Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms

An Author Correction to this article was published on 23 June 2022

This article has been updated

Abstract

Ever since Akkermansia muciniphila was discovered and characterized two decades ago, numerous studies have shown that the lack or decreased abundance of this commensal bacterium was linked with multiple diseases (such as obesity, diabetes, liver steatosis, inflammation and response to cancer immunotherapies). Although primarily based on simple associations, there are nowadays an increasing number of studies moving from correlations to causality. The causal evidence derived from a variety of animal models performed in different laboratories and recently was also recapitulated in a human proof-of-concept trial. In this Review, we cover the history of the discovery of A. muciniphila and summarize the numerous findings and main mechanisms of action by which this intestinal symbiont improves health. A comparison of this microorganism with other next-generation beneficial microorganisms that are being developed is also made.

Key points

  • A lower abundance of Akkermansia muciniphila has been associated with multiple diseases in both mouse models and in humans.

  • A. muciniphila has proven efficacy to improve obesity, type 2 and type 1 diabetes mellitus, hepatic steatosis, intestinal inflammation and different cancers (colon cancer, response to immune checkpoints) in mice.

  • Numerous mechanisms linking A. muciniphila, specific metabolites or membrane proteins and host cell types or receptors have been identified.

  • Pasteurized A. muciniphila MucT is more efficient than the live bacterium and has proven safety and efficacy in numerous studies in mice and in a proof-of-concept study in humans.

  • A. muciniphila contributes to the maintenance of a healthy gut barrier, thereby regulating immunity, and also limits the onset of inflammation, which is the root cause of numerous diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of major advances related to Akkermansia muciniphila.
Fig. 2: Metabolic effects and major factors involved in Akkermansia muciniphila in the context of metabolic health.
Fig. 3: Major mechanisms associated with the effects of Akkermansia or related molecules in diseases.

Similar content being viewed by others

Change history

References

  1. Cani, P. D. Gut microbiota-at the intersection of everything? Nat. Rev. Gastroenterol. Hepatol. 14, 321–322 (2017).

    Article  PubMed  Google Scholar 

  2. Paone, P. & Cani, P. D. Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut 69, 2232–2243 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Ouwehand, A. C., Derrien, M., de Vos, W., Tiihonen, K. & Rautonen, N. Prebiotics and other microbial substrates for gut functionality. Curr. Opin. Biotechnol. 16, 212–217 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Tailford, L., Crost, E., Kavanaugh, D. & Juge, N. Mucin glycan foraging in the human gut microbiome. Front. Genet. https://doi.org/10.3389/fgene.2015.00081 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Raimondi, S., Musmeci, E., Candeliere, F., Amaretti, A. & Rossi, M. Identification of mucin degraders of the human gut microbiota. Sci. Rep. 11, 11094 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Derrien, M. et al. The intestinal mucosa as a habitat of the gut microbiota and a rational target for probiotic functionality and safety. Microb. Ecol. Health Dis. 16, 137–144 (2004).

    Google Scholar 

  7. Hoskins, L. C. et al. Mucin degradation in human colon ecosystems. Isolation and properties of fecal strains that degrade ABH blood group antigens and oligosaccharides from mucin glycoproteins. J. Clin. Invest. 75, 944–953 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Derrien, M., Vaughan, E. E., Plugge, C. M. & de Vos, W. M. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int. J. Syst. Evolut. Microbiol. 54, 1469–1476 (2004).

    Article  CAS  Google Scholar 

  9. Derrien, M., Collado, M. C., Ben-Amor, K., Salminen, S. & de Vos, W. M. The mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl. Environ. Microbiol. 74, 1646–1648 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Derrien, M. et al. Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the mucin-degrader Akkermansia muciniphila. Front. Microbiol. https://doi.org/10.3389/fmicb.2011.00166 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  11. van Passel, M. W. J. et al. The Genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes. PLoS ONE 6, e16876 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tramontano, M. et al. Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies. Nat. Microbiol. 3, 514–522 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Kostopoulos, I. et al. Akkermansia muciniphila uses human milk oligosaccharides to thrive in the early life conditions in vitro. Sci. Rep. 10, 14330 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Luna, E. et al. Utilization efficiency of human milk oligosaccharides by human-associated Akkermansia is strain-dependent. Appl. Environ. Microbiol. 88, e0148721 (2021).

    Article  PubMed  Google Scholar 

  15. Collado, M. C., Derrien, M., Isolauri, E., de Vos, W. M. & Salminen, S. Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl. Environ. Microbiol. 73, 7767–7770 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wu, H. et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 23, 850–858 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Ribo, S. et al. Increasing breast milk betaine modulates Akkermansia abundance in mammalian neonates and improves long-term metabolic health. Sci. Transl. Med. 13, eabb0322 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yin, J. et al. Dose-dependent beneficial effects of tryptophan and its derived metabolites on Akkermansia in vitro: a preliminary prospective study. Microorganisms 9, 1511 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ouwerkerk, J. P., Aalvink, S., Belzer, C. & de Vos, W. M. Akkermansia glycaniphila sp. nov., an anaerobic mucin-degrading bacterium isolated from reticulated python faeces. Int. J. Syst. Evolut. Microbiol. 66, 4614–4620 (2016).

    Article  CAS  Google Scholar 

  20. Karcher, N. et al. Genomic diversity and ecology of human-associated Akkermansia species in the gut microbiome revealed by extensive metagenomic assembly. Genome Biol. 22, 209 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Smits, S. A. et al. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science 357, 802–806 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fragiadakis, G. K. et al. Links between environment, diet, and the hunter-gatherer microbiome. Gut Microbes 10, 216–227 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Geerlings, S. Y. et al. Genomic convergence between Akkermansia muciniphila in different mammalian hosts. BMC Microbiol. 21, 298 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Belzer, C. & de Vos, W. M. Microbes inside-from diversity to function: the case of Akkermansia. ISME J. 6, 1449–1458 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhai, R. et al. Strain-specific anti-inflammatory properties of two Akkermansia muciniphila strains on chronic colitis in mice. Front. Cell. Infect. Microbiol. 9, 239 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guo, X. et al. Genome sequencing of 39 Akkermansia muciniphila isolates reveals its population structure, genomic and functional diverisity, and global distribution in mammalian gut microbiotas. BMC Genomics 18, 800 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Becken, B. et al. Genotypic and phenotypic diversity among human isolates of Akkermansia muciniphila. mBio 12, e00478-21 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yang, M. et al. Beneficial effects of newly isolated Akkermansia muciniphila strains from the human gut on obesity and metabolic dysregulation. Microorganisms 8, 1413 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  29. Kirmiz, N. et al. Comparative genomics guides elucidation of vitamin B(12) biosynthesis in novel human-associated Akkermansia strains. Appl. Environ. Microbiol. 86, e02117-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ottman, N. et al. Genome-scale model and omics analysis of metabolic capacities of Akkermansia muciniphila reveal a preferential mucin-degrading lifestyle. Appl. Environ. Microbiol. 83, e01014-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Belzer, C. et al. Microbial metabolic networks at the mucus layer lead to diet-independent butyrate and vitamin B(12) production by intestinal symbionts. mBio 8, e00770-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Vandeputte, D. et al. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut 65, 57–62 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Asnicar, F. et al. Blue poo: impact of gut transit time on the gut microbiome using a novel marker. Gut 70, 1665–1674 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Manor, O. et al. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat. Commun. 11, 5206 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mailing, L. J., Allen, J. M., Buford, T. W., Fields, C. J. & Woods, J. A. Exercise and the gut microbiome: a review of the evidence, potential mechanisms, and implications for human health. Exerc. Sport Sci. Rev. 47, 75–85 (2019).

    Article  PubMed  Google Scholar 

  36. Verhoog, S. et al. Dietary factors and modulation of bacteria strains of Akkermansia muciniphila and Faecalibacterium prausnitzii: a systematic review. Nutrients 11, 1565 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  37. von Schwartzenberg, R. J. et al. Caloric restriction disrupts the microbiota and colonization resistance. Nature 595, 272–277 (2021).

    Article  Google Scholar 

  38. Leng, B. et al. Severe gut microbiota dysbiosis caused by malnourishment can be partly restored during 3 weeks of refeeding with fortified corn-soy-blend in a piglet model of childhood malnutrition. BMC Microbiol. 19, 277 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Remely, M. et al. Increased gut microbiota diversity and abundance of Faecalibacterium prausnitzii and Akkermansia after fasting: a pilot study. Wien. Klin. Wochenschr. 127, 394–398 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Everard, A. et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 60, 2775–2786 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jangi, S. et al. Alterations of the human gut microbiome in multiple sclerosis. Nat. Commun. 7, 12015 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Everard, A. et al. Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity. ISME J. 8, 2116–2130 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Crovesy, L., Masterson, D. & Rosado, E. L. Profile of the gut microbiota of adults with obesity: a systematic review. Eur. J. Clin. Nutr. 74, 1251–1262 (2020).

    Article  PubMed  Google Scholar 

  44. Macchione, I. G. et al. Akkermansia muciniphila: key player in metabolic and gastrointestinal disorders. Eur. Rev. Med. Pharmacol. Sci. 23, 8075–8083 (2019).

    CAS  PubMed  Google Scholar 

  45. Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl Acad. Sci. USA 110, 9066–9071 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Santacruz, A. et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br. J. Nutr. 104, 83–92 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Karlsson, C. L. et al. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity 20, 2257–2261 (2012).

    Article  PubMed  Google Scholar 

  48. Zhang, X. et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS ONE 8, e71108 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li, J. et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 5, 14 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Dao, M. C. et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65, 426–436 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Shin, N. R. et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63, 727–735 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Roshanravan, N. et al. A comprehensive systematic review of the effectiveness of Akkermansia muciniphila, a member of the gut microbiome, for the management of obesity and associated metabolic disorders. Arch. Physiol. Biochem. https://doi.org/10.1080/13813455.2021.1871760 (2021).

    Article  PubMed  Google Scholar 

  53. Abuqwider, J. N., Mauriello, G. & Altamimi, M. Akkermansia muciniphila, a new generation of beneficial microbiota in modulating obesity: a systematic review. Microorganisms 9, 1098 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sheng, L. et al. Obesity treatment by epigallocatechin-3-gallate-regulated bile acid signaling and its enriched Akkermansia muciniphila. FASEB J. 32, fj201800370R (2018).

    Article  Google Scholar 

  55. Depommier, C. et al. Pasteurized Akkermansia muciniphila increases whole-body energy expenditure and fecal energy excretion in diet-induced obese mice. Gut Microbes 11, 1231–1245 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Plovier, H. et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 23, 107–113 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Choi, Y. et al. Effects of live and pasteurized forms of Akkermansia from the human gut on obesity and metabolic dysregulation. Microorganisms 9, 2039 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Keshavarz Azizi Raftar, S. et al. The protective effects of live and pasteurized Akkermansia muciniphila and its extracellular vesicles against HFD/CCl4-induced liver injury. Microbiol. Spectr. 9, e0048421 (2021).

    Article  PubMed  Google Scholar 

  59. Ashrafian, F. et al. Comparative effects of alive and pasteurized Akkermansia muciniphila on normal diet-fed mice. Sci. Rep. 11, 17898 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hu, X. et al. Akkermansia muciniphila improves host defense against influenza virus infection. Front. Microbiol. 11, 586476 (2020).

    Article  PubMed  Google Scholar 

  61. Wang, L. et al. A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8+ T cells in mice. Gut 69, 1988–1997 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Lawenius, L. et al. Pasteurized Akkermansia muciniphila protects from fat mass gain but not from bone loss. Am. J. Physiol. Endocrinol. Metab. 318, E480–E491 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shen, J. et al. Low-density lipoprotein receptor signaling mediates the triglyceride-lowering action of Akkermansia muciniphila in genetic-induced hyperlipidemia. Arterioscler. Thromb. Vasc. Biol. 36, 1448–1456 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Kim, S. et al. Akkermansia muciniphila prevents fatty liver disease, decreases serum triglycerides, and maintains gut homeostasis. Appl. Environ. Microbiol. 86, e03004-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Everard, A. et al. Intestinal epithelial N-acylphosphatidylethanolamine phospholipase D links dietary fat to metabolic adaptations in obesity and steatosis. Nat. Commun. 10, 457 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Grander, C. et al. Recovery of ethanol-induced Akkermansia muciniphila depletion ameliorates alcoholic liver disease. Gut 67, 891–901 (2018).

    Article  PubMed  Google Scholar 

  67. Li, J., Lin, S., Vanhoutte, P. M., Woo, C. W. & Xu, A. Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in Apoe−/− mice. Circulation 133, 2434–2446 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Fassatoui, M. et al. Gut microbiota imbalances in Tunisian participants with type 1 and type 2 diabetes mellitus. Biosci. Rep. 39, BSR20182348 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hansen, C. H. et al. Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse. Diabetologia 55, 2285–2294 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Hanninen, A. et al. Akkermansia muciniphila induces gut microbiota remodelling and controls islet autoimmunity in NOD mice. Gut 67, 1445–1453 (2018).

    Article  PubMed  Google Scholar 

  71. Barcena, C. et al. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. Nat. Med. 25, 1234–1242 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Bian, X. et al. Administration of Akkermansia muciniphila ameliorates dextran sulfate sodium-induced ulcerative colitis in mice. Front. Microbiol. 10, 2259 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Liu, Q. et al. Akkermansia muciniphila exerts strain-specific effects on DSS-induced ulcerative colitis in mice. Front. Cell Infect. Microbiol. 11, 698914 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Cani, P. D. Human gut microbiome: hopes, threats and promises. Gut 67, 1716–1725 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Berer, K. et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc. Natl Acad. Sci. USA 114, 10719–10724 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cekanaviciute, E. et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc. Natl Acad. Sci. USA 114, 10713–10718 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tremlett, H. et al. Gut microbiota in early pediatric multiple sclerosis: a case-control study. Eur. J. Neurol. 23, 1308–1321 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lin, C. H. et al. Altered gut microbiota and inflammatory cytokine responses in patients with Parkinson’s disease. J. Neuroinflamm. 16, 129 (2019).

    Article  Google Scholar 

  80. Zhang, F. et al. Altered gut microbiota in Parkinson’s disease patients/healthy spouses and its association with clinical features. Parkinsonism Relat. Disord. 81, 84–88 (2020).

    Article  PubMed  Google Scholar 

  81. Vallino, A. et al. Gut bacteria Akkermansia elicit a specific IgG response in CSF of patients with MS. Neurol. Neuroimmunol. Neuroinflamm. 7, e688 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Eckman, E. et al. Spinal fluid IgG antibodies from patients with demyelinating diseases bind multiple sclerosis-associated bacteria. J. Mol. Med. 99, 1399–1411 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Liu, S. et al. Oral administration of miR-30d from feces of MS patients suppresses MS-like symptoms in mice by expanding Akkermansia muciniphila. Cell Host Microbe 26, 779–794.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nath, N. et al. Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis. J. Immunol. 182, 8005–8014 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Wang, J. et al. HLA-DR15 molecules jointly shape an autoreactive T cell repertoire in multiple sclerosis. Cell 183, 1264–1281.e20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Qian, Y. et al. Gut metagenomics-derived genes as potential biomarkers of Parkinson’s disease. Brain 143, 2474–2489 (2020).

    Article  PubMed  Google Scholar 

  87. Weis, S. et al. Association between Parkinson’s disease and the faecal eukaryotic microbiota. NPJ Parkinsons Dis. 7, 101 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Murros, K. E., Huynh, V. A., Takala, T. M. & Saris, P. E. J. Desulfovibrio bacteria are associated with Parkinson’s disease. Front. Cell Infect. Microbiol. 11, 652617 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Vogt, N. M. et al. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 7, 13537 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Ling, Z. et al. Structural and functional dysbiosis of fecal microbiota in chinese patients with Alzheimer’s disease. Front. Cell Dev. Biol. 8, 634069 (2020).

    Article  PubMed  Google Scholar 

  91. Ou, Z. et al. Protective effects of Akkermansia muciniphila on cognitive deficits and amyloid pathology in a mouse model of Alzheimer’s disease. Nutr. Diabetes 10, 12 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yang, Y. et al. Early-life high-fat diet-induced obesity programs hippocampal development and cognitive functions via regulation of gut commensal Akkermansia muciniphila. Neuropsychopharmacology 44, 2054–2064 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Olson, C. A. et al. The gut microbiota mediates the anti-seizure effects of the Ketogenic diet. Cell 173, 1728–1741.e13 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Blacher, E. et al. Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature 572, 474–480 (2019).

    Article  CAS  PubMed  Google Scholar 

  95. Kennedy, L. B. & Salama, A. K. S. A review of cancer immunotherapy toxicity. CA Cancer J. Clin. 70, 86–104 (2020).

    Article  PubMed  Google Scholar 

  96. Routy, B. et al. The gut microbiota influences anticancer immunosurveillance and general health. Nat. Rev. Clin. Oncol. 15, 382–396 (2018).

    Article  CAS  PubMed  Google Scholar 

  97. Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Derosa, L. et al. Intestinal Akkermansia muciniphila predicts clinical response to PD-1 blockade in patients with advanced non-small-cell lung cancer. Nat. Med. 28, 315–324 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Matson, V. et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359, 104–108 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mager, L. F. et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science 369, 1481–1489 (2020).

    Article  CAS  PubMed  Google Scholar 

  101. Chelakkot, C. et al. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp. Mol. Med. 50, e450 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Png, C. W. et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am. J. Gastroenterol. 105, 2420–2428 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Rajilic-Stojanovic, M., Shanahan, F., Guarner, F. & de Vos, W. M. Phylogenetic analysis of dysbiosis in ulcerative colitis during remission. Inflamm. Bowel Dis. 19, 481–488 (2013).

    Article  PubMed  Google Scholar 

  104. Kang, C. S. et al. Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis. PLoS ONE 8, e76520 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ferrucci, L. & Fabbri, E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15, 505–522 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Biagi, E. et al. Gut microbiota and extreme longevity. Curr. Biol. 26, 1480–1485 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. Kong, F. et al. Gut microbiota signatures of longevity. Curr. Biol. 26, R832–R833 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. van der Lugt, B. et al. Akkermansia muciniphila ameliorates the age-related decline in colonic mucus thickness and attenuates immune activation in accelerated aging Ercc1-/Δ7 mice. Immun. Ageing 16, 6 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Bodogai, M. et al. Commensal bacteria contribute to insulin resistance in aging by activating innate B1a cells. Sci. Transl. Med. 10, eaat4271 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Cerro, E. D. et al. Daily ingestion of Akkermansia mucciniphila for one month promotes healthy aging and increases lifespan in old female mice. Biogerontology 23, 35–52 (2021).

    Article  PubMed  Google Scholar 

  111. Hagi, T. & Belzer, C. The interaction of Akkermansia muciniphila with host-derived substances, bacteria and diets. Appl. Microbiol. Biotechnol. 105, 4833–4841 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sakai, T. et al. Lactobacillus plantarum OLL2712 regulates glucose metabolism in C57BL/6 mice fed a high-fat diet. J. Nutr. Sci. Vitaminol. 59, 144–147 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Peng, G. C. & Hsu, C. H. The efficacy and safety of heat-killed Lactobacillus paracasei for treatment of perennial allergic rhinitis induced by house-dust mite. Pediatr. Allergy Immunol. 16, 433–438 (2005).

    Article  PubMed  Google Scholar 

  114. Depommier, C. et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat. Med. 25, 1096–1103 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Perraudeau, F. et al. Improvements to postprandial glucose control in subjects with type 2 diabetes: a multicenter, double blind, randomized placebo-controlled trial of a novel probiotic formulation. BMJ Open Diabetes Res. Care 8, e001319 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Druart, C. et al. Toxicological safety evaluation of pasteurized Akkermansia muciniphila. J. Appl. Toxicol. 41, 276–290 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. EFSA Panel on Nutrition, Novel Foodds and Food Allergens (NDA)et al. Safety of pasteurised Akkermansia muciniphila as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 19, e06780 (2021).

    Google Scholar 

  118. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04797442 (2021).

  119. Pinto, F. C. S., Silva, A. A. M. & Souza, S. L. Repercussions of intermittent fasting on the intestinal microbiota community and body composition: a systematic review. Nutr. Rev. 80, 613–628 (2022).

    Article  PubMed  Google Scholar 

  120. Lukovac, S. et al. Differential modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids. MBio 5, e01438-14 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wang, J. et al. The outer membrane protein Amuc_1100 of Akkermansia muciniphila promotes intestinal 5-HT biosynthesis and extracellular availability through TLR2 signalling. Food Funct. 12, 3597–3610 (2021).

    Article  PubMed  Google Scholar 

  123. Yoon, H. S. et al. Akkermansia muciniphila secretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in mice. Nat. Microbiol. 6, 563–573 (2021).

    Article  CAS  PubMed  Google Scholar 

  124. Meng, X., Zhang, J., Wu, H., Yu, D. & Fang, X. Akkermansia muciniphila aspartic protease Amuc_1434* inhibits human colorectal cancer LS174T cell viability via TRAIL-mediated apoptosis pathway. Int. J. Mol. Sci. 21, 3385 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  125. Qian, K. et al. A β-N-acetylhexosaminidase Amuc_2109 from Akkermansia muciniphila protects against dextran sulfate sodium-induced colitis in mice by enhancing intestinal barrier and modulating gut microbiota. Food Funct. 13, 2216–2227 (2022).

    Article  CAS  PubMed  Google Scholar 

  126. Ottman, N. et al. Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function. PLoS ONE 12, e0173004 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Depommier, C. et al. Beneficial Effects of Akkermansia muciniphila are not associated with major changes in the circulating endocannabinoidome but linked to higher mono-palmitoyl-glycerol levels as new PPARalpha agonists. Cells 10, 185 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Depommier, C. et al. Serum metabolite profiling yields insights into health promoting effect of A. muciniphila in human volunteers with a metabolic syndrome. Gut Microbes 13, 1994270 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Grajeda-Iglesias, C. et al. Oral administration of Akkermansia muciniphila elevates systemic antiaging and anticancer metabolites. Aging 13, 6375–6405 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. de Vos, W. M., Tilg, H., Van Hul, M. & Cani, P. D. Gut microbiome and health: mechanistic insights. Gut 71, 1020–1032 (2022).

    Article  PubMed  Google Scholar 

  131. Viola, M. F. & Boeckxstaens, G. Niche-specific functional heterogeneity of intestinal resident macrophages. Gut 70, 1383–1395 (2021).

    Article  CAS  PubMed  Google Scholar 

  132. Tranah, T. H., Edwards, L. A., Schnabl, B. & Shawcross, D. L. Targeting the gut-liver-immune axis to treat cirrhosis. Gut 70, 982–994 (2021).

    Article  CAS  PubMed  Google Scholar 

  133. Kuczma, M. P. et al. Self and microbiota-derived epitopes induce CD4+ T cell anergy and conversion into CD4+Foxp3+ regulatory cells. Mucosal Immunol. 14, 443–454 (2021).

    Article  CAS  PubMed  Google Scholar 

  134. O’Toole, P. W., Marchesi, J. R. & Hill, C. Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nat. Microbiol. 2, 17057 (2017).

    Article  PubMed  Google Scholar 

  135. Bui, T. P. N. & de Vos, W. M. Next-generation therapeutic bacteria for treatment of obesity, diabetes, and other endocrine diseases. Best. Pract. Res. Clin. Endocrinol. Metab. 35, 101504 (2021).

    Article  CAS  PubMed  Google Scholar 

  136. El Hage, R., Hernandez-Sanabria, E. & Van de Wiele, T. Emerging trends in “smart probiotics”: functional consideration for the development of novel health and industrial applications. Front. Microbiol. 8, 1889 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Udayappan, S. et al. Oral treatment with Eubacterium hallii improves insulin sensitivity in db/db mice. NPJ Biofilms Microbiomes 2, 16009 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Koopen, A. et al. Duodenal Anaerobutyricum soehngenii infusion stimulates GLP-1 production, ameliorates glycaemic control and beneficially shapes the duodenal transcriptome in metabolic syndrome subjects: a randomised double-blind placebo-controlled cross-over study. Gut https://doi.org/10.1136/gutjnl-2020-323297 (2021).

    Article  PubMed  Google Scholar 

  139. Seegers, J. et al. Toxicological safety evaluation of live Anaerobutyricum soehngenii strain CH106. J. Appl. Toxicol. 42, 244–257 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Cordaillat-Simmons, M., Rouanet, A. & Pot, B. Live biotherapeutic products: the importance of a defined regulatory framework. Exp. Mol. Med. 52, 1397–1406 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Barcenilla, A. et al. Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl. Environ. Microbiol. 66, 1654–1661 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Martin, R. et al. The commensal bacterium Faecalibacterium prausnitzii is protective in DNBS-induced chronic moderate and severe colitis models. Inflamm. Bowel Dis. 20, 417–430 (2014).

    Article  PubMed  Google Scholar 

  144. Quevrain, E. et al. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut 65, 415–425 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. Lenoir, M. et al. Butyrate mediates anti-inflammatory effects of Faecalibacterium prausnitzii in intestinal epithelial cells through Dact3. Gut Microbes 12, 1–16 (2020).

    Article  PubMed  Google Scholar 

  146. Mazier, W. et al. A new strain of Christensenella minuta as a potential biotherapy for obesity and associated metabolic diseases. Cells 10, 823 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Gilijamse, P. W. et al. Treatment with Anaerobutyricum soehngenii: a pilot study of safety and dose–response effects on glucose metabolism in human subjects with metabolic syndrome. NPJ Biofilms Microbiomes 6, 16 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Allison, M. J., Dawson, K. A., Mayberry, W. R. & Foss, J. G. Oxalobacter formigenes gen. nov., sp. nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract. Arch. Microbiol. 141, 1–7 (1985).

    Article  CAS  PubMed  Google Scholar 

  149. Milliner, D., Hoppe, B. & Groothoff, J. A randomised phase II/III study to evaluate the efficacy and safety of orally administered Oxalobacter formigenes to treat primary hyperoxaluria. Urolithiasis 46, 313–323 (2018).

    Article  CAS  PubMed  Google Scholar 

  150. Hoppe, B. et al. A randomised phase I/II trial to evaluate the efficacy and safety of orally administered Oxalobacter formigenes to treat primary hyperoxaluria. Pediatr. Nephrol. 32, 781–790 (2017).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

P.D.C. is research director and A.E. is research associate at FRS-FNRS (Fonds de la Recherche Scientifique) and are recipients of grants from FNRS (Projet de Recherche PDR-convention: FNRS T.0030.21, CDR-convention: J.0027.22, FRFS-WELBIO: WELBIO-CR-2022A-02, WELBIO-CR-2019C-02R, WELBIO-CR-2019S-03, WELBIO-CR-2019S-03R, EOS: program no. 30770923 and program no. 40007505). W.M.dV. was supported by the SIAM Gravitation Grant [024.002.002] of the Netherlands Organization for Scientific Research.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Patrice D. Cani.

Ethics declarations

Competing interests

P.D.C., A.E. and W.M.dV. are inventors on patent applications dealing with the use of Akkermansia muciniphila and its components in the treatment of metabolic disorders. P.D.C. and W.M.dV. are co-founders of A-Mansia biotech. M.D. is an employee at Danone Nutricia Research. P.D.C. is co-founder of Enterosys. W.M.dV. is co-founder of Caelus Health and named inventor on patents on the use of Eubacterium hallii. C.D. declares no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Glenn Gibson, Dennish Sandris Nielsen and Jonathan Schertzer for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cani, P.D., Depommier, C., Derrien, M. et al. Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nat Rev Gastroenterol Hepatol 19, 625–637 (2022). https://doi.org/10.1038/s41575-022-00631-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-022-00631-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing