotype in mice. Science 367, eaaw8429 (2020).

    Article  CAS  PubMed  Google Scholar 

  110. Machado, C. J., Whitaker, A. M., Smith, S. E. P., Patterson, P. H. & Bauman, M. D. Maternal immune activation in nonhuman primates alters social attention in juvenile offspring. Biol. Psychiat. 77, 823–832 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Bauman, M. D. et al. Activation of the maternal immune system during pregnancy alters behavioral development of rhesus monkey offspring. Biol. Psychiat. 75, 332–341 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Nyangahu, D. D. et al. Disruption of maternal gut microbiota during gestation alters offspring microbiota and immunity. Microbiome 6, 124 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Miyoshi, J. et al. Peripartum exposure to antibiotics promotes persistent gut dysbiosis, immune imbalance, and inflammatory bowel disease in genetically prone offspring. Cell Rep. 20, 491–504 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Agüero, M. Gde et al. The maternal microbiota drives early postnatal innate immune development. Science 351, 1296–1302 (2016).

    Article  Google Scholar 

  115. Leiby, J. S. et al. Lack of detection of a human placenta microbiome in samples from preterm and term deliveries. Microbiome 6, 196 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Lauder, A. P. et al. Comparison of placenta samples with contamination controls does not provide evidence for a distinct placenta microbiota. Microbiome 4, 29 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Mishra, A. et al. Microbial exposure during early human development primes fetal immune cells. Cell 184, 3394–3409.e20 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Aagaard, K. et al. The placenta harbors a unique microbiome. Sci. Transl. Med. 6, 237ra65 (2014).

    PubMed  PubMed Central  Google Scholar 

  119. Asnicar, F. et al. Studying vertical microbiome transmission from mothers to infants by strain-level metagenomic profiling. mSystems 2, e00164-16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Yassour, M. et al. Strain-level analysis of mother-to-child bacterial transmission during the first few months of life. Cell Host Microbe 24, 146–154.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ferretti, P. et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24, 133–145.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Martín, R. et al. Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl. Env. Microbiol. 75, 965–969 (2009).

    Article  Google Scholar 

  123. Collado, M. C., Delgado, S., Maldonado, A. & Rodríguez, J. M. Assessment of the bacterial diversity of breast milk of healthy women by quantitative real-time PCR. Lett. Appl. Microbiol. 48, 523–528 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Perez, P. F. et al. Bacterial imprinting of the neonatal immune system: lessons from maternal cells? Pediatrics 119, e724–e732 (2007).

    Article  PubMed  Google Scholar 

  125. Grölund, M.-M., Lehtonen, O.-P., Eerola, E. & Kero, P. Fecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery. J. Pediatr. Gastroenterol. Nutr. 28, 19–25 (1999).

    Article  Google Scholar 

  126. Penders, J. et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118, 511–521 (2006).

    Article  PubMed  Google Scholar 

  127. Biasucci, G., Benenati, B., Morelli, L., Bessi, E. & Boehm, G. Cesarean delivery may affect the early biodiversity of intestinal bacteria. J. Nutr. 138, 1796S–1800S (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA 107, 11971–11975 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Shao, Y. et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature 574, 117–121 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chu, D. M. et al. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat. Med. 23, 314–326 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Dominguez-Bello, M. G. et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat. Med. 22, 250–253 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Korpela, K. et al. Maternal fecal microbiota transplantation in cesarean-born infants rapidly restores normal gut microbial development: a proof-of-concept study. Cell 183, 324–334.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Mårild, K., Stephansson, O., Montgomery, S., Murray, J. A. & Ludvigsson, J. F. Pregnancy outcome and risk of celiac disease in offspring: a nationwide case-control study. Gastroenterology 142, 39–45.e3 (2012).

    Article  PubMed  Google Scholar 

  134. Keag, O. E., Norman, J. E. & Stock, S. J. Long-term risks and benefits associated with cesarean delivery for mother, baby, and subsequent pregnancies: systematic review and meta-analysis. PLoS Med. 15, e1002494 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Myklestad, K., Vatten, L. J., Magnussen, E. B., Salvesen, K. Å. & Romundstad, P. R. Do parental heights influence pregnancy length?: a population-based prospective study, HUNT 2. BMC Pregnancy Childbirth 13, 33 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Zhang, G. et al. Assessing the causal relationship of maternal height on birth size and gestational age at birth: a Mendelian randomization analysis. PLoS Med. 12, e1001865 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Özaltin, E., Hill, K. & Subramanian, S. V. Association of maternal stature with offspring mortality, underweight, and stunting in low- to middle-income countries. JAMA 303, 1507–1516 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Addo, O. Y. et al. Maternal height and child growth patterns. J. Pediatr. 163, 549–554.e1 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Yu, D.-H. et al. Postnatal epigenetic regulation of intestinal stem cells requires DNA methylation and is guided by the microbiome. Genome Biol. 16, 211 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Zivkovic, A. M., German, J. B., Lebrilla, C. B. & Mills, D. A. Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc. Natl Acad. Sci. 108, 4653–4658 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Seferovic, M. D. et al. Maternal diet alters human milk oligosaccharide composition with implications for the milk metagenome. Sci. Rep. 10, 22092 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Charbonneau, M. R. et al. Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell 164, 859–871 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Cowardin, C. A. et al. Mechanisms by which sialylated milk oligosaccharides impact bone biology in a gnotobiotic mouse model of infant undernutrition. Proc. Natl Acad. Sci. 116, 11988–11996 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Henrick, B. M. et al. Bifidobacteria-mediated immune system imprinting early in life. Cell 184, 3884–3898.e11 (2021).

    Article  CAS  PubMed  Google Scholar 

  145. Goldman, A. S. & Goldblum, R. M. Transfer of maternal leukocytes to the infant by human milk. In Reproductive Immunology (ed. Olding, L. B.) 205–213 (Springer, 1997).

  146. Baban, B., Malik, A., Bhatia, J. & Yu, J. C. Presence and profile of innate lymphoid cells in human breast milk. JAMA Pediatr. 172, 594–596 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Cabinian, A. et al. Transfer of maternal immune cells by breastfeeding: maternal cytotoxic T lymphocytes present in breast milk localize in the Peyer’s patches of the nursed infant. PLoS ONE 11, e0156762 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Ghosh, M. K., Nguyen, V., Muller, H. K. & Walker, A. M. Maternal milk T cells drive development of transgenerational Th1 immunity in offspring thymus. J. Immunol. 197, 2290–2296 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ghosh, M. K., Muller, H. K. & Walker, A. M. Lactation-based maternal educational immunity crosses MHC class I barriers and can impart Th1 immunity to Th2-biased recipients. J. Immunol. 199, 1729–1736 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Dutta, P. & Burlingham, W. J. Stem cell microchimerism and tolerance to non-inherited maternal antigens. Chimerism 1, 2–10 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Kinder, J. M., Stelzer, I. A., Arck, P. C. & Way, S. S. Immunological implications of pregnancy-induced microchimerism. Nat. Rev. Immunol. 17, 483–494 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Tuboly, S., Bernáth, S., Glávits, R., Kovács, A. & Megyeri, Z. Intestinal absorption of colostral lymphocytes in newborn lambs and their role in the development of immune status. Acta Vet. Hung. 43, 105–115 (1995).

    CAS  PubMed  Google Scholar 

  153. Tuboly, S., Bernáth, S., Glávits, R. & Medveczky, I. Intestinal absorption of colostral lymphoid cells in newborn piglets. Vet. Immunol. Immunopathol. 20, 75–85 (1988).

    Article  CAS  PubMed  Google Scholar 

  154. Lemke, H., Coutinho, A. & Lange, H. Lamarckian inheritance by somatically acquired maternal IgG phenotypes. Trends Immunol. 25, 180–186 (2004).

    Article  CAS  PubMed  Google Scholar 

  155. Martín, R. et al. Human milk is a source of lactic acid bacteria for the infant gut. J. Pediat. 143, 754–758 (2003).

    Article  PubMed  Google Scholar 

  156. Khodayar-Pardo, P., Mira-Pascual, L., Collado, M. C. & Martínez-Costa, C. Impact of lactation stage, gestational age and mode of delivery on breast milk microbiota. J. Perinatol. 34, 599–605 (2014).

    Article  CAS  PubMed  Google Scholar 

  157. Wilson, E. & Butcher, E. C. CCL28 controls immunoglobulin (Ig)A plasma cell accumulation in the lactating mammary gland and IgA antibody transfer to the neonate. J. Exp. Med. 200, 805–809 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Bokulich, N. A. et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci. Transl. Med. 8, 343ra82–343ra82 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Vatanen, T. et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature 562, 589–594 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Bäckhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703 (2015).

    Article  PubMed  Google Scholar 

  162. Subramanian, S. et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510, 417–421 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Hsiao, A. et al. Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature 515, 423–426 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Guerrant, D. I. et al. Association of early childhood diarrhea and cryptosporidiosis with impaired physical fitness and cognitive function four–seven years later in a poor urban community in northeast Brazil. Am. J. Trop. Med. Hyg. 61, 707–713 (1999).

    Article  CAS  PubMed  Google Scholar 

  165. Rogawski, E. T. et al. Use of quantitative molecular diagnostic methods to investigate the effect of enteropathogen infections on linear growth in children in low-resource settings: longitudinal analysis of results from the MAL-ED cohort study. Lancet Glob. Health 6, e1319–e1328 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Brown, E. M. et al. Diet and specific microbial exposure trigger features of environmental enteropathy in a novel murine model. Nat. Commun. 6, 7806 (2015).

    Article  CAS  PubMed  Google Scholar 

  167. Bolick, D. T. et al. Enteroaggregative Escherichia coli strain in a novel weaned mouse model: exacerbation by malnutrition, biofilm as a virulence factor and treatment by nitazoxanide. J. Med. Microbiol. 62, 896–905 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Roche, J. K., Cabel, A., Sevilleja, J., Nataro, J. & Guerrant, R. L. Enteroaggregative Escherichia coli (EAEC) impairs growth while malnutrition worsens EAEC infection: a novel murine model of the infection malnutrition cycle. J. Infect. Dis. 202, 506–514 (2010).

    Article  PubMed  Google Scholar 

  169. Giallourou, N. et al. A novel mouse model of Campylobacter jejuni enteropathy and diarrhea. PLoS Pathog. 14, e1007083 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Rhoades, N. S. et al. Growth faltering regardless of chronic diarrhea is associated with mucosal immune dysfunction and microbial dysbiosis in the gut lumen. Mucosal Immunol. https://doi.org/10.1038/s41385-021-00418-2 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Schwarzer, M. et al. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science 351, 854–857 (2016).

    Article  CAS  PubMed  Google Scholar 

  172. Yan, J. et al. Gut microbiota induce IGF-1 and promote bone formation and growth. Proc. Natl Acad. Sci. 113, E7554–E7563 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Jiang, N. M. et al. Early life inflammation and neurodevelopmental outcome in Bangladeshi infants growing up in adversity. Am. J. Trop. Med. Hyg. 97, 974–979 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Bland, S. T. et al. Enduring consequences of early-life infection on glial and neural cell genesis within cognitive regions of the brain. Brain Behav. Immun. 24, 329–338 (2010).

    Article  PubMed  Google Scholar 

  175. Yano, J. M. et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161, 264–276 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Knoop, K. A. et al. Microbial antigen encounter during a preweaning interval is critical for tolerance to gut bacteria. Sci. Immunol. 2, eaao1314 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Al Nabhani, Z. et al. A weaning reaction to microbiota is required for resistance to immunopathologies in the adult. Immunity https://doi.org/10.1016/j.immuni.2019.02.014 (2019).

    Article  PubMed  Google Scholar 

  178. Ramanan, D. et al. An immunologic mode of multigenerational transmission governs a gut treg setpoint. Cell 181, 1276–1290.e13 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Huus, K. E. et al. Immunoglobulin recognition of fecal bacteria in stunted and non-stunted children: findings from the Afribiota study. Microbiome 8, 113 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Kau, A. L. et al. Functional characterization of IgA-targeted bacterial taxa from undernourished Malawian children that produce diet-dependent enteropathy. Sci. Transl. Med. 7, 276ra24–276ra24 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Bhattacharjee, A. et al. Environmental enteric dysfunction induces regulatory T cells that inhibit local CD4+ T cell responses and impair oral vaccine efficacy. Immunity 54, 1745–1757.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Miyazaki, A. et al. Protein deficiency reduces efficacy of oral attenuated human rotavirus vaccine in a human infant fecal microbiota transplanted gnotobiotic pig model. Vaccine 36, 6270–6281 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Vlasova, A. N. et al. Protein malnutrition modifies innate immunity and gene expression by intestinal epithelial cells and human rotavirus infection in neonatal gnotobiotic pigs. mSphere 2, e00046-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Twitchell, E. L. et al. Modeling human enteric dysbiosis and rotavirus immunity in gnotobiotic pigs. Gut Pathog. 8, 51 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Molès, J.-P. et al. Breastmilk cell trafficking induces microchimerism-mediated immune system maturation in the infant. Pediatr. Allergy Immunol. 29, 133–143 (2018).

    Article  PubMed  Google Scholar 

  186. Weström, B., Arévalo Sureda, E., Pierzynowska, K., Pierzynowski, S. G. & Pérez-Cano, F.-J. The immature gut barrier and its importance in establishing immunity in newborn mammals. Front. Immunol. 11, 1153 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Catassi, C., Bonucci, A., Coppa, G. V., Carlucci, A. & Giorgi, P. L. Intestinal permeability. Changes during the first month: effect of natural versus artificial feeding. J. Pediatr. Gastroenterol. Nutr. 21, 383–386 (1995).

    Article  CAS  PubMed  Google Scholar 

  188. Moore, S. R. et al. Glutamine and alanyl-glutamine promote crypt expansion and mTOR signaling in murine enteroids. Am. J. Physiol. Gastrointest. Liver Physiol. 308, G831–G839 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Bein, A. et al. Nutritional deficiency in an intestine-on-a-chip recapitulates injury hallmarks associated with environmental enteric dysfunction. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-022-00899-x (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Kummerlowe, C. et al. Single-cell profiling of environmental enteropathy reveals signatures of epithelial remodeling and immune activation. Sci. Transl. Med. 14, eabi8633 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Syed, S. et al. Assessment of machine learning detection of environmental enteropathy and celiac disease in children. JAMA Netw. Open 2, e195822 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Gora, M. J. et al. Tethered capsule endomicroscopy: from bench to bedside at a primary care practice. J. Biomed. Opt. 21, 104001 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Thompson, A. J. et al. The potential role of optical biopsy in the study and diagnosis of environmental enteric dysfunction. Nat. Rev. Gastroenterol. Hepatol. 14, 727–738 (2017).

    Article  PubMed  Google Scholar 

  194. Hambidge, K. M. et al. A multicountry randomized controlled trial of comprehensive maternal nutrition supplementation initiated before conception: the women first trial. Am. J. Clin. Nutr. 109, 457–469 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Pickering, A. J. et al. The WASH Benefits and SHINE trials: interpretation of WASH intervention effects on linear growth and diarrhoea. Lancet Glob. Health 7, e1139–e1146 (2019).

    Article  PubMed  Google Scholar 

  196. Jones, K. D. et al. Mesalazine in the initial management of severely acutely malnourished children with environmental enteric dysfunction: a pilot randomized controlled trial. BMC Med. 12, 133 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Gehrig, J. L. et al. Effects of microbiota-directed foods in gnotobiotic animals and undernourished children. Science 365, eaau4732 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Ito, M. et al. Fermented foods and preterm birth risk from a prospective large cohort study: the Japan environment and children’s study. Env. Health Prev. Med. 24, 25 (2019).

    Article  Google Scholar 

  199. Wastyk, H. C. et al. Gut-microbiota-targeted diets modulate human immune status. Cell https://doi.org/10.1016/j.cell.2021.06.019 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Bobilev, D. et al. 1953. VE303, a rationally designed bacterial consortium for prevention of recurrent Clostridioides difficile (C. Difficile) infection (rCDI), stably restores the gut microbiota after vancomycin (vanco)-induced dysbiosis in adult healthy volunteers (HV). Open Forum Infect. Dis. 6, S60 (2019).

    Article  PubMed Central  Google Scholar 

  201. Fukuda, S. et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469, 543–547 (2011).

    Article  CAS  PubMed  Google Scholar 

  202. Walsh, C., Lane, J. A., van Sinderen, D. & Hickey, R. M. From lab bench to formulated ingredient: characterization, production, and commercialization of human milk oligosaccharides. J. Funct. Foods 72, 104052 (2020).

    Article  CAS  Google Scholar 

  203. Huda, M. N. et al. Stool microbiota and vaccine responses of infants. Pediatrics 134, e362–e372 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  204. de Rooij, S. R., Wouters, H., Yonker, J. E., Painter, R. C. & Roseboom, T. J. Prenatal undernutrition and cognitive function in late adulthood. Proc. Natl Acad. Sci. USA 107, 16881–16886 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors were supported by the US National Institutes of Health (awards R01HD105729 (to C.A.C.), D43TW007585 (to S.R.M., S.S., Z.J. and S.A.A.), K23DK117061 (to S.S.), K43TW010697 (to N.I.) and U19AI116491 (to S.R.M.)); and by the Bill and Melinda Gates Foundation (grants OPP1144149 (to S.R.M.) and OPP1138727 (to S.A.A.)). The authors gratefully acknowledge insights derived from conversations with Bill and Melinda Gates Foundation programme officers R. Elliott, C. Damman, J. Yan, H. Gammill and V. Ridaura.

Author information

Authors and Affiliations

Authors

Contributions

S.R.M. and C.A.C. researched data for the article, made a substantial contribution to discussion of content, wrote the article, and reviewed/edited the manuscript before submission. S.S., N.I., Z.J. and J.I. researched data for the article, wrote the article, and reviewed/edited the manuscript before submission. K.S. wrote the article and reviewed/edited the manuscript before submission. S.A.A. researched data for the article, made a substantial contribution to discussion of content, and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Sean R. Moore.

Ethics declarations

Competing interests

S.R.M. was a paid consultant for Takeda on paediatric short bowel syndrome in 2020. S.R.M. receives royalties from UpToDate for a chapter entitled “Persistent diarrhoea in children in resource-limited countries”. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Rashidul Haque, Pascale Vonaesch and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cowardin, C.A., Syed, S., Iqbal, N. et al. Environmental enteric dysfunction: gut and microbiota adaptation in pregnancy and infancy. Nat Rev Gastroenterol Hepatol 20, 223–237 (2023). https://doi.org/10.1038/s41575-022-00714-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-022-00714-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing