Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Clinical implications of preterm infant gut microbiome development

Abstract

Perturbations to the infant gut microbiome during the first weeks to months of life affect growth, development and health. In particular, assembly of an altered intestinal microbiota during infant development results in an increased risk of immune and metabolic diseases that can persist into childhood and potentially into adulthood. Most research into gut microbiome development has focused on full-term babies, but health-related outcomes are also important for preterm babies. The systemic physiological immaturity of very preterm gestation babies (born earlier than 32 weeks gestation) results in numerous other microbiome–organ interactions, the mechanisms of which have yet to be fully elucidated or in some cases even considered. In this Perspective, we compare assembly of the intestinal microbiome in preterm and term infants. We focus in particular on the clinical implications of preterm infant gut microbiome composition and discuss the prospects for microbiome diagnostics and interventions to improve the health of preterm babies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Anatomical differences, successional development of bacterial communities, and factors influencing microbiome establishment in term and preterm infants.
Fig. 3: The association between the preterm gut microbiome and the pathogenesis of NEC and late-onset sepsis, and potential interventions.

Similar content being viewed by others

References

  1. Uzan-Yulzari, A. et al. Neonatal antibiotic exposure impairs child growth during the first six years of life by perturbing intestinal microbial colonization. Nat. Commun. 12, 443 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Depner, M. et al. Maturation of the gut microbiome during the first year of life contributes to the protective farm effect on childhood asthma. Nat. Med. 26, 1766–1775 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Born Too Soon: The Global Action Report on Preterm Birth Report No. 9789241503433 (World Health Organization, 2012).

  4. Coulter, J. B. S. Neonatal care in low- and middle-income countries. Paediatr. Int. Child Health 35, 167–170 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Adlerberth, I. & Wold, A. E. Establishment of the gut microbiota in Western infants. Acta Paediatr. 98, 229–238 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Backhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703 (2015).

    Article  PubMed  CAS  Google Scholar 

  7. Gronlund, M. M., Lehtonen, O. P., Eerola, E. & Kero, P. Fecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery. J. Pediatr. Gastroenterol. Nutr. 28, 19–25 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Chu, D. M., Valentine, G. C., Seferovic, M. D. & Aagaard, K. M. The development of the human microbiome: why moms matter. Gastroenterol. Clin. North Am. 48, 357–375 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang, S. et al. Maternal vertical transmission affecting early-life microbiota development. Trends Microbiol. 28, 28–45 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Shao, Y. et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature 574, 117–121 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, S. et al. Metagenomic analysis of mother–infant gut microbiome reveals global distinct and shared microbial signatures. Gut Microbes 13, 1911571 (2021).

    Article  PubMed Central  CAS  Google Scholar 

  12. Hill, C. J. et al. Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort. Microbiome 5, 4 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chu, D. M. et al. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat. Med. 23, 314–326 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fouhy, F. et al. Perinatal factors affect the gut microbiota up to four years after birth. Nat. Commun. 10, 1517 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Delnord, M. et al. Varying gestational age patterns in cesarean delivery: an international comparison. BMC Pregnancy Childbirth 14, 321 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rao, C. et al. Multi-kingdom ecological drivers of microbiota assembly in preterm infants. Nature https://doi.org/10.1038/s41586-021-03241-8 (2021).

  17. Stewart, C. J. et al. Temporal bacterial and metabolic development of the preterm gut reveals specific signatures in health and disease. Microbiome 4, 67 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Stewart, C. J. et al. Longitudinal development of the gut microbiome and metabolome in preterm neonates with late onset sepsis and healthy controls. Microbiome 5, 75 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang, Z. et al. Comparing gut microbiome in mothers’ own breast milk- and formula-fed moderate-late preterm infants. Front. Microbiol. 11, 891 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee, S. A. et al. Comparison of the gut microbiota profile in breast-fed and formula-fed Korean infants using pyrosequencing. Nutr. Res. Pract. 9, 242–248 (2015).

    Article  PubMed  Google Scholar 

  21. Lyons, K. E., Ryan, C. A., Dempsey, E. M., Ross, R. P. & Stanton, C. Breast milk, a source of beneficial microbes and associated benefits for infant health. Nutrients https://doi.org/10.3390/nu12041039 (2020).

  22. Rautava, S. Milk microbiome and neonatal colonization: overview. Nestle Nutr. Inst. Workshop Ser. 94, 65–74 (2020).

    Article  PubMed  Google Scholar 

  23. Cong, X. et al. Influence of feeding type on gut microbiome development in hospitalized preterm infants. Nurs. Res. 66, 123–133 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Parra-Llorca, A. et al. Preterm gut microbiome depending on feeding type: significance of donor human milk. Front. Microbiol. 9, 1376 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cai, C. et al. Feeding practice influences gut microbiome composition in very low birth weight preterm infants and the association with oxidative stress: a prospective cohort study. Free Radic. Biol. Med. 142, 146–154 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Quigley, M., Embleton, N. D. & Mcguire, W. Formula versus donor breast milk for feeding preterm or low birth weight infants. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.cd002971.pub4 (2018).

  27. Lucas, A. & Cole, T. J. Breast milk and neonatal necrotising enterocolitis. Lancet 336, 1519–1523 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Quigley, M. A., Henderson, G., Anthony, M. Y. & McGuire, W. Formula milk versus donor breast milk for feeding preterm or low birth weight infants. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD002971.pub2 (2007).

  29. Ewaschuk, J. B. et al. Effect of pasteurization on selected immune components of donated human breast milk. J. Perinatol. 31, 593–598 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Torrez Lamberti, M. F. et al. Metabolomic profile of personalized donor human milk. Molecules 25, 5783 (2020).

    Article  PubMed Central  CAS  Google Scholar 

  31. Cacho, N. T. et al. Personalization of the microbiota of donor human milk with Mother’s own milk. Front. Microbiol. 8, 1470 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Żółkiewicz, J., Marzec, A., Ruszczyński, M. & Feleszko, W. Postbiotics—a step beyond pre- and probiotics. Nutrients 12, 2189 (2020).

    Article  PubMed Central  CAS  Google Scholar 

  33. Deshpande, G., Athalye-Jape, G. & Patole, S. Para-probiotics for preterm neonates—the next frontier. Nutrients 10, 871 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  34. Dierikx, T. H. et al. The influence of prenatal and intrapartum antibiotics on intestinal microbiota colonisation in infants: a systematic review. J. Infect. 81, 190–204 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Aloisio, I. et al. Influence of intrapartum antibiotic prophylaxis against group B Streptococcus on the early newborn gut composition and evaluation of the anti-Streptococcus activity of Bifidobacterium strains. Appl. Microbiol. Biotechnol. 98, 6051–6060 (2014).

    CAS  PubMed  Google Scholar 

  36. Corvaglia, L. et al. Influence of intrapartum antibiotic prophylaxis for group B Streptococcus on gut microbiota in the first month of life. J. Pediatr. Gastroenterol. Nutr. 62, 304–308 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Hussey, S. et al. Parenteral antibiotics reduce bifidobacteria colonization and diversity in neonates. Int. J. Microbiol. https://doi.org/10.1155/2011/130574 (2011).

  38. Zeissig, S. & Blumberg, R. S. Life at the beginning: perturbation of the microbiota by antibiotics in early life and its role in health and disease. Nat. Immunol. 15, 307–310 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Fouhy, F. et al. High-throughput sequencing reveals the incomplete, short-term recovery of infant gut microbiota following parenteral antibiotic treatment with ampicillin and gentamicin. Antimicrob. Agents Chemother. 56, 5811–5820 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, S. et al. A good start in life is important—perinatal factors dictate early microbiota development and longer term maturation. FEMS Microbiol. Rev. 44, 763–781 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tapiainen, T. et al. Impact of intrapartum and postnatal antibiotics on the gut microbiome and emergence of antimicrobial resistance in infants. Sci. Rep. 9, 10635 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Patangia, D. V., Ryan, C. A., Dempsey, E., Stanton, C. & Ross, R. P. Vertical transfer of antibiotics and antibiotic resistant strains across the mother/baby axis. Trends Microbiol. https://doi.org/10.1016/j.tim.2021.05.006 (2021).

  43. Gibson, M. K. et al. Developmental dynamics of the preterm infant gut microbiota and antibiotic resistome. Nat. Microbiol. 1, 16024 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Duranti, S. et al. Prevalence of antibiotic resistance genes among human gut-derived bifidobacteria. Appl. Environ. Microbiol. 83, AEM.02894-16 (2017).

    Article  Google Scholar 

  45. Casaburi, G. et al. Early-life gut microbiome modulation reduces the abundance of antibiotic-resistant bacteria. Antimicrob. Resist. Infect. Control https://doi.org/10.1186/s13756-019-0583-6 (2019).

  46. Esaiassen, E. et al. Effects of probiotic supplementation on the gut microbiota and antibiotic resistome development in preterm infants. Front. Pediatr. 6, 347 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chen, Y. et al. Preterm infants harbour diverse Klebsiella populations, including atypical species that encode and produce an array of antimicrobial resistance- and virulence-associated factors. Microb. Genom. https://doi.org/10.1099/mgen.0.000377 (2020).

  48. Beach, R. C., Menzies, I. S., Clayden, G. S. & Scopes, J. W. Gastrointestinal permeability changes in the preterm neonate. Arch. Dis. Child. 57, 141–145 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Weaver, L. T., Laker, M. F. & Nelson, R. Intestinal permeability in the newborn. Arch. Dis. Child. 59, 236–241 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ravisankar, S. et al. Necrotizing enterocolitis leads to disruption of tight junctions and increase in gut permeability in a mouse model. BMC Pediatr. 18, 372 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ford, H. R. Mechanism of nitric oxide-mediated intestinal barrier failure: insight into the pathogenesis of necrotizing enterocolitis. J. Pediatr. Surg. 41, 294–299 (2006).

    Article  PubMed  Google Scholar 

  52. Mallow, E. B. et al. Human enteric defensins. Gene structure and developmental expression. J. Biol. Chem. 271, 4038–4045 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Salzman, N. H., Underwood, M. A. & Bevins, C. L. Paneth cells, defensins, and the commensal microbiota: a hypothesis on intimate interplay at the intestinal mucosa. Semin. Immunol. 19, 70–83 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, C. et al. Paneth cell ablation in the presence of Klebsiella pneumoniae induces necrotizing enterocolitis (NEC)-like injury in the small intestine of immature mice. Dis. Model. Mech. 5, 522–532 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Yu, Y., Lu, L., Sun, J., Petrof, E. O. & Claud, E. C. Preterm infant gut microbiota affects intestinal epithelial development in a humanized microbiome gnotobiotic mouse model. Am. J. Physiol. Gastrointest. Liver Physiol. 311, G521–G532 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bergmann, K. R. et al. Bifidobacteria stabilize claudins at tight junctions and prevent intestinal barrier dysfunction in mouse necrotizing enterocolitis. Am. J. Pathol. 182, 1595–1606 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kiu, R. et al. Bifidobacterium breve UCC2003 induces a distinct global transcriptomic program in neonatal murine intestinal epithelial cells. Iscience 23, 101336 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Banasaz, M., Norin, E., Holma, R. & Midtvedt, T. Increased enterocyte production in gnotobiotic rats mono-associated with Lactobacillus rhamnosus GG. Appl. Environ. Microbiol. 68, 3031–3034 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Martín, R. et al. The potential probiotic Lactobacillus rhamnosus CNCM I-3690 strain protects the intestinal barrier by stimulating both mucus production and cytoprotective response. Sci. Rep. https://doi.org/10.1038/s41598-019-41738-5 (2019).

  60. Fança-Berthon, P. et al. Intrauterine growth restriction alters postnatal colonic barrier maturation in rats. Pediatr. Res. 66, 47–52 (2009).

    Article  PubMed  CAS  Google Scholar 

  61. Zhang, W. et al. Gut microbiota of newborn piglets with intrauterine growth restriction have lower diversity and different taxonomic abundances. J. Appl. Microbiol. 127, 354–369 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fanca-Berthon, P., Hoebler, C., Mouzet, E., David, A. & Michel, C. Intrauterine growth restriction not only modifies the cecocolonic microbiota in neonatal rats but also affects its activity in young adult rats. J. Pediatr. Gastroenterol. Nutr. 51, 402–413 (2010).

    Article  PubMed  Google Scholar 

  63. Baserga, M. et al. Uteroplacental insufficiency decreases small intestine growth and alters apoptotic homeostasis in term intrauterine growth retarded rats. Early Hum. Dev. 79, 93–105 (2004).

    Article  PubMed  Google Scholar 

  64. Fung, C. M. et al. Intrauterine growth restriction alters mouse intestinal architecture during development. PLoS ONE 11, e0146542 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Hartz, L. E., Bradshaw, W. & Brandon, D. H. Potential NICU environmental influences on the neonate’s microbiome. Adv. Neonatal Care 15, 324–335 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Brooks, B. et al. The developing premature infant gut microbiome is a major factor shaping the microbiome of neonatal intensive care unit rooms. Microbiome https://doi.org/10.1186/s40168-018-0493-5 (2018).

  67. Brooks, B. et al. Microbes in the neonatal intensive care unit resemble those found in the gut of premature infants. Microbiome 2, 1 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Olm, M. R. et al. Identical bacterial populations colonize premature infant gut, skin, and oral microbiomes and exhibit different in situ growth rates. Genome Res. 27, 601–612 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kembel, S. W. et al. Architectural design drives the biogeography of indoor bacterial communities. PLoS ONE 9, e87093 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Vandecandelaere, I., Matthijs, N., Nelis, H. J., Depuydt, P. & Coenye, T. The presence of antibiotic-resistant nosocomial pathogens in endotracheal tube biofilms and corresponding surveillance cultures. Pathog. Dis. 69, 142–148 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Petersen, S. M., Greisen, G. & Krogfelt, K. A. Nasogastric feeding tubes from a neonatal department yield high concentrations of potentially pathogenic bacteria— even 1 d after insertion. Pediatr. Res. 80, 395–400 (2016).

    Article  PubMed  Google Scholar 

  72. Sim, K. et al. Dysbiosis anticipating necrotizing enterocolitis in very premature infants. Clin. Infect. Dis. 60, 389–397 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Cortese, R., Lu, L., Yu, Y., Ruden, D. & Claud, E. C. Epigenome–microbiome crosstalk: a potential new paradigm influencing neonatal susceptibility to disease. Epigenetics 11, 205–215 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Chernikova, D. A. et al. Fetal exposures and perinatal influences on the stool microbiota of premature infants. J. Matern. Fetal Neonatal Med. 29, 99–105 (2016).

    Article  PubMed  Google Scholar 

  75. Sharma, M., Li, Y., Stoll, M. L. & Tollefsbol, T. O. The epigenetic connection between the gut microbiome in obesity and diabetes. Front. Genet. 10, 1329 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Calatayud, M., Koren, O. & Collado, M. C. Maternal microbiome and metabolic health program microbiome development and health of the offspring. Trends Endocrinol. Metab. 30, 735–744 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Roberts, D., Brown, J., Medley, N. & Dalziel, S. R. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.cd004454.pub3 (2017).

  78. Jacobs, S. E. et al. Probiotic effects on late-onset sepsis in very preterm infants: a randomized controlled trial. Pediatrics 132, 1055–1062 (2013).

    Article  PubMed  Google Scholar 

  79. Plummer, E. L. et al. Gut microbiota of preterm infants supplemented with probiotics: sub-study of the ProPrems trial. BMC Microbiol. 18, 184 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Millar, M. et al. The microbiome of infants recruited to a randomised placebo-controlled probiotic trial (PiPS trial). EBioMedicine 20, 255–262 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Embleton, N. D. et al. Mechanisms affecting the gut of preterm infants in enteral feeding trials. Front. Nutr. 4, 14 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Cong, X. et al. Gut microbiome developmental patterns in early life of preterm infants: impacts of feeding and gender. PLoS ONE 11, e0152751 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. LaTuga, M. S. et al. Beyond bacteria: a study of the enteric microbial consortium in extremely low birth weight infants. PLoS ONE 6, e27858 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Moles, L. et al. Bacterial diversity in meconium of preterm neonates and evolution of their fecal microbiota during the first month of life. PLoS ONE 8, e66986 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Schwiertz, A. et al. Development of the intestinal bacterial composition in hospitalized preterm infants in comparison with breast-fed, full-term infants. Pediatr. Res. 54, 393–399 (2003).

    Article  PubMed  Google Scholar 

  86. Barrett, E. et al. The individual-specific and diverse nature of the preterm infant microbiota. Arch. Dis. Child. Fetal Neonatal Ed. 98, F334–F340 (2013).

    Article  PubMed  Google Scholar 

  87. La Rosa, P. S. et al. Patterned progression of bacterial populations in the premature infant gut. Proc. Natl Acad. Sci. USA 111, 12522–12527 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Young, G. R. et al. Acquisition and development of the extremely preterm infant microbiota across multiple anatomical sites. J. Pediatr. Gastroenterol. Nutr. 70, 12–19 (2020).

    Article  PubMed  Google Scholar 

  89. Stewart, C. J. et al. Cesarean or vaginal birth does not impact the longitudinal development of the gut microbiome in a cohort of exclusively preterm infants. Front. Microbiol. 8, 1008 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Patel, A. L. et al. Longitudinal survey of microbiota in hospitalized preterm very-low-birth-weight infants. J. Pediatr. Gastroenterol. Nutr. 62, 292–303 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  91. McCann, A. et al. Viromes of one year old infants reveal the impact of birth mode on microbiome diversity. PeerJ 6, e4694 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Lim, E. S., Wang, D. & Holtz, L. R. The bacterial microbiome and virome milestones of infant development. Trends Microbiol. 24, 801–810 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Lugli, G. A. et al. Prophages of the genus Bifidobacterium as modulating agents of the infant gut microbiota. Environ. Microbiol. 18, 2196–2213 (2016).

    Article  PubMed  Google Scholar 

  94. Chatterjee, A. & Duerkop, B. A. Beyond bacteria: bacteriophage–eukaryotic host interactions reveal emerging paradigms of health and disease. Front. Microbiol. 9, 1394 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Abeles, S. R. & Pride, D. T. Molecular bases and role of viruses in the human microbiome. J. Mol. Biol. 426, 3892–3906 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Neu, J., Mshvildadze, M. & Mai, V. A roadmap for understanding and preventing necrotizing enterocolitis. Curr. Gastroenterol. Rep. 10, 450–457 (2008).

    Article  PubMed  Google Scholar 

  97. Mihi, B. & Good, M. Impact of Toll-like receptor 4 signaling in necrotizing enterocolitis. Clin. Perinatol. 46, 145–157 (2019).

    Article  PubMed  Google Scholar 

  98. Wang, Y. et al. 16S rRNA gene-based analysis of fecal microbiota from preterm infants with and without necrotizing enterocolitis. ISME J. 3, 944–954 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Stewart, C. J. et al. Development of the preterm gut microbiome in twins at risk of necrotising enterocolitis and sepsis. PLoS ONE 8, e73465 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Warner, B. B. et al. Gut bacteria dysbiosis and necrotising enterocolitis in very low birthweight infants: a prospective case-control study. Lancet 387, 1928–1936 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Olm, M. R. et al. Necrotizing enterocolitis is preceded by increased gut bacterial replication, Klebsiella, and fimbriae-encoding bacteria. Sci. Adv. 5, eaax5727 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Arboleya, S. et al. Establishment and development of intestinal microbiota in preterm neonates. FEMS Microbiol. Ecol. 79, 763–772 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Stoll, B. J. et al. Neurodevelopmental and growth impairment among extremely low-birth-weight infants with neonatal infection. JAMA 292, 2357–2365 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Stoll, B. J. et al. Late-onset sepsis in very low birth weight neonates: the experience of the NICHD Neonatal Research Network. Pediatrics 110, 285–291 (2002).

    Article  PubMed  Google Scholar 

  105. Taft, D. H. et al. Center variation in intestinal microbiota prior to late-onset sepsis in preterm infants. PLoS ONE 10, e0130604 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Mai, V. et al. Distortions in development of intestinal microbiota associated with late onset sepsis in preterm infants. PLoS ONE 8, e52876 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Leggett, R. M. et al. Rapid MinION profiling of preterm microbiota and antimicrobial-resistant pathogens. Nat. Microbiol. 5, 430–442 (2020).

    Article  CAS  PubMed  Google Scholar 

  108. Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Acid Bacteria. Report of a Joint FAO/WHO Expert Consultation, Córdoba, Argentina (FAO, WHO, 2001).

  109. Ofek Shlomai, N., Deshpande, G., Rao, S. & Patole, S. Probiotics for preterm neonates: what will it take to change clinical practice? Neonatology 105, 64–70 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Janvier, A., Malo, J. & Barrington, K. J. Cohort study of probiotics in a North American neonatal intensive care unit. J. Pediatr. 164, 980–985 (2014).

    Article  PubMed  Google Scholar 

  111. Robertson, C. et al. Incidence of necrotising enterocolitis before and after introducing routine prophylactic Lactobacillus and Bifidobacterium probiotics. Arch. Dis. Child. Fetal Neonatal Ed. 105, 380–386 (2019).

    Article  PubMed  Google Scholar 

  112. Kitajima, H. et al. Early administration of Bifidobacterium breve to preterm infants: randomised controlled trial. Arch. Dis. Child. Fetal Neonatal Ed. 76, F101–F107 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dani, C., Biadaioli, R., Bertini, G., Martelli, E. & Rubaltelli, F. F. Probiotics feeding in prevention of urinary tract infection, bacterial sepsis and necrotizing enterocolitis in preterm infants. A prospective double-blind study. Biol. Neonate 82, 103–108 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Bin-Nun, A. et al. Oral probiotics prevent necrotizing enterocolitis in very low birth weight neonates. J. Pediatr. 147, 192–196 (2005).

    Article  PubMed  Google Scholar 

  115. Lin, H. C. et al. Oral probiotics reduce the incidence and severity of necrotizing enterocolitis in very low birth weight infants. Pediatrics 115, 1–4 (2005).

    Article  PubMed  Google Scholar 

  116. Kliegman, R. M. & Willoughby, R. E. Prevention of necrotizing enterocolitis with probiotics. Pediatrics 115, 171–172 (2005).

    Article  PubMed  Google Scholar 

  117. Lau, C. S. & Chamberlain, R. S. Probiotic administration can prevent necrotizing enterocolitis in preterm infants: a meta-analysis. J. Pediatr. Surg. 50, 1405–1412 (2015).

    Article  PubMed  Google Scholar 

  118. Chang, H. Y. et al. Multiple strains probiotics appear to be the most effective probiotics in the prevention of necrotizing enterocolitis and mortality: an updated meta-analysis. PLoS ONE 12, e0171579 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Costeloe, K. et al. Bifidobacterium breve BBG-001 in very preterm infants: a randomised controlled phase 3 trial. Lancet 387, 649–660 (2016).

    Article  PubMed  Google Scholar 

  120. Hui, Y. et al. The effect of early probiotic exposure on the preterm infant gut microbiome development. Gut Microbes 13, 1951113 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Didari, T., Solki, S., Mozaffari, S., Nikfar, S. & Abdollahi, M. A systematic review of the safety of probiotics. Expert Opin. Drug Saf. 13, 227–239 (2014).

    Article  PubMed  Google Scholar 

  122. Land, M. H. et al. Lactobacillus sepsis associated with probiotic therapy. Pediatrics 115, 178–181 (2005).

    Article  PubMed  Google Scholar 

  123. Coviello, C. et al. Lactobacillus sepsis and probiotic therapy in newborns: two new cases and literature review. Am. J. Perinatol. Rep. 06, e25–e29 (2015).

    Article  Google Scholar 

  124. Chiang, M.-C. et al. Lactobacillus rhamnosus sepsis associated with probiotic therapy in an extremely preterm infant: pathogenesis and a review for clinicians. J. Microbiol. Immunol. Infect. https://doi.org/10.1016/j.jmii.2020.03.029 (2020).

  125. van den Akker, C. H. P. et al. Probiotics and preterm infants: a position paper by the European Society for Paediatric Gastroenterology, Hepatology and Nutrition committee on nutrition and the European Society for Paediatric Gastroenterology, Hepatology and Nutrition working group for probiotics and prebiotics. J. Pediatr. Gastroenterol. Nutr. 70, 664–680 (2020).

    Article  PubMed  Google Scholar 

  126. Deshpande, G., Rao, S., Athalye-Jape, G., Conway, P. & Patole, S. Probiotics in very preterm infants: the PiPS trial. Lancet 388, 655 (2016).

    Article  PubMed  Google Scholar 

  127. Martí, M. et al. Effects of Lactobacillus reuteri supplementation on the gut microbiota in extremely preterm infants in a randomized placebo-controlled trial. Cell Rep. Med. 2, 100206 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Thomas, J. P., Raine, T., Reddy, S. & Belteki, G. Probiotics for the prevention of necrotising enterocolitis in very low-birth-weight infants: a meta-analysis and systematic review. Acta Paediatr. 106, 1729–1741 (2017).

    Article  CAS  PubMed  Google Scholar 

  129. Gewolb, I. H., Schwalbe, R. S., Taciak, V. L., Harrison, T. S. & Panigrahi, P. Stool microflora in extremely low birthweight infants. Arch. Dis. Child. Fetal Neonatal Ed. 80, F167–F173 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rakoff-Nahoum, S., Foster, K. R. & Comstock, L. E. The evolution of cooperation within the gut microbiota. Nature 533, 255–259 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Figueiredo, A. R. T. & Kramer, J. Cooperation and conflict within the microbiota and their effects on animal hosts. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.00132 (2020).

  132. Garcia-Gutierrez, E., Mayer, M. J., Cotter, P. D. & Narbad, A. Gut microbiota as a source of novel antimicrobials. Gut Microbes 10, 1–21 (2019).

    Article  CAS  PubMed  Google Scholar 

  133. van Best, N. et al. Influence of probiotic supplementation on the developing microbiota in human preterm neonates. Gut Microbes 12, 1826747 (2020).

    Article  PubMed Central  CAS  Google Scholar 

  134. Abdulkadir, B. et al. Routine use of probiotics in preterm infants: longitudinal impact on the microbiome and metabolome. Neonatology 109, 239–247 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Alcon-Giner, C. et al. Microbiota supplementation with Bifidobacterium and Lactobacillus modifies the preterm infant gut microbiota and metabolome: an observational study. Cell Rep. Med. 1, 100077 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Frese, S. A. et al. Persistence of supplemented Bifidobacterium longum subsp. infantis EVC001 in breastfed infants. Msphere https://doi.org/10.1128/mSphere.00501-17 (2017).

  137. Aceti, A. et al. Probiotics prevent late-onset sepsis in human milk-fed, very low birth weight preterm infants: systematic review and meta-analysis. Nutrients https://doi.org/10.3390/nu9080904 (2017).

  138. Manzoni, P. et al. Bovine lactoferrin supplementation for prevention of late-onset sepsis in very low-birth-weight neonates: a randomized trial. JAMA 302, 1421–1428 (2009).

    Article  CAS  PubMed  Google Scholar 

  139. The ELFIN Trial Investigators Group. Enteral lactoferrin supplementation for very preterm infants: a randomised placebo-controlled trial. Lancet 393, 423–433 (2019).

  140. Ochoa, T. J. et al. Effect of lactoferrin on enteroaggregative E. coli (EAEC). Biochem. Cell Biol. 84, 369–376 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Sherman, M. P., Sherman, J., Arcinue, R. & Niklas, V. Randomized control trial of human recombinant lactoferrin: a substudy reveals effects on the fecal microbiome of very low birth weight infants. J. Pediatr. 173, S37–S42 (2016).

    Article  CAS  PubMed  Google Scholar 

  142. Artym, J., Zimecki, M. & Kruzel, M. L. Enhanced clearance of Escherichia coli and Staphylococcus aureus in mice treated with cyclophosphamide and lactoferrin. Int. Immunopharmacol. 4, 1149–1157 (2004).

    Article  CAS  PubMed  Google Scholar 

  143. Edde, L. et al. Lactoferrin protects neonatal rats from gut-related systemic infection. Am. J. Physiol. Gastrointest. Liver Physiol. 281, G1140–G1150 (2001).

    Article  CAS  PubMed  Google Scholar 

  144. Zagulski, T., Lipinski, P., Zagulska, A., Broniek, S. & Jarzabek, Z. Lactoferrin can protect mice against a lethal dose of Escherichia coli in experimental infection in vivo. Br. J. Exp. Pathol. 70, 697–704 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Ochoa, T. J. et al. Randomized controlled trial of lactoferrin for prevention of sepsis in Peruvian neonates less than 2500 g. Pediatr. Infect. Dis. J. 34, 571–576 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Kaur, G. & Gathwala, G. Efficacy of bovine lactoferrin supplementation in preventing late-onset sepsis in low birth weight neonates: a randomized placebo-controlled clinical trial. J. Trop. Pediatr. 61, 370–376 (2015).

    Article  PubMed  Google Scholar 

  147. Manzoni, P. et al. Bovine lactoferrin supplementation for prevention of necrotizing enterocolitis in very-low-birth-weight neonates: a randomized clinical trial. Early Hum. Dev. 90, S60–S65 (2014).

    Article  CAS  PubMed  Google Scholar 

  148. Akin, I. M. et al. Oral lactoferrin to prevent nosocomial sepsis and necrotizing enterocolitis of premature neonates and effect on T-regulatory cells. Am. J. Perinatol. 31, 1111–1120 (2014).

    Article  PubMed  Google Scholar 

  149. Pammi, M. & Suresh, G. Enteral lactoferrin supplementation for prevention of sepsis and necrotizing enterocolitis in preterm infants. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.cd007137.pub5 (2017).

  150. Griffiths, J. et al. Enteral lactoferrin supplementation for very preterm infants: a randomised placebo-controlled trial. Lancet 393, 423–433 (2019).

    Article  Google Scholar 

  151. Tarnow-Mordi, W. O. et al. The effect of lactoferrin supplementation on death or major morbidity in very low birthweight infants (LIFT): a multicentre, double-blind, randomised controlled trial. Lancet Child Adolesc. Health 4, 444–454 (2020).

    Article  CAS  PubMed  Google Scholar 

  152. Trend, S. et al. Antimicrobial protein and peptide concentrations and activity in human breast milk consumed by preterm infants at risk of late-onset neonatal sepsis. PLoS ONE 10, e0117038 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Ochoa, T. J. et al. Is mother’s own milk lactoferrin intake associated with reduced neonatal sepsis, necrotizing enterocolitis, and death?. Neonatology 117, 167–174 (2020).

    Article  CAS  PubMed  Google Scholar 

  154. Savino, F. et al. High faecal calprotectin levels in healthy, exclusively breast-fed infants. Neonatology 97, 299–304 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Pirr, S. et al. High amounts of S100-alarmins confer antimicrobial activity on human breast milk targeting pathogens relevant in neonatal sepsis. Front. Immunol. 8, 1822 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Willers, M. et al. S100A8 and S100A9 are important for postnatal development of gut microbiota and immune system in mice and infants. Gastroenterology 159, 2130–2145.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  157. Underwood, M. A. et al. A randomized placebo-controlled comparison of 2 prebiotic/probiotic combinations in preterm infants: impact on weight gain, intestinal microbiota, and fecal short-chain fatty acids. J. Pediatr. Gastroenterol. Nutr. 48, 216–225 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Underwood, M. A. et al. Digestion of human milk oligosaccharides by Bifidobacterium breve in the premature infant. J. Pediatr. Gastroenterol. Nutr. 65, 449–455 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Zhang, W., He-Yang, J., Tu, W. & Zhou, X. Sialylated human milk oligosaccharides prevent intestinal inflammation by inhibiting toll-like receptor 4/NLRP3 inflammasome pathway in necrotizing enterocolitis rats. Nutr. Metab. 18, 5 (2021).

    Article  CAS  Google Scholar 

  160. Wang, C. et al. Human milk oligosaccharides protect against necrotizing enterocolitis by inhibiting intestinal damage via increasing the proliferation of crypt cells. Mol. Nutr. Food Res. 63, e1900262 (2019).

    Article  PubMed  CAS  Google Scholar 

  161. Li, B. et al. Human milk oligosaccharides protect against necrotizing enterocolitis by activating intestinal cell differentiation. Mol. Nutr. Food Res. 64, e2000519 (2020).

    Article  PubMed  CAS  Google Scholar 

  162. Autran, C. A. et al. Human milk oligosaccharide composition predicts risk of necrotising enterocolitis in preterm infants. Gut 67, 1064–1070 (2018).

    Article  CAS  PubMed  Google Scholar 

  163. Masi, A. C. et al. Human milk oligosaccharide DSLNT and gut microbiome in preterm infants predicts necrotising enterocolitis. Gut https://doi.org/10.1136/gutjnl-2020-322771 (2020).

  164. Bode, L. Human milk oligosaccharides in the prevention of necrotizing enterocolitis: a journey from in vitro and in vivo models to mother–infant cohort studies. Front. Pediatr. 6, 385 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Howell, B. R. et al. The UNC/UMN baby connectome project (BCP): an overview of the study design and protocol development. NeuroImage 185, 891–905 (2019).

    Article  PubMed  Google Scholar 

  166. Gomez De Aguero, M. et al. The maternal microbiota drives early postnatal innate immune development. Science 351, 1296–1302 (2016).

    Article  PubMed  CAS  Google Scholar 

  167. Genersich, A. Bauchfellentzundung beim, neugebornen in folge von perforation des ileums. Arch. Anat. Pathol. 126, 485 (1891).

    Article  Google Scholar 

  168. Mizrahi, A., Barlow, O., Berdon, W., Blanc, W. A. & Silverman, W. A. Necrotizing enterocolitis in premature infants. J. Pediatr. 66, 697–705 (1965).

    Article  CAS  PubMed  Google Scholar 

  169. Mshvildadze, M. et al. Intestinal microbial ecology in premature infants assessed with non-culture-based techniques. J. Pediatr. 156, 20–25 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Chu, D. M., Seferovic, M., Pace, R. M. & Aagaard, K. M. The microbiome in preterm birth. Best Pract. Res. Clin. Obstet. Gynaecol. 52, 103–113 (2018).

    Article  PubMed  Google Scholar 

  171. Fettweis, J. M. et al. Differences in vaginal microbiome in African American women versus women of European ancestry. Microbiology 160, 2272–2282 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ravel, J. et al. Vaginal microbiome of reproductive-age women. Proc. Natl Acad. Sci. USA 108, 4680–4687 (2011).

    Article  CAS  PubMed  Google Scholar 

  173. Hyman, R. W. et al. Diversity of the vaginal microbiome correlates with preterm birth. Reprod. Sci. 21, 32–40 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  174. DiGiulio, D. B. et al. Temporal and spatial variation of the human microbiota during pregnancy. Proc. Natl Acad. Sci. USA 112, 11060–11065 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Hillier, S. L. et al. Association between bacterial vaginosis and preterm delivery of a low-birth-weight infant. The vaginal infections and prematurity study group. N. Engl. J. Med. 333, 1737–1742 (1995).

    Article  CAS  PubMed  Google Scholar 

  176. Cohen-Cory, S., Kidane, A. H., Shirkey, N. J. & Marshak, S. Brain-derived neurotrophic factor and the development of structural neuronal connectivity. Dev. Neurobiol. 70, 271–288 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Kuban, K. C. K. et al. Among children born extremely preterm a higher level of circulating neurotrophins is associated with lower risk of cognitive impairment at school age. J. Pediatr. 201, 40–48.e4 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Kersbergen, K. J. et al. Microstructural brain development between 30 and 40 weeks corrected age in a longitudinal cohort of extremely preterm infants. NeuroImage 103, 214–224 (2014).

    Article  PubMed  Google Scholar 

  179. Dimitrova, R. et al. Heterogeneity in brain microstructural development following preterm birth. Cereb. Cortex 30, 4800–4810 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Nongena, P., Ederies, A., Azzopardi, D. V. & Edwards, A. D. Confidence in the prediction of neurodevelopmental outcome by cranial ultrasound and MRI in preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 95, F388–F390 (2010).

    Article  PubMed  Google Scholar 

  181. Seki, D. et al. Aberrant gut-microbiota-immune-brain axis development in premature neonates with brain damage. Cell Host Microbe 29, 1558–1572.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Sharon, G., Sampson, T. R., Geschwind, D. H. & Mazmanian, S. K. The central nervous system and the gut microbiome. Cell 167, 915–932 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Swann, J. R. et al. Application of [1]H NMR spectroscopy to the metabolic phenotyping of rodent brain extracts: a metabonomic study of gut microbial influence on host brain metabolism. J. Pharm. Biomed. Anal. 143, 141–146 (2017).

    Article  CAS  PubMed  Google Scholar 

  184. Clarke, G. et al. The microbiome–gut–brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry 18, 666–673 (2013).

    Article  CAS  PubMed  Google Scholar 

  185. Neufeld, K. M., Kang, N., Bienenstock, J. & Foster, J. A. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol. Motil. 23, 255–264.e119 (2011).

    Article  CAS  PubMed  Google Scholar 

  186. Swann, J. R., Spitzer, S. O. & Diaz Heijtz, R. Developmental signatures of microbiota-derived metabolites in the mouse brain. Metabolites https://doi.org/10.3390/metabo10050172 (2020).

  187. Diaz Heijtz, R. et al. Normal gut microbiota modulates brain development and behavior. Proc. Natl Acad. Sci. USA 108, 3047–3052 (2011).

    Article  PubMed  Google Scholar 

  188. Yano, J. M. et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161, 264–276 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Williams, S. et al. Neonatal prebiotic (BGOS) supplementation increases the levels of synaptophysin, GluN2A-subunits and BDNF proteins in the adult rat hippocampus. Synapse 70, 121–124 (2016).

    Article  CAS  PubMed  Google Scholar 

  190. Lyte, J. M. et al. Gut-brain axis serotonergic responses to acute stress exposure are microbiome-dependent. Neurogastroenterol. Motil. 32, e13881 (2020).

    Article  CAS  PubMed  Google Scholar 

  191. Bercik, P. et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141, 599–609 (2011).

    Article  CAS  PubMed  Google Scholar 

  192. Lu, J. et al. Effects of intestinal microbiota on brain development in humanized gnotobiotic mice. Sci. Rep. 8, 5443 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Carlson, A. L. et al. Infant gut microbiome associated with cognitive development. Biol. Psychiatry 83, 148–159 (2018).

    Article  PubMed  Google Scholar 

  194. Roze, J. C. et al. Assessment of neonatal intensive care unit practices and preterm newborn gut microbiota and 2-year neurodevelopmental outcomes. JAMA Netw. Open 3, e2018119 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Costello, E. K., Carlisle, E. M., Bik, E. M., Morowitz, M. J. & Relman, D. A. Microbiome assembly across multiple body sites in low-birthweight infants. Mbio 4, e00782–13 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Dardas, M. et al. The impact of postnatal antibiotics on the preterm intestinal microbiome. Pediatr. Res. 76, 150–158 (2014).

    Article  CAS  PubMed  Google Scholar 

  197. Jia, J. et al. Impact of postnatal antibiotics and parenteral nutrition on the gut microbiota in preterm infants during early life. JPEN J. Parenter. Enteral. Nutr. 44, 639–654 (2020).

    Article  CAS  PubMed  Google Scholar 

  198. Jang, H. M., Lee, H. J., Jang, S. E., Han, M. J. & Kim, D. H. Evidence for interplay among antibacterial-induced gut microbiota disturbance, neuro-inflammation, and anxiety in mice. Mucosal Immunol. 11, 1386–1397 (2018).

    Article  CAS  PubMed  Google Scholar 

  199. Frohlich, E. E. et al. Cognitive impairment by antibiotic-induced gut dysbiosis: analysis of gut microbiota-brain communication. Brain Behav. Immun. 56, 140–155 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Frost, G. et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. https://doi.org/10.1038/ncomms4611 (2014).

  201. Desbonnet, L., Clarke, G., Shanahan, F., Dinan, T. G. & Cryan, J. F. Microbiota is essential for social development in the mouse. Mol. Psychiatry 19, 146–148 (2014).

    Article  CAS  PubMed  Google Scholar 

  202. Arentsen, T., Raith, H., Qian, Y., Forssberg, H. & Diaz Heijtz, R. Host microbiota modulates development of social preference in mice. Microb. Ecol. Health Dis. 26, 29719 (2015).

    PubMed  Google Scholar 

  203. Collins, S. M., Kassam, Z. & Bercik, P. The adoptive transfer of behavioral phenotype via the intestinal microbiota: experimental evidence and clinical implications. Curr. Opin. Microbiol. 16, 240–245 (2013).

    Article  PubMed  Google Scholar 

  204. Wang, L. et al. Elevated fecal short chain fatty acid and ammonia concentrations in children with autism spectrum disorder. Dig. Dis. Sci. 57, 2096–2102 (2012).

    Article  CAS  PubMed  Google Scholar 

  205. Cao, X., Lin, P., Jiang, P. & Li, C. Characteristics of the gastrointestinal microbiome in children with autism spectrum disorder: a systematic review. Shanghai Arch. Psychiatry 25, 342–353 (2013).

    PubMed  PubMed Central  Google Scholar 

  206. Aarts, E. et al. Gut microbiome in ADHD and its relation to neural reward anticipation. PLoS ONE 12, e0183509 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Partty, A., Kalliomaki, M., Wacklin, P., Salminen, S. & Isolauri, E. A possible link between early probiotic intervention and the risk of neuropsychiatric disorders later in childhood: a randomized trial. Pediatr. Res. 77, 823–828 (2015).

    Article  PubMed  Google Scholar 

  208. Castro-Nallar, E. et al. Composition, taxonomy and functional diversity of the oropharynx microbiome in individuals with schizophrenia and controls. PeerJ 3, e1140 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Schwarz, E. et al. Analysis of microbiota in first episode psychosis identifies preliminary associations with symptom severity and treatment response. Schizophr. Res. 192, 398–403 (2018).

    Article  PubMed  Google Scholar 

  210. Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712 (2012).

    Article  CAS  PubMed  Google Scholar 

  211. Wiley, N. C., Cryan, J. F., Dinan, T. G., Ross, R. P. & Stanton, C. in Microbes and the Mind. The Impact of the Microbiome on Mental Health. Modern Trends in Psychiatry Vol. 32 (eds Cowan C. S. M. & Leonard B. E.) 74–99 (Karger, 2021).

  212. Banks, W. A. Blood-brain barrier transport of cytokines: a mechanism for neuropathology. Curr. Pharm. Des. 11, 973–984 (2005).

    Article  CAS  PubMed  Google Scholar 

  213. Braniste, V. et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci. Transl. Med. 6, 263ra158 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. Arentsen, T. et al. The bacterial peptidoglycan-sensing molecule Pglyrp2 modulates brain development and behavior. Mol. Psychiatry 22, 257–266 (2017).

    Article  CAS  PubMed  Google Scholar 

  215. Royet, J., Gupta, D. & Dziarski, R. Peptidoglycan recognition proteins: modulators of the microbiome and inflammation. Nat. Rev. Immunol. 11, 837–851 (2011).

    Article  CAS  PubMed  Google Scholar 

  216. Clarke, T. B. et al. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat. Med. 16, 228–231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. A. Healy and C. E. Schwarz for their assistance in manuscript preparation. This work was supported by Science Foundation Ireland (grant number SFI/12/RC/2273).

Author information

Authors and Affiliations

Authors

Contributions

D.B.H. researched and wrote the Perspective. All other authors were either involved in the conception, discussion regarding content or critical revision of the paper for publication. All authors approved the final version for publication.

Corresponding author

Correspondence to David B. Healy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Nature Microbiology thanks Janet Berrington, Christopher Stewart and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Healy, D.B., Ryan, C.A., Ross, R.P. et al. Clinical implications of preterm infant gut microbiome development. Nat Microbiol 7, 22–33 (2022). https://doi.org/10.1038/s41564-021-01025-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-021-01025-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing