Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The immune microenvironment in gastric adenocarcinoma

Abstract

Like most solid tumours, the microenvironment of epithelial-derived gastric adenocarcinoma (GAC) consists of a variety of stromal cell types, including fibroblasts, and neuronal, endothelial and immune cells. In this article, we review the role of the immune microenvironment in the progression of chronic inflammation to GAC, primarily the immune microenvironment driven by the gram-negative bacterial species Helicobacter pylori. The infection-driven nature of most GACs has renewed awareness of the immune microenvironment and its effect on tumour development and progression. About 75–90% of GACs are associated with prior H. pylori infection and 5–10% with Epstein–Barr virus infection. Although 50% of the world’s population is infected with H. pylori, only 1–3% will progress to GAC, with progression the result of a combination of the H. pylori strain, host susceptibility and composition of the chronic inflammatory response. Other environmental risk factors include exposure to a high-salt diet and nitrates. Genetically, chromosome instability occurs in ~50% of GACs and 21% of GACs are microsatellite instability-high tumours. Here, we review the timeline and pathogenesis of the events triggered by H. pylori that can create an immunosuppressive microenvironment by modulating the host’s innate and adaptive immune responses, and subsequently favour GAC development.

Key points

  • Helicobacter pylori is a major risk factor for gastric adenocarcinoma (GAC).

  • Early detection and eradication of H. pylori are critical for stopping progression from chronic inflammation to GAC.

  • Immune cell populations driving the epithelial transition from normal to metaplasia to dysplasia are largely undefined.

  • As the host’s dampened immune environment can exist for several years prior to GAC, identifying critical inflexion points and associated biomarkers might improve prevention of GAC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of complications from Helicobacter pylori infection.
Fig. 2: Polymorphonuclear myeloid-derived suppressor cell induction during spasmolytic polypeptide-expressing metaplasia development.
Fig. 3: Differentiation and cell signatures of common immune cells recruited to the stomach in response to Helicobacter pylori infection.

Similar content being viewed by others

References

  1. De Palmas, M., Biziato, D. & Petrova, T. V. Microenvironmental regulation of tumour angiogenesis. Nat. Rev. Cancer 17, 457–474 (2017).

    Google Scholar 

  2. Correa, P. Human gastric carcinogenesis: a multistep and multifactorial process–first American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res. 52, 6735–6740 (1992).

    CAS  PubMed  Google Scholar 

  3. Marques-Lespier, J. M., Gonzalez-Pons, M. & Cruz-Correa, M. Current perspectives on gastric cancer. Gastroenterol. Clin. North. Am. 45, 413–428 (2016).

    PubMed  PubMed Central  Google Scholar 

  4. Helicobacter and Cancer Collaborative Group. Gastric cancer and Helicobacter pylori: a combined analysis of 12 case control studies nested within prospective cohorts. Gut 49, 347–353 (2001).

    Google Scholar 

  5. Uemura, N. et al. Helicobacter pylori infection and the development of gastric cancer. N. Engl. J. Med. 345, 784–789 (2001).

    CAS  PubMed  Google Scholar 

  6. Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).

    PubMed  Google Scholar 

  7. de Martel, C., Georges, D., Bray, F., Ferlay, J. & Clifford, G. M. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob. Health 8, e180–e190 (2020). This article presents the most recent data linking GAC to H. pylori infection.

    PubMed  Google Scholar 

  8. Mayne, S. T. & Navarro, S. A. Diet, obesity and reflux in the etiology of adenocarcinomas of the esophagus and gastric cardia in humans. J. Nutr. 132, 3467S–3470S (2002).

    CAS  PubMed  Google Scholar 

  9. Olefson, S. & Moss, S. F. Obesity and related risk factors in gastric cardia adenocarcinoma. Gastric Cancer 18, 23–32 (2015).

    PubMed  Google Scholar 

  10. Laszkowska, M. et al. Racial and ethnic disparities in mortality from gastric and esophageal adenocarcinoma. Cancer Med. 9, 5678–5686 (2020). A study showing that racial disparities in GAC are linked to distal GAC.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Gupta, S. et al. Race/ethnicity-, socioeconomic status-, and anatomic subsite-specific risks for gastric cancer. Gastroenterology 156, 59–62.e4 (2019).

    PubMed  Google Scholar 

  12. Kumar, S., Metz, D. C., Ellenberg, S., Kaplan, D. E. & Goldberg, D. S. Risk factors and incidence of gastric cancer after detection of Helicobacter pylori infection: a large cohort study. Gastroenterology 158, 527–536.e7 (2020).

    CAS  PubMed  Google Scholar 

  13. Chen, X. Z., Chen, H., Castro, F. A., Hu, J. K. & Brenner, H. Epstein-Barr virus infection and gastric cancer: a systematic review. Medicine 94, e792 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Murphy, G., Pfeiffer, R., Camargo, M. C. & Rabkin, C. S. Meta-analysis shows that prevalence of Epstein-Barr virus-positive gastric cancer differs based on sex and anatomic location. Gastroenterology 137, 824–833 (2009).

    PubMed  Google Scholar 

  15. Robinson, K. & Atherton, J. C. The spectrum of helicobacter-mediated diseases. Annu. Rev. Pathol. https://doi.org/10.1146/annurev-pathol-032520-024949 (2020).

    Article  PubMed  Google Scholar 

  16. Roszczenko-Jasinska, P., Wojtys, M. I. & Jagusztyn-Krynicka, E. K. Helicobacter pylori treatment in the post-antibiotics era–searching for new drug targets. Appl. Microbiol. Biotechnol. 104, 9891–9905 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Amieva, M. & Peek, R. M. Jr. Pathobiology of Helicobacter pylori-induced gastric cancer. Gastroenterology 150, 64–78 (2016). This is a comprehensive review of H. pylori mechanisms to suppress host immunity and favour its sustained colonization.

    CAS  PubMed  Google Scholar 

  18. Jencks, D. S. et al. Overview of current concepts in gastric intestinal metaplasia and gastric cancer. Gastroenterol. Hepatol. 14, 92–101 (2018).

    Google Scholar 

  19. Noto, J. M. et al. Iron deficiency accelerates Helicobacter pylori-induced carcinogenesis in rodents and humans. J. Clin. Invest. 123, 479–492 (2013).

    CAS  PubMed  Google Scholar 

  20. Kuipers, E. J., Thijs, J. C. & Festen, H. P. The prevalence of Helicobacter pylori in peptic ulcer disease. Aliment. Pharmacol. Ther. 9 (Suppl. 2), 59–69 (1995).

    PubMed  Google Scholar 

  21. Yao, X., Ajani, J. A. & Song, S. Molecular biology and immunology of gastric cancer peritoneal metastasis. Transl. Gastroenterol. Hepatol. 5, 57 (2020).

    PubMed  PubMed Central  Google Scholar 

  22. de Oliveira, I. A. & Corvelo, T. C. O. ABH and Lewis blood group systems and their relation to diagnosis and risk of Helicobacter pylori infection. Microb. Pathog. 152, 104653 (2021).

    PubMed  Google Scholar 

  23. Chakrani, Z., Robinson, K. & Taye, B. Association between ABO blood groups and Helicobacter pylori infection: a meta-analysis. Sci. Rep. 8, 17604 (2018).

    PubMed  PubMed Central  Google Scholar 

  24. Negovan, A., Iancu, M., Fulop, E. & Banescu, C. Helicobacter pylori and cytokine gene variants as predictors of premalignant gastric lesions. World J. Gastroenterol. 25, 4105–4124 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Tahara, T. et al. Effect of IL-1β and TNF-α polymorphisms on the prognosis and survival of gastric cancer patients. Clin. Exp. Med. 11, 211–217 (2011).

    CAS  PubMed  Google Scholar 

  26. El-Omar, E. M. et al. Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature 404, 398–402 (2000). This study links a pro-inflammatory cytokine to increased GAC risk.

    CAS  PubMed  Google Scholar 

  27. Walter, E. & Scott, M. The life and work of Rudolf Virchow 1821-1902: “Cell theory, thrombosis and the sausage duel”. J. Intensive Care Soc. 18, 234–235 (2017).

    PubMed  Google Scholar 

  28. Balkwill, F. & Mantovani, A. Inflammation and cancer: back to Virchow? Lancet 357, 539–545 (2001).

    CAS  PubMed  Google Scholar 

  29. Lochhead, P. & El-Omar, E. M. Molecular predictors of gastric neoplastic progression. Cancer Cell 33, 9–11 (2018).

    CAS  PubMed  Google Scholar 

  30. Correa, P., Haenszel, W., Cuello, C., Tannenbaum, S. & Archer, M. A model for gastric cancer epidemiology. Lancet 2, 58–60 (1975).

    CAS  PubMed  Google Scholar 

  31. Marshall, B. J. & Warren, J. R. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1, 1311–1315 (1984).

    CAS  PubMed  Google Scholar 

  32. Graham, D. Y. History of Helicobacter pylori, duodenal ulcer, gastric ulcer and gastric cancer. World J. Gastroenterol. 20, 5191–5204 (2014).

    PubMed  PubMed Central  Google Scholar 

  33. Blaser, M. J. & Parsonnet, J. Parasitism by the “slow” bacterium Helicobacter pylori leads to altered gastric homeostasis and neoplasia. J. Clin. Invest. 94, 4–8 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202–209 (2014).

    Google Scholar 

  35. Derks, S. et al. Characterizing diversity in the tumor–immune microenvironment of distinct subclasses of gastroesophageal adenocarcinomas. Ann. Oncol. 31, 1011–1020 (2020). This study characterizes diversity in the tumour immune microenvironment in distinct subtypes of GACs.

    CAS  PubMed  Google Scholar 

  36. Kim, T. S., da Silva, E., Coit, D. G. & Tang, L. H. Intratumoral immune response to gastric cancer varies by molecular and histologic subtype. Am. J. Surg. Pathol. 43, 851–860 (2019). This article describes the immune microenvironment in TCGA GACs.

    PubMed  PubMed Central  Google Scholar 

  37. Dixon, M. F., Genta, R. M., Yardley, J. H. & Correa, P. Classification and grading of gastritis. The updated Sydney System. International Workshop on the Histopathology of Gastritis, Houston 1994. Am. J. Surg. Pathol. 20, 1161–1181 (1996).

    CAS  PubMed  Google Scholar 

  38. Parsonnet, J. et al. Helicobacter pylori infection in intestinal- and diffuse-type gastric adenocarcinomas. J. Natl Cancer Inst. 83, 640–643 (1991).

    CAS  PubMed  Google Scholar 

  39. Araujo-Filho, I. et al. Prevalence of Helicobacter pylori infection in advanced gastric carcinoma. Arq. Gastroenterol. 43, 288–292 (2006).

    PubMed  Google Scholar 

  40. Baek, S. M. et al. Role of serum pepsinogen II and Helicobacter pylori status in the detection of diffuse-type early gastric cancer in young individuals in South Korea. Gut Liver 14, 439–449 (2020).

    CAS  PubMed  Google Scholar 

  41. Handa, Y. et al. Association of Helicobacter pylori and diffuse type gastric cancer. J. Gastroenterol. 31 (Suppl. 9), 29–32 (1996).

    CAS  PubMed  Google Scholar 

  42. Li, J. H., Shi, X. Z., Lv, S., Liu, M. & Xu, G. W. Effect of Helicobacter pylori infection on p53 expression of gastric mucosa and adenocarcinoma with microsatellite instability. World J. Gastroenterol. 11, 4363–4366 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kashiwagi, K. et al. Clinical usefulness of microsatellite instability for the prediction of gastric adenoma or adenocarcinoma in patients with chronic gastritis. Br. J. Cancer 82, 1814–1818 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Dos Santos Pereira, E. et al. Helicobacter pylori cagE, cagG, and cagM can be a prognostic marker for intestinal and diffuse gastric cancer. Infect. Genet. Evol. 84, 104477 (2020).

    PubMed  Google Scholar 

  45. Ferrasi, A. C. et al. Helicobacter pylori and EBV in gastric carcinomas: methylation status and microsatellite instability. World J. Gastroenterol. 16, 312–319 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. van der Post, R. S. et al. Hereditary diffuse gastric cancer: updated clinical guidelines with an emphasis on germline CDH1 mutation carriers. J. Med. Genet. 52, 361–374 (2015).

    PubMed  Google Scholar 

  47. Cho, S. Y. et al. Sporadic early-onset diffuse gastric cancers have high frequency of somatic CDH1 alterations, but low frequency of somatic RHOA mutations compared with late-onset cancers. Gastroenterology 153, 536–549.e26 (2017).

    CAS  PubMed  Google Scholar 

  48. Zhang, H. et al. Gain-of-function RHOA mutations promote focal adhesion kinase activation and dependency in diffuse gastric cancer. Cancer Discov. 10, 288–305 (2020).

    CAS  PubMed  Google Scholar 

  49. Kakiuchi, M. et al. Recurrent gain-of-function mutations of RHOA in diffuse-type gastric carcinoma. Nat. Genet. 46, 583–587 (2014).

    CAS  PubMed  Google Scholar 

  50. Zhou, J., Hayakawa, Y., Wang, T. C. & Bass, A. J. RhoA mutations identified in diffuse gastric cancer. Cancer Cell 26, 9–11 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Suzuki, A. et al. Defined lifestyle and germline factors predispose Asian populations to gastric cancer. Sci. Adv. 6, eaav9778 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Blair, V. R. et al. Hereditary diffuse gastric cancer: updated clinical practice guidelines. Lancet Oncol. 21, e386–e397 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Corso, G. et al. Hereditary lobular breast cancer with an emphasis on E-cadherin genetic defect. J. Med. Genet. 55, 431–441 (2018).

    CAS  PubMed  Google Scholar 

  54. Shin, Y. et al. A functional polymorphism (-347 G — > GA) in the E-cadherin gene is associated with colorectal cancer. Carcinogenesis 25, 2173–2176 (2004).

    CAS  PubMed  Google Scholar 

  55. Carneiro, F. et al. Model of the early development of diffuse gastric cancer in E-cadherin mutation carriers and its implications for patient screening. J. Pathol. 203, 681–687 (2004).

    CAS  PubMed  Google Scholar 

  56. Rocha, J. P. et al. Pathological features of total gastrectomy specimens from asymptomatic hereditary diffuse gastric cancer patients and implications for clinical management. Histopathology 73, 878–886 (2018).

    PubMed  Google Scholar 

  57. Iyer, P., Moslim, M., Farma, J. M. & Denlinger, C. S. Diffuse gastric cancer: histologic, molecular, and genetic basis of disease. Transl. Gastroenterol. Hepatol. 5, 52 (2020).

    PubMed  PubMed Central  Google Scholar 

  58. Ajani, J. A. et al. Gastric adenocarcinoma. Nat. Rev. Dis. Prim. 3, 17036 (2017). This is a clinical review of GACs and treatment options.

    PubMed  Google Scholar 

  59. Wang, R. et al. Multiplex profiling of peritoneal metastases from gastric adenocarcinoma identified novel targets and molecular subtypes that predict treatment response. Gut 69, 18–31 (2020).

    CAS  PubMed  Google Scholar 

  60. Santos, S. N. et al. O-glycan sialylation alters galectin-3 subcellular localization and decreases chemotherapy sensitivity in gastric cancer. Oncotarget 7, 83570–83587 (2016).

    PubMed  PubMed Central  Google Scholar 

  61. Tamura, F. et al. RNAi-mediated gene silencing of ST6GalNAc I suppresses the metastatic potential in gastric cancer cells. Gastric Cancer 19, 85–97 (2016).

    CAS  PubMed  Google Scholar 

  62. Woo, H. J., Joo, H. G., Song, S. W., Sohn, Y. S. & Chae, C. Immunohistochemical detection of galectin-3 in canine gastric carcinomas. J. Comp. Pathol. 124, 216–218 (2001).

    CAS  PubMed  Google Scholar 

  63. Kim, S. J. et al. Galectin-3 increases gastric cancer cell motility by up-regulating fascin-1 expression. Gastroenterology 138, 1035–1045.e2 (2010).

    CAS  PubMed  Google Scholar 

  64. Wang, Z. et al. Upregulation of T-cell immunoglobulin and mucin-domain containing-3 (Tim-3) in monocytes/macrophages associates with gastric cancer progression. Immunol. Invest. 46, 134–148 (2017).

    CAS  PubMed  Google Scholar 

  65. Chou, F. C., Chen, H. Y., Kuo, C. C. & Sytwu, H. K. Role of galectins in tumors and in clinical immunotherapy. Int. J. Mol. Sci. https://doi.org/10.3390/ijms19020430 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ajani, J. A. et al. Galectin-3 expression is prognostic in diffuse type gastric adenocarcinoma, confers aggressive phenotype, and can be targeted by YAP1/BET inhibitors. Br. J. Cancer 118, 52–61 (2018).

    CAS  PubMed  Google Scholar 

  67. Kang, G. H., Lee, S., Kim, J. S. & Jung, H. Y. Profile of aberrant CpG island methylation along the multistep pathway of gastric carcinogenesis. Lab. Invest. 83, 635–641 (2003).

    CAS  PubMed  Google Scholar 

  68. Chan, A. O. et al. Promoter methylation of E-cadherin gene in gastric mucosa associated with Helicobacter pylori infection and in gastric cancer. Gut 52, 502–506 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Tamura, G. et al. E-Cadherin gene promoter hypermethylation in primary human gastric carcinomas. J. Natl Cancer Inst. 92, 569–573 (2000).

    CAS  PubMed  Google Scholar 

  70. Fornasarig, M. et al. Molecular and pathological features of gastric cancer in Lynch syndrome and familial adenomatous polyposis. Int. J. Mol. Sci. https://doi.org/10.3390/ijms19061682 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Silva-Fernandes, I. J. L. et al. The intricate interplay between MSI and polymorphisms of DNA repair enzymes in gastric cancer H.pylori associated. Mutagenesis 32, 471–478 (2017).

    CAS  PubMed  Google Scholar 

  72. Fang, D. C. et al. Mutation analysis of APC gene in gastric cancer with microsatellite instability. World J. Gastroenterol. 8, 787–791 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ebert, M. P. et al. Increased β-catenin mRNA levels and mutational alterations of the APC and β-catenin gene are present in intestinal-type gastric cancer. Carcinogenesis 23, 87–91 (2002).

    CAS  PubMed  Google Scholar 

  74. Park, W. S. et al. Frequent somatic mutations of the β-catenin gene in intestinal-type gastric cancer. Cancer Res. 59, 4257–4260 (1999).

    CAS  PubMed  Google Scholar 

  75. Budczies, J. et al. Integrated analysis of the immunological and genetic status in and across cancer types: impact of mutational signatures beyond tumor mutational burden. Oncoimmunology 7, e1526613 (2018).

    PubMed  PubMed Central  Google Scholar 

  76. Shin, S. J. et al. Mismatch repair status of gastric cancer and its association with the local and systemic immune response. Oncologist 24, e835–e844 (2019). This article discusses the relationship between MSI-H status, immune microenvironment and GAC response to treatment.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Cristescu, R. et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat. Med. 21, 449–456 (2015).

    CAS  PubMed  Google Scholar 

  78. Seo, H. M. et al. Clinicopathologic characteristics and outcomes of gastric cancers with the MSI-H phenotype. J. Surg. Oncol. 99, 143–147 (2009).

    PubMed  Google Scholar 

  79. De Souza, A. Finding the hot spot: identifying immune sensitive gastrointestinal tumors. Transl. Gastroenterol. Hepatol. 5, 48 (2020).

    PubMed  PubMed Central  Google Scholar 

  80. Kwak, Y., Seo, A. N., Lee, H. E. & Lee, H. S. Tumor immune response and immunotherapy in gastric cancer. J. Pathol. Transl. Med. 54, 20–33 (2020).

    PubMed  Google Scholar 

  81. Zepeda-Najar, C., Palacios-Astudillo, R. X., Chavez-Hernandez, J. D., Lino-Silva, L. S. & Salcedo-Hernandez, R. A. Prognostic impact of microsatellite instability in gastric cancer. Contemp. Oncol. 25, 68–71 (2021).

    Google Scholar 

  82. Stanland, L. J. & Luftig, M. A. The role of EBV-induced hypermethylation in gastric cancer tumorigenesis. Viruses https://doi.org/10.3390/v12111222 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Cho, J., Kang, M. S. & Kim, K. M. Epstein-Barr virus-associated gastric carcinoma and specific features of the accompanying immune response. J. Gastric Cancer 16, 1–7 (2016).

    PubMed  PubMed Central  Google Scholar 

  84. Enomoto, S. et al. Lack of association between CpG island methylator phenotype in human gastric cancers and methylation in their background non-cancerous gastric mucosae. Cancer Sci. 98, 1853–1861 (2007).

    CAS  PubMed  Google Scholar 

  85. Panda, A. et al. Immune activation and benefit from avelumab in EBV-positive gastric cancer. J. Natl Cancer Inst. 110, 316–320 (2018).

    CAS  PubMed  Google Scholar 

  86. Grabsch, H. I. & Tan, P. Gastric cancer pathology and underlying molecular mechanisms. Dig. Surg. 30, 150–158 (2013).

    CAS  PubMed  Google Scholar 

  87. Hino, R. et al. Activation of DNA methyltransferase 1 by EBV latent membrane protein 2A leads to promoter hypermethylation of PTEN gene in gastric carcinoma. Cancer Res. 69, 2766–2774 (2009).

    CAS  PubMed  Google Scholar 

  88. Cole, S. W., Nagaraja, A. S., Lutgendorf, S. K., Green, P. A. & Sood, A. K. Sympathetic nervous system regulation of the tumour microenvironment. Nat. Rev. Cancer 15, 563–572 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Luongo, F. et al. PTEN tumor-suppressor: the dam of stemness in cancer. Cancers (Basel) https://doi.org/10.3390/cancers11081076 (2019).

    Article  Google Scholar 

  90. Pyo, J. S., Kim, N. Y. & Kang, D. W. Clinicopathological significance of EBV-infected gastric carcinomas: a meta-analysis. Medicina (Kaunas) https://doi.org/10.3390/medicina56070345 (2020).

    Article  Google Scholar 

  91. de Souza, C. R. T. et al. Association between Helicobacter pylori, Epstein-Barr virus, human papillomavirus and gastric adenocarcinomas. World J. Gastroenterol. 24, 4928–4938 (2018).

    PubMed  PubMed Central  Google Scholar 

  92. Odenbreit, S. et al. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287, 1497–1500 (2000).

    CAS  PubMed  Google Scholar 

  93. Fujii, Y. et al. CDX1 confers intestinal phenotype on gastric epithelial cells via induction of stemness-associated reprogramming factors SALL4 and KLF5. Proc. Natl Acad. Sci. USA 109, 20584–20589 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Fischer, A. S. & Sigal, M. The role of Wnt and R-spondin in the stomach during health and disease. Biomedicines https://doi.org/10.3390/biomedicines7020044 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Chiurillo, M. A. Role of the Wnt/β-catenin pathway in gastric cancer: an in-depth literature review. World J. Exp. Med. 5, 84–102 (2015).

    PubMed  PubMed Central  Google Scholar 

  96. Chen, H. Y., Hu, Y., Lu, N. H. & Zhu, Y. Caudal type homeoboxes as a driving force in Helicobacter pylori infection-induced gastric intestinal metaplasia. Gut Microbes https://doi.org/10.1080/19490976.2020.1809331 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Rau, T. T. et al. Methylation-dependent activation of CDX1 through NF-κB: a link from inflammation to intestinal metaplasia in the human stomach. Am. J. Pathol. 181, 487–498 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Tegtmeyer, N., Neddermann, M., Asche, C. I. & Backert, S. Subversion of host kinases: a key network in cellular signaling hijacked by Helicobacter pylori CagA. Mol. Microbiol. 105, 358–372 (2017).

    CAS  PubMed  Google Scholar 

  99. Ito, N., Tsujimoto, H., Ueno, H., Xie, Q. & Shinomiya, N. Helicobacter pylori-mediated immunity and signaling transduction in gastric cancer. J. Clin. Med. https://doi.org/10.3390/jcm9113699 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Varga, M. G. et al. Pathogenic Helicobacter pylori strains translocate DNA and activate TLR9 via the cancer-associated cag type IV secretion system. Oncogene 35, 6262–6269 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Varga, M. G. & Peek, R. M. DNA transfer and toll-like receptor modulation by Helicobacter pylori. Curr. Top. Microbiol. Immunol. 400, 169–193 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Melit, L. E., Marginean, C. O., Marginean, C. D. & Marginean, M. O. The relationship between toll-like receptors and Helicobacter pylori-related gastropathies: still a controversial topic. J. Immunol. Res. 2019, 8197048 (2019).

    PubMed  PubMed Central  Google Scholar 

  103. Otani, K. et al. Toll-like receptor 9 signaling has anti-inflammatory effects on the early phase of Helicobacter pylori-induced gastritis. Biochem. Biophys. Res. Commun. 426, 342–349 (2012).

    CAS  PubMed  Google Scholar 

  104. Lin, A. S. et al. Bacterial energetic requirements for Helicobacter pylori Cag type IV secretion system-dependent alterations in gastric epithelial cells. Infect. Immun. https://doi.org/10.1128/IAI.00790-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Cui, L., Wang, X. & Zhang, D. TLRs as a promise target along with immune checkpoint against gastric cancer. Front. Cell Dev. Biol. 8, 611444 (2020).

    PubMed  Google Scholar 

  106. West, A. C. & Jenkins, B. J. Investigating the role of toll-like receptors in mouse models of gastric cancer. Methods Mol. Biol. 1390, 427–449 (2016).

    CAS  PubMed  Google Scholar 

  107. Kasurinen, A. et al. Evaluation of toll-like receptors as prognostic biomarkers in gastric cancer: high tissue TLR5 predicts a better outcome. Sci. Rep. 9, 12553 (2019).

    PubMed  PubMed Central  Google Scholar 

  108. Crump, K. E. & Sahingur, S. E. Microbial nucleic acid sensing in oral and systemic diseases. J. Dent. Res. 95, 17–25 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Castano-Rodriguez, N., Kaakoush, N. O. & Mitchell, H. M. Pattern-recognition receptors and gastric cancer. Front. Immunol. 5, 336 (2014).

    PubMed  PubMed Central  Google Scholar 

  110. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    CAS  PubMed  Google Scholar 

  111. Rad, R. et al. Extracellular and intracellular pattern recognition receptors cooperate in the recognition of Helicobacter pylori. Gastroenterology 136, 2247–2257 (2009).

    CAS  PubMed  Google Scholar 

  112. Cui, S. et al. The C-terminal regulatory domain is the RNA 5′-triphosphate sensor of RIG-I. Mol. Cell 29, 169–179 (2008).

    CAS  PubMed  Google Scholar 

  113. Schlee, M., Barchet, W., Hornung, V. & Hartmann, G. Beyond double-stranded RNA-type I IFN induction by 3pRNA and other viral nucleic acids. Curr. Top. Microbiol. Immunol. 316, 207–230 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Schmausser, B. et al. Expression and subcellular distribution of toll-like receptors TLR4, TLR5 and TLR9 on the gastric epithelium in Helicobacter pylori infection. Clin. Exp. Immunol. 136, 521–526 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Koucky, V., Boucek, J. & Fialova, A. Immunology of plasmacytoid dendritic cells in solid tumors: a brief review. Cancers (Basel) https://doi.org/10.3390/cancers11040470 (2019).

    Article  Google Scholar 

  116. Hoshino, K. et al. IκB kinase-α is critical for interferon-α production induced by Toll-like receptors 7 and 9. Nature 440, 949–953 (2006).

    CAS  PubMed  Google Scholar 

  117. Luther, J. et al. Helicobacter pylori DNA decreases pro-inflammatory cytokine production by dendritic cells and attenuates dextran sodium sulphate-induced colitis. Gut 60, 1479–1486 (2011). This article discusses the immunosuppressive property of H. pylori DNA.

    CAS  PubMed  Google Scholar 

  118. Ding, L. et al. Schlafen 4-expressing myeloid-derived suppressor cells are induced during murine gastric metaplasia. J. Clin. Invest. 126, 2867–2880 (2016). This article describes the lineage tracing of myeloid cells from bone marrow to stomach where they polarize to MDSCs by DAMP signalling.

    PubMed  PubMed Central  Google Scholar 

  119. Kao, J. Y. et al. Helicobacter pylori immune escape is mediated by dendritic cell-induced Treg skewing and Th17 suppression in mice. Gastroenterology 138, 1046–1054 (2010).

    CAS  PubMed  Google Scholar 

  120. Higgins, P. D. et al. Prior Helicobacter pylori infection ameliorates Salmonella typhimurium-induced colitis: mucosal crosstalk between stomach and distal intestine. Inflamm. Bowel Dis. 17, 1398–1408 (2011).

    PubMed  Google Scholar 

  121. Arnold, I. C. et al. Helicobacter pylori infection prevents allergic asthma in mouse models through the induction of regulatory T cells. J. Clin. Invest. 121, 3088–3093 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Kyburz, A. & Muller, A. Helicobacter pylori and extragastric diseases. Curr. Top. Microbiol. Immunol. 400, 325–347 (2017).

    CAS  PubMed  Google Scholar 

  123. Huang, K. K. et al. Genomic and epigenomic profiling of high-risk intestinal metaplasia reveals molecular determinants of progression to gastric cancer. Cancer Cell 33, 137–150 e135 (2018). This article describes the single-cell RNA-seq of intestinal metaplasia in the human stomach.

    CAS  PubMed  Google Scholar 

  124. Krysko, D. V. et al. Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer 12, 860–875 (2012).

    CAS  PubMed  Google Scholar 

  125. Merchant, J. L. & Ding, L. Hedgehog signaling links chronic inflammation to gastric cancer precursor lesions. Cell Mol. Gastroenterol. Hepatol. 3, 201–210 (2017).

    PubMed  PubMed Central  Google Scholar 

  126. Ahmed, A. & Tait, S. W. G. Targeting immunogenic cell death in cancer. Mol. Oncol. 14, 2994–3006 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Sarhan, M., Land, W. G., Tonnus, W., Hugo, C. P. & Linkermann, A. Origin and consequences of necroinflammation. Physiol. Rev. 98, 727–780 (2018).

    CAS  PubMed  Google Scholar 

  128. Bockerstett, K. A. et al. Interleukin-17A promotes parietal cell atrophy by inducing apoptosis. Cell Mol. Gastroenterol. Hepatol. 5, 678–690.e1 (2018).

    PubMed  PubMed Central  Google Scholar 

  129. Merchant, J. L. Parietal cell death by cytokines. Cell Mol. Gastroenterol. Hepatol. 5, 636–637 (2018).

    PubMed  PubMed Central  Google Scholar 

  130. Huh, W. J. et al. Tamoxifen induces rapid, reversible atrophy, and metaplasia in mouse stomach. Gastroenterology 142, 21–24.e7 (2012).

    CAS  PubMed  Google Scholar 

  131. Jang, G. Y. et al. Interactions between tumor-derived proteins and Toll-like receptors. Exp. Mol. Med. https://doi.org/10.1038/s12276-020-00540-4 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Piazuelo, M. B. et al. The Colombian chemoprevention trial. Twenty-year follow-up of a cohort of patients with gastric precancerous lesions. Gastroenterology https://doi.org/10.1053/j.gastro.2020.11.017 (2020).

    Article  PubMed  Google Scholar 

  133. Lahner, E., Conti, L., Annibale, B. & Corleto, V. D. Current perspectives in atrophic gastritis. Curr. Gastroenterol. Rep. 22, 38 (2020).

    PubMed  Google Scholar 

  134. Takahashi-Kanemitsu, A., Knight, C. T. & Hatakeyama, M. Molecular anatomy and pathogenic actions of Helicobacter pylori CagA that underpin gastric carcinogenesis. Cell Mol. Immunol. 17, 50–63 (2020).

    CAS  PubMed  Google Scholar 

  135. Li, J. & Perez Perez, G. I. Is there a role for the non-Helicobacter pylori bacteria in the risk of developing gastric cancer? Int. J. Mol. Sci. https://doi.org/10.3390/ijms19051353 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Barra, W. F. et al. Gastric cancer microbiome. Pathobiology https://doi.org/10.1159/000512833 (2021).

    Article  PubMed  Google Scholar 

  137. Thorell, K. et al. In vivo analysis of the viable microbiota and helicobacter pylori transcriptome in gastric infection and early stages of carcinogenesis. Infect. Immun. https://doi.org/10.1128/IAI.00031-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Caguazango, J. C. & Pazos, A. J. Microbiota according to gastric topography in patients with low or high risk of gastric cancer in Narino, Colombia. Biomedica 39, 157–171 (2019).

    PubMed  Google Scholar 

  139. Schulz, C., Schutte, K., Mayerle, J. & Malfertheiner, P. The role of the gastric bacterial microbiome in gastric cancer: Helicobacter pylori and beyond. Ther. Adv. Gastroenterol. 12, 1756284819894062 (2019). This article describes the role of the gastric microbiome.

    CAS  Google Scholar 

  140. Ofori-Darko, E. et al. An OmpA-like protein from Acinetobacter spp. stimulates gastrin and interleukin-8 promoters. Infect. Immun. 68, 3657–3666 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Zavros, Y., Rieder, G., Ferguson, A. & Merchant, J. L. Gastritis and hypergastrinemia due to Acinetobacter lwoffii in mice. Infect. Immun. 70, 2630–2639 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Dong, Z. et al. Detection of microbial 16S rRNA gene in the serum of patients with gastric cancer. Front. Oncol. 9, 608 (2019).

    PubMed  PubMed Central  Google Scholar 

  143. Tsugawa, H. et al. Reactive oxygen species-induced autophagic degradation of Helicobacter pylori CagA is specifically suppressed in cancer stem-like cells. Cell Host Microbe 12, 764–777 (2012).

    CAS  PubMed  Google Scholar 

  144. Ishimoto, T. et al. Macrophage-derived reactive oxygen species suppress miR-328 targeting CD44 in cancer cells and promote redox adaptation. Carcinogenesis 35, 1003–1011 (2014).

    CAS  PubMed  Google Scholar 

  145. Fu, L. et al. Gastric cancer stem cells: current insights into the immune microenvironment and therapeutic targets. Biomedicines https://doi.org/10.3390/biomedicines8010007 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Gomari, M. M. et al. CD44 polymorphisms and its variants, as an inconsistent marker in cancer investigations. Mutat. Res. Rev. Mutat. Res. 787, 108374 (2021).

    CAS  PubMed  Google Scholar 

  147. Zavros, Y. Initiation and maintenance of gastric cancer: a focus on CD44 variant isoforms and cancer stem cells. Cell Mol. Gastroenterol. Hepatol. 4, 55–63 (2017).

    PubMed  PubMed Central  Google Scholar 

  148. Higashi, H. et al. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 295, 683–686 (2002).

    CAS  PubMed  Google Scholar 

  149. Selbach, M., Moese, S., Backert, S., Jungblut, P. R. & Meyer, T. F. The Helicobacter pylori CagA protein induces tyrosine dephosphorylation of ezrin. Proteomics 4, 2961–2968 (2004).

    CAS  PubMed  Google Scholar 

  150. Oliveira, M. J. et al. Helicobacter pylori induces gastric epithelial cell invasion in a c-Met and type IV secretion system-dependent manner. J. Biol. Chem. 281, 34888–34896 (2006).

    CAS  PubMed  Google Scholar 

  151. Oliveira, M. J. et al. CagA associates with c-Met, E-cadherin, and p120-catenin in a multiproteic complex that suppresses Helicobacter pylori-induced cell-invasive phenotype. J. Infect. Dis. 200, 745–755 (2009).

    CAS  PubMed  Google Scholar 

  152. Churin, Y. et al. Helicobacter pylori CagA protein targets the c-Met receptor and enhances the motogenic response. J. Cell Biol. 161, 249–255 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Amieva, M. R. et al. Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science 300, 1430–1434 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Franco, A. T. et al. Activation of β-catenin by carcinogenic Helicobacter pylori. Proc. Natl Acad. Sci. USA 102, 10646–10651 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Saadat, I. et al. Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature 447, 330–333 (2007).

    CAS  PubMed  Google Scholar 

  156. Suzuki, M. et al. Helicobacter pylori CagA phosphorylation-independent function in epithelial proliferation and inflammation. Cell Host Microbe 5, 23–34 (2009).

    CAS  PubMed  Google Scholar 

  157. Bertaux-Skeirik, N. et al. CD44 plays a functional role in Helicobacter pylori-induced epithelial cell proliferation. PLoS Pathog. 11, e1004663 (2015). This study demonstrates the role of H. pylori in modulating CD44+ cells (a putative gastric stem cell marker).

    PubMed  PubMed Central  Google Scholar 

  158. Ishimoto, T. et al. CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(−) and thereby promotes tumor growth. Cancer Cell 19, 387–400 (2011).

    CAS  PubMed  Google Scholar 

  159. Holokai, L. et al. Increased programmed death-ligand 1 is an early epithelial cell response to Helicobacter pylori infection. PLoS Pathog. 15, e1007468 (2019).

    PubMed  PubMed Central  Google Scholar 

  160. Kim, W. et al. PD-1 signaling promotes tumor-infiltrating myeloid-derived suppressor cells and gastric tumorigenesis in mice. Gastroenterology https://doi.org/10.1053/j.gastro.2020.10.036 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Harada, K. et al. Recent advances in the management of gastric adenocarcinoma patients. F1000Res. https://doi.org/10.12688/f1000research.15133.1 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Cho, C. J. et al. Poor prognosis in Epstein-Barr virus-negative gastric cancer with lymphoid stroma is associated with immune phenotype. Gastric Cancer 21, 925–935 (2018).

    CAS  PubMed  Google Scholar 

  163. Gullo, I. et al. New insights into the inflamed tumor immune microenvironment of gastric cancer with lymphoid stroma: from morphology and digital analysis to gene expression. Gastric Cancer 22, 77–90 (2019).

    PubMed  Google Scholar 

  164. Goldenring, J. R. & Mills, J. C. Cellular plasticity, reprogramming, and regeneration: metaplasia in the stomach and beyond. Gastroenterology https://doi.org/10.1053/j.gastro.2021.10.036 (2021).

    Article  PubMed  Google Scholar 

  165. Spechler, S. J. et al. A summary of the 2016 James W. Freston Conference of the American Gastroenterological Association: intestinal metaplasia in the esophagus and stomach: origins, differences, similarities and significance. Gastroenterology 153, e6–e13 (2017).

    PubMed  Google Scholar 

  166. Tu, S. et al. Overexpression of interleukin-1β induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell 14, 408–419 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Waghray, M. et al. Interleukin-1β promotes gastric atrophy through suppression of Sonic Hedgehog. Gastroenterology 138, 562–572.e2 (2010). A study that demonstrates that IL-1β inhibits SHH and parietal cell acid secretion.

    CAS  PubMed  Google Scholar 

  168. Ding, L., Sontz, E. A., Saqui-Salces, M. & Merchant, J. L. Interleukin-1b suppresses gastrin via primary cilia and induces antral hyperplasia. Cell Mol. Gastroenterol. Hepatol. 11, 1251–1266 (2020).

    Google Scholar 

  169. Burclaff, J., Osaki, L. H., Liu, D., Goldenring, J. R. & Mills, J. C. Targeted apoptosis of parietal cells is insufficient to induce metaplasia in stomach. Gastroenterology 152, 762–766.e7 (2017).

    CAS  PubMed  Google Scholar 

  170. Ding, L., El Zaatari, M. & Merchant, J. L. Recapitulating human gastric cancer pathogenesis: experimental models of gastric cancer. Adv. Exp. Med. Biol. 908, 441–478 (2016). This article provides an overview of rodent models of GAC.

    PubMed  PubMed Central  Google Scholar 

  171. Weis, V. G. et al. Maturity and age influence chief cell ability to transdifferentiate into metaplasia. Am. J. Physiol. Gastrointest. Liver Physiol. 312, G67–G76 (2017).

    PubMed  Google Scholar 

  172. Weis, V. G. et al. Heterogeneity in mouse spasmolytic polypeptide-expressing metaplasia lineages identifies markers of metaplastic progression. Gut 62, 1270–1279 (2013).

    CAS  PubMed  Google Scholar 

  173. Nam, K. T. et al. Mature chief cells are cryptic progenitors for metaplasia in the stomach. Gastroenterology 139, 2028–2037.e9 (2010). A study investigating the evolution of SPEM in the human stomach.

    CAS  PubMed  Google Scholar 

  174. Petersen, C. P., Mills, J. C. & Goldenring, J. R. Murine models of gastric corpus preneoplasia. Cell Mol. Gastroenterol. Hepatol. 3, 11–26 (2017).

    PubMed  Google Scholar 

  175. Manning, E. H., Lapierre, L. A., Mills, J. C. & Goldenring, J. R. Tamoxifen acts as a parietal cell protonophore. Cell Mol. Gastroenterol. Hepatol. 10, 655–657.e1 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Saenz, J. B., Burclaff, J. & Mills, J. C. Modeling murine gastric metaplasia through tamoxifen-induced acute parietal cell loss. Methods Mol. Biol. 1422, 329–339 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Petersen, C. P. et al. A signalling cascade of IL-33 to IL-13 regulates metaplasia in the mouse stomach. Gut 67, 805–817 (2018).

    CAS  PubMed  Google Scholar 

  178. Noto, J. M., Romero-Gallo, J., Piazuelo, M. B. & Peek, R. M. The Mongolian gerbil: a robust model of Helicobacter pylori-induced gastric inflammation and cancer. Methods Mol. Biol. 1422, 263–280 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Tsukamoto, T., Mizoshita, T. & Tatematsu, M. Animal models of stomach carcinogenesis. Toxicol. Pathol. 35, 636–648 (2007).

    CAS  PubMed  Google Scholar 

  180. Kang, W., Rathinavelu, S., Samuelson, L. C. & Merchant, J. L. Interferon gamma induction of gastric mucous neck cell hypertrophy. Lab. Invest. 85, 702–715 (2005).

    CAS  PubMed  Google Scholar 

  181. Zavros, Y. et al. Chronic gastritis in the hypochlorhydric gastrin-deficient mouse progresses to adenocarcinoma. Oncogene 24, 2354–2366 (2005).

    CAS  PubMed  Google Scholar 

  182. Friis-Hansen, L., Rieneck, K., Nilsson, H. O., Wadstrom, T. & Rehfeld, J. F. Gastric inflammation, metaplasia, and tumor development in gastrin-deficient mice. Gastroenterology 131, 246–258 (2006).

    CAS  PubMed  Google Scholar 

  183. Judd, L. M. et al. Gastric cancer development in mice lacking the SHP2 binding site on the IL-6 family co-receptor gp130. Gastroenterology 126, 196–207 (2004).

    CAS  PubMed  Google Scholar 

  184. Tebbutt, N. C. et al. Reciprocal regulation of gastrointestinal homeostasis by SHP2 and STAT-mediated trefoil gene activation in gp130 mutant mice. Nat. Med. 8, 1089–1097 (2002).

    CAS  PubMed  Google Scholar 

  185. Znalesniak, E. B., Salm, F. & Hoffmann, W. Molecular alterations in the stomach of Tff1-deficient mice: early steps in antral carcinogenesis. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21020644 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Soutto, M. et al. Activation of STAT3 signaling is mediated by TFF1 silencing in gastric neoplasia. Nat. Commun. 10, 3039 (2019).

    PubMed  PubMed Central  Google Scholar 

  187. Kamada, T. et al. The association between antral G and D cells and mucosal inflammation, atrophy, and Helicobacter pylori infection in subjects with normal mucosa, chronic gastritis, and duodenal ulcer. Am. J. Gastroenterol. 93, 748–752 (1998).

    CAS  PubMed  Google Scholar 

  188. Liu, Y., Vosmaer, G. D., Tytgat, G. N., Xiao, S. D. & Ten Kate, F. J. Gastrin (G) cells and somatostatin (D) cells in patients with dyspeptic symptoms: Helicobacter pylori associated and non-associated gastritis. J. Clin. Pathol. 58, 927–931 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Smith, J. P., Nadella, S. & Osborne, N. Gastrin and gastric cancer. Cell Mol. Gastroenterol. Hepatol. 4, 75–83 (2017).

    PubMed  PubMed Central  Google Scholar 

  190. Chuang, C. H. et al. Hypergastrinemia after Helicobacter pylori infection is associated with bacterial load and related inflammation of the oxyntic corpus mucosa. J. Gastroenterol. Hepatol. 19, 988–993 (2004).

    PubMed  Google Scholar 

  191. Haruma, K. et al. Old and new gut hormone, gastrin and acid suppressive therapy. Digestion 97, 340–344 (2018).

    CAS  PubMed  Google Scholar 

  192. Agreus, L. et al. Rationale in diagnosis and screening of atrophic gastritis with stomach-specific plasma biomarkers. Scand. J. Gastroenterol. 47, 136–147 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Kotelevets, S. M. & Chekh, S. A. Screening, monitoring, and treatment of precancerous atrophic gastritis in the prospective study for seven years. Asian Pac. J. Cancer Prev. 21, 331–336 (2020).

    PubMed  PubMed Central  Google Scholar 

  194. de Vries, A. C. & Kuipers, E. J. Epidemiology of premalignant gastric lesions: implications for the development of screening and surveillance strategies. Helicobacter 12 (Suppl. 2), 22–31 (2007).

    PubMed  Google Scholar 

  195. Howlett, M. et al. Differential regulation of gastric tumor growth by cytokines that signal exclusively through the coreceptor gp130. Gastroenterology 129, 1005–1018 (2005).

    CAS  PubMed  Google Scholar 

  196. Tomita, H. et al. Inhibition of gastric carcinogenesis by the hormone gastrin is mediated by suppression of TFF1 epigenetic silencing. Gastroenterology 140, 879–891 (2011).

    CAS  PubMed  Google Scholar 

  197. Saqui-Salces, M. et al. Inflammation and Gli2 suppress gastrin gene expression in a murine model of antral hyperplasia. PLoS ONE 7, e48039 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Khan, Z. E., Wang, T. C., Cui, G., Chi, A. L. & Dimaline, R. Transcriptional regulation of the human trefoil factor, TFF1, by gastrin. Gastroenterology 125, 510–521 (2003).

    CAS  PubMed  Google Scholar 

  199. Sakitani, K. et al. CXCR4-expressing Mist1(+) progenitors in the gastric antrum contribute to gastric cancer development. Oncotarget 8, 111012–111025 (2017).

    PubMed  PubMed Central  Google Scholar 

  200. Ji, L. et al. Blockade of β-catenin-induced CCL28 suppresses gastric cancer progression via inhibition of Treg cell infiltration. Cancer Res. 80, 2004–2016 (2020).

    CAS  PubMed  Google Scholar 

  201. Li, X. et al. WNT/β-catenin signaling pathway regulating T cell-inflammation in the tumor microenvironment. Front. Immunol. 10, 2293 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Tomita, H. et al. Development of gastric tumors in Apc(Min/+) mice by the activation of the β-catenin/Tcf signaling pathway. Cancer Res. 67, 4079–4087 (2007).

    CAS  PubMed  Google Scholar 

  203. Ding, L. et al. MiR130b from Schlafen4(+) MDSCs stimulates epithelial proliferation and correlates with preneoplastic changes prior to gastric cancer. Gut 69, 1750–1761 (2020).

    CAS  PubMed  Google Scholar 

  204. Kumar, Y. et al. Ubiquitin ligase, Fbw7, targets CDX2 for degradation via two phosphodegron motifs in a GSK3β-dependent manner. Mol. Cancer Res. 14, 1097–1109 (2016).

    CAS  PubMed  Google Scholar 

  205. Jiang, Y. et al. Fbxw7 haploinsufficiency loses its protection against DNA damage and accelerates MNU-induced gastric carcinogenesis. Oncotarget 8, 33444–33456 (2017).

    PubMed  PubMed Central  Google Scholar 

  206. Liu, Y. et al. Comparative molecular analysis of gastrointestinal adenocarcinomas. Cancer Cell 33, 721–735.e8 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Kim, H. J. et al. Methylation of the CDX2 promoter in Helicobacter pylori-infected gastric mucosa increases with age and its rapid demethylation in gastric tumors is associated with upregulated gene expression. Carcinogenesis 41, 1341–1352 (2020).

    CAS  PubMed  Google Scholar 

  208. Schumacher, M. A. et al. The use of murine-derived fundic organoids in studies of gastric physiology. J. Physiol. 593, 1809–1827 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Seidlitz, T. et al. Mouse models of human gastric cancer subtypes with stomach-specific CreERT2-mediated pathway alterations. Gastroenterology 157, 1599–1614.e2 (2019).

    CAS  PubMed  Google Scholar 

  210. Schumacher, M. A. et al. Gastric sonic hedgehog acts as a macrophage chemoattractant during the immune response to Helicobacter pylori. Gastroenterology 142, 1150–1159.e6 (2012). This study shows that SHH is a chemoattractant for myeloid cells induced by H. pylori infection.

    CAS  PubMed  Google Scholar 

  211. Bamford, K. B. et al. Lymphocytes in the human gastric mucosa during Helicobacter pylori have a T helper cell 1 phenotype. Gastroenterology 114, 482–492 (1998).

    CAS  PubMed  Google Scholar 

  212. Stepan, V. et al. Regulation and function of the sonic hedgehog signal transduction pathway in isolated gastric parietal cells. J. Biol. Chem. 280, 15700–15708 (2005).

    CAS  PubMed  Google Scholar 

  213. El-Zaatari, M. et al. Intracellular calcium release and protein kinase C activation stimulate sonic hedgehog gene expression during gastric acid secretion. Gastroenterology 139, 2061–2071.e2 (2010).

    CAS  PubMed  Google Scholar 

  214. Wang, T. C. et al. Mice lacking secretory phospholipase A2 show altered apoptosis and differentiation with Helicobacter felis infection. Gastroenterology 114, 675–689 (1998). This article is the initial report of SPEM in mice.

    CAS  PubMed  Google Scholar 

  215. Schmidt, P. H. et al. Identification of a metaplastic cell lineage associated with human gastric adenocarcinoma. Lab. Invest. 79, 639–646 (1999).

    CAS  PubMed  Google Scholar 

  216. Can, N. et al. Mucins, trefoil factors and pancreatic duodenal homeobox 1 expression in spasmolytic polypeptide expressing metaplasia and intestinal metaplasia adjacent to gastric carcinomas. Arch. Med. Sci. 16, 1402–1410 (2020).

    CAS  PubMed  Google Scholar 

  217. Meyer, A. R. & Goldenring, J. R. Injury, repair, inflammation and metaplasia in the stomach. J. Physiol. 596, 3861–3867 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Engevik, A. C. et al. The development of spasmolytic polypeptide/TFF2-expressing metaplasia (SPEM) during gastric repair is absent in the aged stomach. Cell Mol. Gastroenterol. Hepatol. 2, 605–624 (2016).

    PubMed  PubMed Central  Google Scholar 

  219. Yoon, C. et al. CD44 expression denotes a subpopulation of gastric cancer cells in which Hedgehog signaling promotes chemotherapy resistance. Clin. Cancer Res. 20, 3974–3988 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Song, Z. et al. Sonic hedgehog pathway is essential for maintenance of cancer stem-like cells in human gastric cancer. PLoS ONE 6, e17687 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Solcia, E. et al. Intestinal and diffuse gastric cancers arise in a different background of Helicobacter pylori gastritis through different gene involvement. Am. J. Surg. Pathol. 20 (Suppl. 1), S8–S22 (1996).

    PubMed  Google Scholar 

  222. Berman, D. M. et al. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 425, 846–851 (2003). This study shows that HH signalling is important in GAC and other foregut tumours.

    CAS  PubMed  Google Scholar 

  223. Johnson, R. L., Riddle, R. D., Laufer, E. & Tabin, C. Sonic hedgehog: a key mediator of anterior-posterior patterning of the limb and dorso-ventral patterning of axial embryonic structures. Biochem. Soc. Trans. 22, 569–574 (1994).

    CAS  PubMed  Google Scholar 

  224. Nusslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980).

    CAS  PubMed  Google Scholar 

  225. Ramalho-Santos, M., Melton, D. A. & McMahon, A. P. Hedgehog signals regulate multiple aspects of gastrointestinal development. Development 127, 2763–2772 (2000).

    CAS  PubMed  Google Scholar 

  226. Watkins, D. N. & Peacock, C. D. Hedgehog signalling in foregut malignancy. Biochem. Pharmacol. 68, 1055–1060 (2004).

    CAS  PubMed  Google Scholar 

  227. Shiotani, A. et al. Sonic hedgehog and CDX2 expression in the stomach. J. Gastroenterol. Hepatol. 23 (Suppl. 2), S161–S166 (2008).

    PubMed  Google Scholar 

  228. Shiotani, A. et al. Helicobacter pylori-induced atrophic gastritis progressing to gastric cancer exhibits sonic hedgehog loss and aberrant CDX2 expression. Aliment. Pharmacol. Ther. 24 (Suppl. 4), 71–80 (2006).

    PubMed  Google Scholar 

  229. Shiotani, A. et al. Re-expression of sonic hedgehog and reduction of CDX2 after Helicobacter pylori eradication prior to incomplete intestinal metaplasia. Int. J. Cancer 121, 1182–1189 (2007).

    CAS  PubMed  Google Scholar 

  230. Venerito, M. et al. Oxyntic gastric atrophy in Helicobacter pylori gastritis is distinct from autoimmune gastritis. J. Clin. Pathol. 69, 677–685 (2016).

    CAS  PubMed  Google Scholar 

  231. Shiotani, A. et al. Evidence that loss of sonic hedgehog is an indicator of Helicobater pylori-induced atrophic gastritis progressing to gastric cancer. Am. J. Gastroenterol. 100, 581–587 (2005).

    CAS  PubMed  Google Scholar 

  232. Mutoh, H., Hayakawa, H., Sashikawa, M., Sakamoto, H. & Sugano, K. Direct repression of Sonic Hedgehog expression in the stomach by Cdx2 leads to intestinal transformation. Biochem. J. 427, 423–434 (2010). This study shows that SHH is repressed and CDX2 is expressed in intestinal-type GAC.

    CAS  PubMed  Google Scholar 

  233. Konstantinou, D., Bertaux-Skeirik, N. & Zavros, Y. Hedgehog signaling in the stomach. Curr. Opin. Pharmacol. 31, 76–82 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Fukaya, M. et al. Hedgehog signal activation in gastric pit cell and in diffuse-type gastric cancer. Gastroenterology 131, 14–29 (2006). This study shows that SHH is increased in diffuse GAC.

    CAS  PubMed  Google Scholar 

  235. Han, T. et al. Yes-associated protein contributes to cell proliferation and migration of gastric cancer via activation of Gli1. Onco Targets Ther. 13, 10867–10876 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Polizio, A. H. et al. Heterotrimeric Gi proteins link Hedgehog signaling to activation of Rho small GTPases to promote fibroblast migration. J. Biol. Chem. 286, 19589–19596 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Xiao, C. et al. Loss of parietal cell expression of sonic hedgehog induces hypergastrinemia and hyperproliferation of surface mucous cells. Gastroenterology 138, 550–561.e8 (2010).

    CAS  PubMed  Google Scholar 

  238. Zavros, Y., Orr, M. A., Xiao, C. & Malinowska, D. H. Sonic hedgehog is associated with H+-K+-ATPase-containing membranes in gastric parietal cells and secreted with histamine stimulation. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G99–G111 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Zavros, Y. et al. Reduced pepsin A processing of sonic hedgehog in parietal cells precedes gastric atrophy and transformation. J. Biol. Chem. 282, 33265–33274 (2007).

    CAS  PubMed  Google Scholar 

  240. van den Brink, G. R. et al. Sonic hedgehog expression correlates with fundic gland differentiation in the adult gastrointestinal tract. Gut 51, 628–633 (2002).

    PubMed  PubMed Central  Google Scholar 

  241. Suzuki, H. et al. Down-regulation of a morphogen (sonic hedgehog) gradient in the gastric epithelium of Helicobacter pylori-infected Mongolian gerbils. J. Pathol. 206, 186–197 (2005).

    CAS  PubMed  Google Scholar 

  242. El-Zaatari, M. et al. De-regulation of the sonic hedgehog pathway in the InsGas mouse model of gastric carcinogenesis. Br. J. Cancer 96, 1855–1861 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Xu, Y., Song, S., Wang, Z. & Ajani, J. A. The role of hedgehog signaling in gastric cancer: molecular mechanisms, clinical potential, and perspective. Cell Commun. Signal. 17, 157 (2019).

    PubMed  PubMed Central  Google Scholar 

  244. Didiasova, M., Schaefer, L. & Wygrecka, M. Targeting GLI transcription factors in cancer. Molecules https://doi.org/10.3390/molecules23051003 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Kolterud, A. et al. Paracrine Hedgehog signaling in stomach and intestine: new roles for hedgehog in gastrointestinal patterning. Gastroenterology 137, 618–628 (2009).

    PubMed  Google Scholar 

  246. El-Zaatari, M. et al. Gli1 deletion prevents Helicobacter-induced gastric metaplasia and expansion of myeloid cell subsets. PLoS ONE 8, e58935 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Mavrommatis, E., Fish, E. N. & Platanias, L. C. The Schlafen family of proteins and their regulation by interferons. J. Interferon Cytokine Res. 33, 206–210 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Pimentel-Nunes, P. et al. Management of epithelial precancerous conditions and lesions in the stomach (MAPS II): European Society of Gastrointestinal Endoscopy (ESGE), European Helicobacter and Microbiota Study Group (EHMSG), European Society of Pathology (ESP), and Sociedade Portuguesa de Endoscopia Digestiva (SPED) guideline update 2019. Endoscopy 51, 365–388 (2019).

    PubMed  Google Scholar 

  249. Pittayanon, R. et al. The risk of gastric cancer in patients with gastric intestinal metaplasia in 5-year follow-up. Aliment. Pharmacol. Ther. 46, 40–45 (2017).

    CAS  PubMed  Google Scholar 

  250. Giroux, V. & Rustgi, A. K. Metaplasia: tissue injury adaptation and a precursor to the dysplasia-cancer sequence. Nat. Rev. Cancer 17, 594–604 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Lindholm, C., Quiding-Jarbrink, M., Lonroth, H., Hamlet, A. & Svennerholm, A. M. Local cytokine response in Helicobacter pylori-infected subjects. Infect. Immun. 66, 5964–5971 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Morse, H. R., Olomolaiye, O. O., Wood, N. A., Keen, L. J. & Bidwell, J. L. Induced heteroduplex genotyping of TNF-α, IL-1β, IL-6 and IL-10 polymorphisms associated with transcriptional regulation. Cytokine 11, 789–795 (1999).

    CAS  PubMed  Google Scholar 

  253. Wilson, K. T. & Crabtree, J. E. Immunology of Helicobacter pylori: insights into the failure of the immune response and perspectives on vaccine studies. Gastroenterology 133, 288–308 (2007).

    CAS  PubMed  Google Scholar 

  254. Syu, L. J. et al. Transgenic expression of interferon-γ in mouse stomach leads to inflammation, metaplasia, and dysplasia. Am. J. Pathol. 181, 2114–2125 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Putoczki, T. L. et al. Interleukin-11 is the dominant IL-6 family cytokine during gastrointestinal tumorigenesis and can be targeted therapeutically. Cancer Cell 24, 257–271 (2013).

    CAS  PubMed  Google Scholar 

  256. Osaki, L. H. et al. Interferon-γ directly induces gastric epithelial cell death and is required for progression to metaplasia. J. Pathol. 247, 513–523 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Smythies, L. E. et al. Helicobacter pylori-induced mucosal inflammation is Th1 mediated and exacerbated in IL-4, but not IFN-γ, gene-deficient mice. J. Immunol. 165, 1022–1029 (2000).

    CAS  PubMed  Google Scholar 

  258. McHugh, R. S., Shevach, E. M., Margulies, D. H. & Natarajan, K. A T cell receptor transgenic model of severe, spontaneous organ-specific autoimmunity. Eur. J. Immunol. 31, 2094–2103 (2001).

    CAS  PubMed  Google Scholar 

  259. Zhang, M. et al. Dissecting transcriptional heterogeneity in primary gastric adenocarcinoma by single cell RNA sequencing. Gut https://doi.org/10.1136/gutjnl-2019-320368 (2020).

    Article  PubMed  Google Scholar 

  260. Zhang, P. et al. Dissecting the single-cell transcriptome network underlying gastric premalignant lesions and early gastric cancer. Cell Rep. 27, 1934–1947.e5 (2019).

    CAS  PubMed  Google Scholar 

  261. Sathe, A. et al. Single-cell genomic characterization reveals the cellular reprogramming of the gastric tumor microenvironment. Clin. Cancer Res. 26, 2640–2653 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  262. Bagheri, N., Salimzadeh, L. & Shirzad, H. The role of T helper 1-cell response in Helicobacter pylori-infection. Microb. Pathog. 123, 1–8 (2018).

    CAS  PubMed  Google Scholar 

  263. Dixon, B., Hossain, R., Patel, R. V. & Algood, H. M. S. Th17 cells in Helicobacter pylori infection: a dichotomy of help and harm. Infect. Immun. https://doi.org/10.1128/IAI.00363-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  264. Yasmin, S., Dixon, B., Olivares-Villagomez, D. & Algood, H. M. S. Interleukin-21 (IL-21) downregulates dendritic cell cytokine responses to Helicobacter pylori and modulates T Lymphocyte IL-17A expression in Peyer’s patches during infection. Infect. Immun. https://doi.org/10.1128/IAI.00237-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  265. Larussa, T. et al. Enhanced expression of indoleamine 2,3-dioxygenase in Helicobacter pylori-infected human gastric mucosa modulates Th1/Th2 pathway and interleukin 17 production. Helicobacter 20, 41–48 (2015).

    CAS  PubMed  Google Scholar 

  266. Ford, A. C., Yuan, Y., Forman, D., Hunt, R. & Moayyedi, P. Helicobacter pylori eradication for the prevention of gastric neoplasia. Cochrane Database Syst. Rev. 7, CD005583 (2020).

    PubMed  Google Scholar 

  267. Venerito, M., Ford, A. C., Rokkas, T. & Malfertheiner, P. Review: Prevention and management of gastric cancer. Helicobacter 25 (Suppl. 1), e12740 (2020).

    PubMed  Google Scholar 

  268. Sugano, K. Effect of Helicobacter pylori eradication on the incidence of gastric cancer: a systematic review and meta-analysis. Gastric Cancer 22, 435–445 (2019).

    CAS  PubMed  Google Scholar 

  269. Obayashi, Y. et al. Risk factors for gastric cancer after the eradication of Helicobacter pylori evaluated based on the background gastric mucosa: a propensity score-matched case-control study. Intern. Med. https://doi.org/10.2169/internalmedicine.5486-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  270. Companioni Napoles, O. et al. SCHLAFEN 5 expression correlates with intestinal metaplasia that progresses to gastric cancer. J. Gastroenterol. 52, 39–49 (2017).

    CAS  PubMed  Google Scholar 

  271. Park, Y. H. & Kim, N. Review of atrophic gastritis and intestinal metaplasia as a premalignant lesion of gastric cancer. J. Cancer Prev. 20, 25–40 (2015).

    PubMed  PubMed Central  Google Scholar 

  272. Mueller, D. et al. c-Src and c-Abl kinases control hierarchic phosphorylation and function of the CagA effector protein in Western and East Asian Helicobacter pylori strains. J. Clin. Invest. 122, 1553–1566 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  273. Blosse, A., Lehours, P., Wilson, K. T. & Gobert, A. P. Helicobacter: inflammation, immunology, and vaccines. Helicobacter 23 (Suppl. 1), e12517 (2018).

    PubMed  PubMed Central  Google Scholar 

  274. Kim, D. J., Park, J. H., Franchi, L., Backert, S. & Nunez, G. The Cag pathogenicity island and interaction between TLR2/NOD2 and NLRP3 regulate IL-1β production in Helicobacter pylori infected dendritic cells. Eur. J. Immunol. 43, 2650–2658 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  275. Amedei, A., Della Bella, C., Silvestri, E., Prisco, D. & D’Elios, M. M. T cells in gastric cancer: friends or foes. Clin. Dev. Immunol. 2012, 690571 (2012).

    PubMed  PubMed Central  Google Scholar 

  276. Prendergast, G. C. et al. Indoleamine 2,3-dioxygenase pathways of pathogenic inflammation and immune escape in cancer. Cancer Immunol. Immunother. 63, 721–735 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  277. Azadegan-Dehkordi, F. et al. Increased indoleamine 2,3-dioxygenase expression modulates Th1/Th17/Th22 and Treg pathway in humans with Helicobacter pylori-infected gastric mucosa. Hum. Immunol. https://doi.org/10.1016/j.humimm.2020.10.005 (2020).

    Article  PubMed  Google Scholar 

  278. Li, P. et al. GC-derived EVs enriched with microRNA-675-3p contribute to the MAPK/PD-L1-mediated tumor immune escape by targeting CXXC4. Mol. Ther. Nucleic Acids 22, 615–626 (2020).

    PubMed  PubMed Central  Google Scholar 

  279. Reyes, V. E. & Peniche, A. G. Helicobacter pylori deregulates T and B cell signaling to trigger immune evasion. Curr. Top. Microbiol. Immunol. 421, 229–265 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  280. Ilson, D. H. Immunotherapy in esophagogastric cancer. Clin. Adv. Hematol. Oncol. 19, 639–647 (2021).

    PubMed  Google Scholar 

  281. Ahmadzadeh, M. et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114, 1537–1544 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  282. Chen, X. et al. PD-1 regulates extrathymic regulatory T-cell differentiation. Eur. J. Immunol. 44, 2603–2616 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  283. Reissfelder, C. et al. Tumor-specific cytotoxic T lymphocyte activity determines colorectal cancer patient prognosis. J. Clin. Invest. 125, 739–751 (2015).

    PubMed  Google Scholar 

  284. Hamid, O. & Carvajal, R. D. Anti-programmed death-1 and anti-programmed death-ligand 1 antibodies in cancer therapy. Expert Opin. Biol. Ther. 13, 847–861 (2013).

    CAS  PubMed  Google Scholar 

  285. Hamid, O. et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N. Engl. J. Med. 369, 134–144 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  286. Iwai, Y. et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl Acad. Sci. USA 99, 12293–12297 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  287. Topalian, S. L., Drake, C. G. & Pardoll, D. M. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr. Opin. Immunol. 24, 207–212 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  288. Muro, K. et al. Pan-Asian adapted ESMO Clinical Practice Guidelines for the management of patients with metastatic gastric cancer: a JSMO-ESMO initiative endorsed by CSCO, KSMO, MOS, SSO and TOS. Ann. Oncol. 30, 19–33 (2019).

    CAS  PubMed  Google Scholar 

  289. Subhash, V. V., Yeo, M. S., Tan, W. L. & Yong, W. P. Strategies and advancements in harnessing the immune system for gastric cancer immunotherapy. J. Immunol. Res. 2015, 308574 (2015).

    PubMed  PubMed Central  Google Scholar 

  290. Muro, K. et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): a multicentre, open-label, phase 1b trial. Lancet Oncol. 17, 717–726 (2016).

    CAS  PubMed  Google Scholar 

  291. Wang, L. et al. Increased myeloid-derived suppressor cells in gastric cancer correlate with cancer stage and plasma S100A8/A9 proinflammatory proteins. J. Immunol. 190, 794–804 (2013).

    CAS  PubMed  Google Scholar 

  292. Ju, X., Zhang, H., Zhou, Z., Chen, M. & Wang, Q. Tumor-associated macrophages induce PD-L1 expression in gastric cancer cells through IL-6 and TNF-α signaling. Exp. Cell Res. 396, 112315 (2020).

    CAS  PubMed  Google Scholar 

  293. Wang, W. W. et al. CD19+ CD24hiCD38hiBregs involved in downregulate helper T cells and upregulate regulatory T cells in gastric cancer. Oncotarget 6, 33486–33499 (2015).

    PubMed  PubMed Central  Google Scholar 

  294. Rincon-Arevalo, H., Sanchez-Parra, C. C., Castano, D., Yassin, L. & Vasquez, G. Regulatory B cells and mechanisms. Int. Rev. Immunol. 35, 156–176 (2016).

    CAS  PubMed  Google Scholar 

  295. Pyzik, M. & Piccirillo, C. A. TGF-β1 modulates Foxp3 expression and regulatory activity in distinct CD4+ T cell subsets. J. Leukoc. Biol. 82, 335–346 (2007).

    CAS  PubMed  Google Scholar 

  296. Yuan, X. L. et al. Gastric cancer cells induce human CD4+ Foxp3+ regulatory T cells through the production of TGF-β1. World J. Gastroenterol. 17, 2019–2027 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  297. Shi, Y. et al. Extracellular vesicles from gastric cancer cells induce PD-L1 expression on neutrophils to suppress T-cell immunity. Front. Oncol. 10, 629 (2020).

    PubMed  PubMed Central  Google Scholar 

  298. Whiteside, T. L. Exosomes and tumor-mediated immune suppression. J. Clin. Invest. 126, 1216–1223 (2016).

    PubMed  PubMed Central  Google Scholar 

  299. Buret, A. G., Fedwick, J. P. & Flynn, A. N. Host epithelial interactions with Helicobacter pylori: a role for disrupted gastric barrier function in the clinical outcome of infection? Can. J. Gastroenterol. 19, 543–552 (2005).

    PubMed  Google Scholar 

  300. Fedwick, J. P., Lapointe, T. K., Meddings, J. B., Sherman, P. M. & Buret, A. G. Helicobacter pylori activates myosin light-chain kinase to disrupt claudin-4 and claudin-5 and increase epithelial permeability. Infect. Immun. 73, 7844–7852 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  301. Wroblewski, L. E., Peek, R. M. Jr & Wilson, K. T. Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin. Microbiol. Rev. 23, 713–739 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  302. Voland, P. et al. Interactions among the seven Helicobacter pylori proteins encoded by the urease gene cluster. Am. J. Physiol. Gastrointest. Liver Physiol. 284, G96–G106 (2003).

    CAS  PubMed  Google Scholar 

  303. Rathinavelu, S., Kao, J. Y., Zavros, Y. & Merchant, J. L. Helicobacter pylori outer membrane protein 18 (Hp1125) induces dendritic cell maturation and function. Helicobacter 10, 424–432 (2005).

    CAS  PubMed  Google Scholar 

  304. Hafsi, N. et al. Human dendritic cells respond to Helicobacter pylori, promoting NK cell and Th1-effector responses in vitro. J. Immunol. 173, 1249–1257 (2004).

    CAS  PubMed  Google Scholar 

  305. Banchereau, J. et al. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767–811 (2000).

    CAS  PubMed  Google Scholar 

  306. Guiney, D. G., Hasegawa, P. & Cole, S. P. Helicobacter pylori preferentially induces interleukin 12 (IL-12) rather than IL-6 or IL-10 in human dendritic cells. Infect. Immun. 71, 4163–4166 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  307. Kranzer, K. et al. Induction of maturation and cytokine release of human dendritic cells by Helicobacter pylori. Infect. Immun. 72, 4416–4423 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  308. Colonna, M., Trinchieri, G. & Liu, Y. J. Plasmacytoid dendritic cells in immunity. Nat. Immunol. 5, 1219–1226 (2004).

    CAS  PubMed  Google Scholar 

  309. Blaser, N., Backert, S. & Pachathundikandi, S. K. Immune cell signaling by Helicobacter pylori: impact on gastric pathology. Adv. Exp. Med. Biol. 1149, 77–106 (2019).

    CAS  PubMed  Google Scholar 

  310. Miyara, M. et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30, 899–911 (2009).

    CAS  PubMed  Google Scholar 

  311. Sakaguchi, S., Miyara, M., Costantino, C. M. & Hafler, D. A. FOXP3+ regulatory T cells in the human immune system. Nat. Rev. Immunol. 10, 490–500 (2010).

    CAS  PubMed  Google Scholar 

  312. Nagase, H. et al. ICOS(+) Foxp3(+) TILs in gastric cancer are prognostic markers and effector regulatory T cells associated with Helicobacter pylori. Int. J. Cancer 140, 686–695 (2017).

    CAS  PubMed  Google Scholar 

  313. Oya, Y., Hayakawa, Y. & Koike, K. Tumor microenvironment in gastric cancers. Cancer Sci. 111, 2696–2707 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  314. Gabrilovich, D. I., Ostrand-Rosenberg, S. & Bronte, V. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12, 253–268 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  315. Ren, W. et al. Circulating and tumor-infiltrating arginase 1-expressing cells in gastric adenocarcinoma patients were mainly immature and monocytic myeloid-derived suppressor cells. Sci. Rep. 10, 8056 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  316. Condamine, T. et al. Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aaf8943 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  317. Nan, J. et al. Endoplasmic reticulum stress induced LOX-1(+) CD15(+) polymorphonuclear myeloid-derived suppressor cells in hepatocellular carcinoma. Immunology 154, 144–155 (2018).

    CAS  PubMed  Google Scholar 

  318. Tavukcuoglu, E. et al. Human splenic polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) are strategically located immune regulatory cells in cancer. Eur. J. Immunol. 50, 2067–2074 (2020).

    CAS  PubMed  Google Scholar 

  319. Condamine, T., Mastio, J. & Gabrilovich, D. I. Transcriptional regulation of myeloid-derived suppressor cells. J. Leukoc. Biol. 98, 913–922 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  320. Karin, N. The development and homing of myeloid-derived suppressor cells: from a two-stage model to a multistep narrative. Front. Immunol. 11, 557586 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  321. Huang, G. et al. Indoleamine 2,3-dioxygenase (IDO) downregulates the cell surface expression of the CD4 molecule. Int. J. Mol. Sci. 13, 10863–10879 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  322. Zhao, Q. et al. Activated CD69+ T cells foster immune privilege by regulating IDO expression in tumor-associated macrophages. J. Immunol. 188, 1117–1124 (2012).

    CAS  PubMed  Google Scholar 

  323. Petersen, C. P. et al. Macrophages promote progression of spasmolytic polypeptide-expressing metaplasia after acute loss of parietal cells. Gastroenterology 146, 1727–1738.e8 (2014).

    CAS  PubMed  Google Scholar 

  324. De Salvo, C. et al. Interleukin 33 triggers early eosinophil-dependent events leading to metaplasia in a chronic model of gastritis-prone mice. Gastroenterology 160, 302–316.e7 (2021).

    PubMed  Google Scholar 

  325. Kielbassa, K., Vegna, S., Ramirez, C. & Akkari, L. Understanding the origin and diversity of macrophages to tailor their targeting in solid cancers. Front. Immunol. 10, 2215 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  326. Marvel, D. & Gabrilovich, D. I. Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. J. Clin. Invest. 125, 3356–3364 (2015).

    PubMed  PubMed Central  Google Scholar 

  327. Ugel, S., De Sanctis, F., Mandruzzato, S. & Bronte, V. Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophages. J. Clin. Invest. 125, 3365–3376 (2015).

    PubMed  PubMed Central  Google Scholar 

  328. Owyang, S. Y., Luther, J., Owyang, C. C., Zhang, M. & Kao, J. Y. Helicobacter pylori DNA’s anti-inflammatory effect on experimental colitis. Gut Microbes 3, 168–171 (2012).

    PubMed  PubMed Central  Google Scholar 

  329. Murdoch, C., Muthana, M., Coffelt, S. B. & Lewis, C. E. The role of myeloid cells in the promotion of tumour angiogenesis. Nat. Rev. Cancer 8, 618–631 (2008).

    CAS  PubMed  Google Scholar 

  330. Shaked, Y. & Voest, E. E. Bone marrow derived cells in tumor angiogenesis and growth: are they the good, the bad or the evil? Biochim. Biophys. Acta 1796, 1–4 (2009).

    CAS  PubMed  Google Scholar 

  331. Venneri, M. A. et al. Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer. Blood 109, 5276–5285 (2007).

    CAS  PubMed  Google Scholar 

  332. Lewis, C. E., De Palma, M. & Naldini, L. Tie2-expressing monocytes and tumor angiogenesis: regulation by hypoxia and angiopoietin-2. Cancer Res. 67, 8429–8432 (2007).

    CAS  PubMed  Google Scholar 

  333. Teal, E., Dua-Awereh, M., Hirshorn, S. T. & Zavros, Y. Role of metaplasia during gastric regeneration. Am. J. Physiol. Cell Physiol. 319, C947–C954 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  334. Holokai, L. et al. Murine- and human-derived autologous organoid/immune cell co-cultures as pre-clinical models of pancreatic ductal adenocarcinoma. Cancers (Basel) https://doi.org/10.3390/cancers12123816 (2020).

    Article  Google Scholar 

  335. Rojas, A., Araya, P., Gonzalez, I. & Morales, E. Gastric tumor microenvironment. Adv. Exp. Med. Biol. 1226, 23–35 (2020).

    CAS  PubMed  Google Scholar 

  336. Lenti, M. V. et al. Autoimmune gastritis. Nat. Rev. Dis. Prim. 6, 56 (2020).

    PubMed  Google Scholar 

  337. Mahmud, N. et al. The incidence of neoplasia in patients with autoimmune metaplastic atrophic gastritis: a renewed call for surveillance. Ann. Gastroenterol. 32, 67–72 (2019).

    PubMed  Google Scholar 

  338. Terao, S. et al. Multicenter study of autoimmune gastritis in Japan: clinical and endoscopic characteristics. Dig. Endosc. 32, 364–372 (2020).

    PubMed  Google Scholar 

  339. Waldum, H. & Mjones, P. G. Correct identification of cell of origin may explain many aspects of cancer: the role of neuroendocrine cells as exemplified from the stomach. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21165751 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  340. Dockray, G. J., Moore, A., Varro, A. & Pritchard, D. M. Gastrin receptor pharmacology. Curr. Gastroenterol. Rep. 14, 453–459 (2012).

    PubMed  Google Scholar 

  341. D’Elios, M. M. et al. H(+),K(+)-atpase (proton pump) is the target autoantigen of Th1-type cytotoxic T cells in autoimmune gastritis. Gastroenterology 120, 377–386 (2001).

    PubMed  Google Scholar 

  342. De Re, V. et al. Polymorphism in toll-like receptors and Helicobacter pylori motility in autoimmune atrophic gastritis and gastric cancer. Cancers (Basel) https://doi.org/10.3390/cancers11050648 (2019). This article describes the role of TLRs in polarizing the immune microenvironment prior to GAC.

    Article  Google Scholar 

  343. Tsuboi, M. et al. Distinct features of autoimmune gastritis in patients with open-type chronic gastritis in Japan. Biomedicines https://doi.org/10.3390/biomedicines8100419 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  344. Notsu, T. et al. Prevalence of autoimmune gastritis in individuals undergoing medical checkups in Japan. Intern. Med. 58, 1817–1823 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Public Service Grants R01 DK118563 (PI: J.L.M.), 5U19AI11649105 (PIs: A. A. Weiss and J. M. Wells; Project Leader 1: Y.Z.), R01DK083402-10 (PI: Y.Z.) and NCI P30CA023074 and U54CA143924. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors also sincerely thank O. Q. Merchant at the University of Michigan for her assistance with the figures.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Juanita L. Merchant.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Jaffer Ajani, Elizabeth Smyth, Hiroyoshi Nishikawa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zavros, Y., Merchant, J.L. The immune microenvironment in gastric adenocarcinoma. Nat Rev Gastroenterol Hepatol 19, 451–467 (2022). https://doi.org/10.1038/s41575-022-00591-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-022-00591-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing