Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The inflammatory pathogenesis of colorectal cancer

Abstract

The mutational landscape of colorectal cancer (CRC) does not enable predictions to be made about the survival of patients or their response to therapy. Instead, studying the polarization and activation profiles of immune cells and stromal cells in the tumour microenvironment has been shown to be more informative, thus making CRC a prototypical example of the importance of an inflammatory microenvironment for tumorigenesis. Here, we review our current understanding of how colon cancer cells interact with their microenvironment, comprised of immune cells, stromal cells and the intestinal microbiome, to suppress or escape immune responses and how inflammatory processes shape the immune pathogenesis of CRC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of tumour initiation and promotion in colorectal cancer.
Fig. 2: The inflammatory environment of colorectal cancer.
Fig. 3: The roles of the microbiome and mycobiome in colorectal cancer.

Similar content being viewed by others

References

  1. Miller, K. D. et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin. 69, 363–385 (2019).

    Article  PubMed  Google Scholar 

  2. Fearon, E. R. Molecular genetics of colorectal cancer. Annu. Rev. Pathol. 6, 479–507 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Shen, L. et al. Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proc. Natl Acad. Sci. USA 104, 18654–18659 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schonkeren, S. L., Thijssen, M. S., Vaes, N., Boesmans, W. & Melotte, V. The emerging role of nerves and glia in colorectal cancer. Cancers 13, 152 (2021).

    Article  CAS  PubMed Central  Google Scholar 

  5. Pages, F. et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N. Engl. J. Med. 353, 2654–2666 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Fridman, W. H., Pages, F., Sautes-Fridman, C. & Galon, J. The immune contexture in human tumours: impact on clinical outcome. Nat. Rev. Cancer 12, 298–306 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Pages, F. et al. International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet 391, 2128–2139 (2018). This paper establishes the concept of an immunoscore for tumours and shows that it is superior to the AJCC/UICC TNM classification in terms of predicting prognosis.

    Article  PubMed  Google Scholar 

  8. Anitei, M. G. et al. Prognostic and predictive values of the immunoscore in patients with rectal cancer. Clin. Cancer Res. 20, 1891–1899 (2014).

    Article  PubMed  Google Scholar 

  9. Bruni, D., Angell, H. K. & Galon, J. The immune contexture and immunoscore in cancer prognosis and therapeutic efficacy. Nat. Rev. Cancer 20, 662–680 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Malka, D. et al. Immune scores in colorectal cancer: where are we? Eur. J. Cancer 140, 105–118 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Sautes-Fridman, C., Petitprez, F., Calderaro, J. & Fridman, W. H. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat. Rev. Cancer 19, 307–325 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guinney, J. et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356 (2015). This study establishes comprehensive molecular subtypes of CRC based on transcriptomic data and shows that patients with stroma-rich tumours have poorer survival.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Calon, A. et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat. Genet. 47, 320–329 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Isella, C. et al. Stromal contribution to the colorectal cancer transcriptome. Nat. Genet. 47, 312–319 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Calon, A. et al. Dependency of colorectal cancer on a TGF-beta-driven program in stromal cells for metastasis initiation. Cancer Cell 22, 571–584 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tauriello, D. V. F. et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554, 538–543 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Greten, F. R. & Grivennikov, S. I. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity 51, 27–41 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ganesh, K. & Massague, J. Targeting metastatic cancer. Nat. Med. 27, 34–44 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423–1437 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883–899 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schafer, M. & Werner, S. Cancer as an overhealing wound: an old hypothesis revisited. Nat. Rev. Mol. Cell. Biol. 9, 628–638 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Newmark, H. L. et al. Western-style diet-induced colonic tumors and their modulation by calcium and vitamin D in C57Bl/6 mice: a preclinical model for human sporadic colon cancer. Carcinogenesis 30, 88–92 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Meira, L. B. et al. DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. J. Clin. Invest. 118, 2516–2525 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Canli, O. et al. Myeloid cell-derived reactive oxygen species induce epithelial mutagenesis. Cancer Cell 32, 869–883 e865 (2017). The first genetic in vivo evidence that reactive oxygen species derived from inflammatory cells can trigger DNA damage in epithelial cells.

    Article  CAS  PubMed  Google Scholar 

  26. Janney, A., Powrie, F. & Mann, E. H. Host-microbiota maladaptation in colorectal cancer. Nature 585, 509–517 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Beyaz, S. et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature 531, 53–58 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schmitt, M. et al. Paneth cells respond to inflammation and contribute to tissue regeneration by acquiring stem-like features through SCF/c-Kit signaling. Cell Rep. 24, 2312–2328.e7 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Pesic, M. & Greten, F. R. Inflammation and cancer: tissue regeneration gone awry. Curr. Opin. Cell Biol. 43, 55–61 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Schwitalla, S. et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 152, 25–38 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Eckmann, L. et al. Opposing functions of IKKβ during acute and chronic intestinal inflammation. Proc. Natl Acad. Sci. USA 105, 15058–15063 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Greten, F. R. et al. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 285–296 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Nenci, A. et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446, 557–561 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Shaked, H. et al. Chronic epithelial NF-κB activation accelerates APC loss and intestinal tumor initiation through iNOS up-regulation. Proc. Natl Acad. Sci. USA 109, 14007–14012 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bollrath, J. & Greten, F. R. IKK/NF-κB and STAT3 pathways: central signalling hubs in inflammation-mediated tumour promotion and metastasis. EMBO Rep. 10, 1314–1319 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Grivennikov, S. et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15, 103–113 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Putoczki, T. L. et al. Interleukin-11 is the dominant IL-6 family cytokine during gastrointestinal tumorigenesis and can be targeted therapeutically. Cancer Cell 24, 257–271 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Gronke, K. et al. Interleukin-22 protects intestinal stem cells against genotoxic stress. Nature 566, 249–253 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ullman, T. A. & Itzkowitz, S. H. Intestinal inflammation and cancer. Gastroenterology 140, 1807–1816 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Cooks, T. et al. Mutant p53 prolongs NF-κB activation and promotes chronic inflammation and inflammation-associated colorectal cancer. Cancer Cell 23, 634–646 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schulz-Heddergott, R. et al. Therapeutic ablation of gain-of-function mutant p53 in colorectal cancer inhibits stat3-mediated tumor growth and invasion. Cancer Cell 34, 298–314.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kakiuchi, N. et al. Frequent mutations that converge on the NFKBIZ pathway in ulcerative colitis. Nature 577, 260–265 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Nanki, K. et al. Somatic inflammatory gene mutations in human ulcerative colitis epithelium. Nature 577, 254–259 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Colotta, F., Allavena, P., Sica, A., Garlanda, C. & Mantovani, A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30, 1073–1081 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Grivennikov, S. I. Inflammation and colorectal cancer: colitis-associated neoplasia. Semin. Immunopathol. 35, 229–244 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Li, J. et al. Temporal DNA methylation pattern and targeted therapy in colitis-associated cancer. Carcinogenesis 41, 235–244 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Jackstadt, R. et al. Epithelial NOTCH signaling rewires the tumor microenvironment of colorectal cancer to drive poor-prognosis subtypes and metastasis. Cancer Cell 36, 319–336.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Varga, J. et al. AKT-dependent NOTCH3 activation drives tumor progression in a model of mesenchymal colorectal cancer. J. Exp. Med. 217, e20191515 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang, D. & DuBois, R. N. Role of prostanoids in gastrointestinal cancer. J. Clin. Invest. 128, 2732–2742 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gabrilovich, D. I., Ostrand-Rosenberg, S. & Bronte, V. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12, 253–268 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Finetti, F. et al. Prostaglandin E2 and cancer: insight into tumor progression and immunity. Biology 9, 434 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  52. Bonavita, E. et al. Antagonistic inflammatory phenotypes dictate tumor fate and response to immune checkpoint blockade. Immunity 53, 1215–1229.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen, G. et al. Post-transcriptional gene regulation in colitis associated cancer. Front. Genet. 10, 585 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ma, Y. et al. Long non-coding RNA CCAL regulates colorectal cancer progression by activating Wnt/β-catenin signalling pathway via suppression of activator protein 2α. Gut 65, 1494–1504 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Li, X. L. et al. Long noncoding RNA PURPL suppresses basal p53 levels and promotes tumorigenicity in colorectal cancer. Cell. Rep. 20, 2408–2423 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rokavec, M. et al. Corrigendum. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J. Clin. Invest. 125, 1362 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Xue, J. et al. LncRNA AB073614 induces epithelial- mesenchymal transition of colorectal cancer cells via regulating the JAK/STAT3 pathway. Cancer Biomark 21, 849–858 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Ye, C. et al. A novel long non-coding RNA lnc-GNAT1-1 is low expressed in colorectal cancer and acts as a tumor suppressor through regulating RKIP-NF-κB-Snail circuit. J. Exp. Clin. Cancer Res. 35, 187 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Geng, H. et al. In inflamed intestinal tissues and epithelial cells, interleukin 22 signaling increases expression of H19 long noncoding RNA, which promotes mucosal regeneration. Gastroenterology 155, 144–155 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Kryczek, I. et al. IL-22+CD4+ T cells promote colorectal cancer stemness via STAT3 transcription factor activation and induction of the methyltransferase DOT1L. Immunity 40, 772–784 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rutz, S., Wang, X. & Ouyang, W. The IL-20 subfamily of cytokines–from host defence to tissue homeostasis. Nat. Rev. Immunol. 14, 783–795 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Zindl, C. L. et al. IL-22-producing neutrophils contribute to antimicrobial defense and restitution of colonic epithelial integrity during colitis. Proc. Natl Acad. Sci. USA 110, 12768–12773 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Grivennikov, S. I. et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491, 254–258 (2012). This study shows the link between activation of WNT signalling, intestinal barrier defects and the induction of inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dmitrieva-Posocco, O. et al. Cell-type-specific responses to interleukin-1 control microbial invasion and tumor-elicited inflammation in colorectal cancer. Immunity 50, 166–180.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schwitalla, S. et al. Loss of p53 in enterocytes generates an inflammatory microenvironment enabling invasion and lymph node metastasis of carcinogen-induced colorectal tumors. Cancer Cell 23, 93–106 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Jorgensen, I., Rayamajhi, M. & Miao, E. A. Programmed cell death as a defence against infection. Nat. Rev. Immunol. 17, 151–164 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kim, E. H., Wong, S. W. & Martinez, J. Programmed necrosis and disease:we interrupt your regular programming to bring you necroinflammation. Cell Death Differ. 26, 25–40 (2019).

    Article  PubMed  Google Scholar 

  68. Ammirante, M., Shalapour, S., Kang, Y., Jamieson, C. A. & Karin, M. Tissue injury and hypoxia promote malignant progression of prostate cancer by inducing CXCL13 expression in tumor myofibroblasts. Proc. Natl Acad. Sci. USA 111, 14776–14781 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Westendorf, A. M. et al. Hypoxia enhances immunosuppression by inhibiting CD4+ effector T cell function and promoting Treg activity. Cell Physiol. Biochem. 41, 1271–1284 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. Flavell, R. A., Sanjabi, S., Wrzesinski, S. H. & Licona-Limon, P. The polarization of immune cells in the tumour environment by TGFβ. Nat. Rev. Immunol. 10, 554–567 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Nakanishi, Y. et al. Simultaneous loss of both atypical protein kinase C genes in the intestinal epithelium drives serrated intestinal cancer by impairing immunosurveillance. Immunity 49, 1132–1147.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ziegler, P. K. et al. Mitophagy in intestinal epithelial cells triggers adaptive immunity during tumorigenesis. Cell 174, 88–101.e16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cerutti, A. The regulation of IgA class switching. Nat. Rev. Immunol. 8, 421–434 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shalapour, S. et al. Immunosuppressive plasma cells impede T-cell-dependent immunogenic chemotherapy. Nature 521, 94–98 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shalapour, S. et al. Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity. Nature 551, 340–345 (2017). References 74 and 75 highlight the role of B cells in tumorigenesis and therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Macpherson, A. J., Yilmaz, B., Limenitakis, J. P. & Ganal-Vonarburg, S. C. IgA function in relation to the intestinal microbiota. Annu. Rev. Immunol. 36, 359–381 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Mullins, C. S., Gock, M., Krohn, M. & Linnebacher, M. Human colorectal carcinoma infiltrating B lymphocytes are active secretors of the immunoglobulin isotypes A, G, and M. Cancers 11, 776 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  78. Ghiringhelli, F. & Fumet, J. D. Is there a place for immunotherapy for metastatic microsatellite stable colorectal cancer? Front. Immunol. 10, 1816 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Price, J. G. et al. CDKN1A regulates Langerhans cell survival and promotes Treg cell generation upon exposure to ionizing irradiation. Nat. Immunol. 16, 1060–1068 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sharma, P. & Allison, J. P. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161, 205–214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Diaz, L. A. Jr & Le, D. T. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 373, 1979 (2015).

    Article  PubMed  Google Scholar 

  83. Le, D. T. et al. Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: KEYNOTE-164. J. Clin. Oncol. 38, 11–19 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Le, D. T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ozcan, M., Janikovits, J., von Knebel Doeberitz, M. & Kloor, M. Complex pattern of immune evasion in MSI colorectal cancer. Oncoimmunology 7, e1445453 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Picard, E., Verschoor, C. P., Ma, G. W. & Pawelec, G. Relationships between immune landscapes, genetic subtypes and responses to immunotherapy in colorectal cancer. Front. Immunol. 11, 369 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Koliaraki, V., Pallangyo, C. K., Greten, F. R. & Kollias, G. Mesenchymal cells in colon cancer. Gastroenterology 152, 964–979 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Li, H. et al. Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat. Genet. 49, 708–718 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Ohlund, D. et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 214, 579–596 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lee, H. O. et al. Lineage-dependent gene expression programs influence the immune landscape of colorectal cancer. Nat. Genet. 52, 594–603 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Cassetta, L. et al. Human tumor-associated macrophage and monocyte transcriptional landscapes reveal cancer-specific reprogramming, biomarkers, and therapeutic targets. Cancer Cell 35, 588–602.e10 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mantovani, A., Marchesi, F., Malesci, A., Laghi, L. & Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14, 399–416 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bindea, G. et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39, 782–795 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Li, J. et al. Tumor-associated macrophage infiltration and prognosis in colorectal cancer: systematic review and meta-analysis. Int. J. Colorectal Dis. 35, 1203–1210 (2020).

    Article  PubMed  Google Scholar 

  95. Mola, S., Pandolfo, C., Sica, A. & Porta, C. The macrophages-microbiota interplay in colorectal cancer (CRC)-related inflammation: prognostic and therapeutic significance. Int. J. Mol. Sci. 21, 6866 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  96. Llosa, N. J. et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 5, 43–51 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Donadon, M. et al. Macrophage morphology correlates with single-cell diversity and prognosis in colorectal liver metastasis. J. Exp. Med. 217, e20191847 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mizuno, R. et al. The role of tumor-associated neutrophils in colorectal cancer. Int. J. Mol. Sci. 20, 529 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  99. Sagiv, J. Y. et al. Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep. 10, 562–573 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Shaul, M. E. et al. Tumor-associated neutrophils display a distinct N1 profile following TGFbeta modulation: a transcriptomics analysis of pro- vs. antitumor TANs. Oncoimmunology 5, e1232221 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Fridlender, Z. G. & Albelda, S. M. Tumor-associated neutrophils: friend or foe? Carcinogenesis 33, 949–955 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Andzinski, L. et al. Type I IFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human. Int. J. Cancer 138, 1982–1993 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Granot, Z. & Jablonska, J. Distinct functions of neutrophil in cancer and its regulation. Mediators Inflamm. 2015, 701067 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Richardson, J. J. R., Hendrickse, C., Gao-Smith, F. & Thickett, D. R. Neutrophil extracellular trap production in patients with colorectal cancer vitro. Int. J. Inflam. 2017, 4915062 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Masucci, M. T., Minopoli, M., Del Vecchio, S. & Carriero, M. V. The emerging role of neutrophil extracellular traps (NETs) in tumor progression and metastasis. Front. Immunol. 11, 1749 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Colangelo, T. et al. Friend or foe? The tumour microenvironment dilemma in colorectal cancer. Biochim. Biophys. Acta. Rev. Cancer 1867, 1–18 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. Jaillon, S. et al. Neutrophil diversity and plasticity in tumour progression and therapy. Nat. Rev. Cancer 20, 485–503 (2020).

    Article  CAS  PubMed  Google Scholar 

  108. Zitvogel, L., Pietrocola, F. & Kroemer, G. Nutrition, inflammation and cancer. Nat. Immunol. 18, 843–850 (2017).

    Article  CAS  PubMed  Google Scholar 

  109. Schulz, M. D. et al. High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity. Nature 514, 508–512 (2014). This study shows that diet-induced dysbiosis has a greater role than obesity in enhancing tumour progression by suppressing dendritic cell recruitment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Liu, W. et al. Diet- and genetically-induced obesity produces alterations in the microbiome, inflammation and Wnt pathway in the intestine of Apc(+/1638N) mice: comparisons and contrasts. J. Cancer 7, 1780–1790 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wunderlich, C. M. et al. Obesity exacerbates colitis-associated cancer via IL-6-regulated macrophage polarisation and CCL-20/CCR-6-mediated lymphocyte recruitment. Nat. Commun. 9, 1646 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Conroy, M. J., Dunne, M. R., Donohoe, C. L. & Reynolds, J. V. Obesity-associated cancer: an immunological perspective. Proc. Nutr. Soc. 75, 125–138 (2016).

    Article  PubMed  Google Scholar 

  113. James, B. R. et al. Diet-induced obesity alters dendritic cell function in the presence and absence of tumor growth. J. Immunol. 189, 1311–1321 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Wang, Z. et al. Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade. Nat. Med. 25, 141–151 (2019).

    Article  CAS  PubMed  Google Scholar 

  115. Albiges, L. et al. Body mass index and metastatic renal cell carcinoma: clinical and biological correlations. J. Clin. Oncol. 34, 3655–3663 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. McQuade, J. L. et al. Association of body-mass index and outcomes in patients with metastatic melanoma treated with targeted therapy, immunotherapy, or chemotherapy: a retrospective, multicohort analysis. Lancet Oncol. 19, 310–322 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  117. De Almeida, C. V., de Camargo, M. R., Russo, E. & Amedei, A. Role of diet and gut microbiota on colorectal cancer immunomodulation. World J. Gastroenterol. 25, 151–162 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Flemer, B. et al. Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut 66, 633–643 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Feng, Q. et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat. Commun. 6, 6528 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Martin, H. M. et al. Enhanced Escherichia coli adherence and invasion in Crohn’s disease and colon cancer. Gastroenterology 127, 80–93 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Wang, J. & Jia, H. Metagenome-wide association studies: fine-mining the microbiome. Nat. Rev. Microbiol. 14, 508–522 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Wilson, M. R. et al. The human gut bacterial genotoxin colibactin alkylates DNA. Science 363, eaar7785 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Arthur, J. C. et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338, 120–123 (2012). This study demonstrates the link between intestinal inflammation and the expansion of microbial populations with genotoxic properties.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Pleguezuelos-Manzano, C. et al. Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature 580, 269–273 (2020). This paper reports that bacteria can induce the same DNA mutation profile ex vivo as that found in patients with CRC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kadosh, E. et al. The gut microbiome switches mutant p53 from tumour-suppressive to oncogenic. Nature 586, 133–138 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kasai, C. et al. Comparison of human gut microbiota in control subjects and patients with colorectal carcinoma in adenoma: Terminal restriction fragment length polymorphism and next-generation sequencing analyses. Oncol. Rep. 35, 325–333 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Viljoen, K. S., Dakshinamurthy, A., Goldberg, P. & Blackburn, J. M. Quantitative profiling of colorectal cancer-associated bacteria reveals associations between fusobacterium spp., enterotoxigenic Bacteroides fragilis (ETBF) and clinicopathological features of colorectal cancer. PLoS ONE 10, e0119462 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Mima, K. et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut 65, 1973–1980 (2016).

    Article  CAS  PubMed  Google Scholar 

  129. Rubinstein, M. R. et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe 14, 195–206 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kostic, A. D., Chun, E., Meyerson, M. & Garrett, W. S. Microbes and inflammation in colorectal cancer. Cancer Immunol. Res. 1, 150–157 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Gur, C. et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 42, 344–355 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Casasanta, M. A. et al. Fusobacterium nucleatum host-cell binding and invasion induces IL-8 and CXCL1 secretion that drives colorectal cancer cell migration. Sci. Signal. 13, eaba9157 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hernandez-Luna, M. A., Lopez-Briones, S. & Luria-Perez, R. The four horsemen in colon cancer. J. Oncol. 2019, 5636272 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Dejea, C. M. et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science 359, 592–597 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Chung, L. et al. Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells. Cell Host Microbe 23, 421 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Chen, H. et al. Lactobacillus plantarum LPOnlly alters the gut flora and attenuates colitis by inducing microbiome alteration in interleukin10 knockout mice. Mol. Med. Rep. 16, 5979–5985 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Rooks, M. G. & Garrett, W. S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 16, 341–352 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Chang, P. V., Hao, L., Offermanns, S. & Medzhitov, R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl Acad. Sci. USA 111, 2247–2252 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Tao, R. et al. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat. Med. 13, 1299–1307 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Wu, S. E. et al. Microbiota-derived metabolite promotes HDAC3 activity in the gut. Nature 586, 108–112 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zitvogel, L., Ma, Y., Raoult, D., Kroemer, G. & Gajewski, T. F. The microbiome in cancer immunotherapy: Diagnostic tools and therapeutic strategies. Science 359, 1366–1370 (2018).

    Article  CAS  PubMed  Google Scholar 

  142. Roberti, M. P. et al. Chemotherapy-induced ileal crypt apoptosis and the ileal microbiome shape immunosurveillance and prognosis of proximal colon cancer. Nat. Med. 26, 919–931 (2020).

    Article  CAS  PubMed  Google Scholar 

  143. Hallen-Adams, H. E. & Suhr, M. J. Fungi in the healthy human gastrointestinal tract. Virulence 8, 352–358 (2017).

    Article  CAS  PubMed  Google Scholar 

  144. Liew, W. P. & Mohd-Redzwan, S. Mycotoxin: its impact on gut health and microbiota. Front. Cell Infect. Microbiol. 8, 60 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Kusunoki, M. et al. Long-term administration of the fungus toxin, sterigmatocystin, induces intestinal metaplasia and increases the proliferative activity of PCNA, p53, and MDM2 in the gastric mucosa of aged Mongolian gerbils. Environ. Health Prev. Med. 16, 224–231 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Misumi, J. The mechanisms of gastric cancer development produced by the combination of Helicobacter pylori with Sterigmatocystin, a mycotoxin. Nihon. Rinsho 62, 1377–1386 (2004).

    PubMed  Google Scholar 

  147. Ott, S. J. et al. Fungi and inflammatory bowel diseases: alterations of composition and diversity. Scand. J. Gastroenterol. 43, 831–841 (2008).

    Article  CAS  PubMed  Google Scholar 

  148. Leonardi, I. et al. CX3CR1+ mononuclear phagocytes control immunity to intestinal fungi. Science 359, 232–236 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Shao, T. Y. et al. Commensal Candida albicans positively calibrates systemic Th17 immunological responses. Cell Host Microbe 25, 404–417.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Malik, A. et al. SYK-CARD9 signaling axis promotes gut fungi-mediated inflammasome activation to restrict colitis and colon cancer. Immunity 49, 515–530.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wang, T. et al. The adaptor protein CARD9 protects against colon cancer by restricting mycobiota-mediated expansion of myeloid-derived suppressor cells. Immunity 49, 504–514.e4 (2018). References 150 and 151 highlight the importance of fungi for the development of CRC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Zhang, L. et al. Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer. Cell 181, 442–459.e29 (2020).

    Article  CAS  PubMed  Google Scholar 

  153. Li, C. et al. Integrated omics of metastatic colorectal cancer. Cancer Cell 38, 734–747.e9 (2020).

    Article  CAS  PubMed  Google Scholar 

  154. Nusinow, D. P. et al. Quantitative proteomics of the cancer cell line encyclopedia. Cell 180, 387–402.e16 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Patel, J. N., Fong, M. K. & Jagosky, M. Colorectal cancer biomarkers in the era of personalized medicine. J. Pers. Med. 9, 3 (2019).

    Article  PubMed Central  Google Scholar 

  156. Devarasetty, M., Skardal, A., Cowdrick, K., Marini, F. & Soker, S. Bioengineered submucosal organoids for in vitro modeling of colorectal cancer. Tissue Eng. Part A 23, 1026–1041 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Piccoli, M. et al. Decellularized colorectal cancer matrix as bioactive microenvironment for in vitro 3D cancer research. J. Cell Physiol. 233, 5937–5948 (2018).

    Article  CAS  PubMed  Google Scholar 

  158. Aleman, J. & Skardal, A. A multi-site metastasis-on-a-chip microphysiological system for assessing metastatic preference of cancer cells. Biotechnol. Bioeng. 116, 936–944 (2019).

    Article  CAS  PubMed  Google Scholar 

  159. Neal, J. T. et al. Organoid modeling of the tumor immune microenvironment. Cell 175, 1972–1988.e16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Dijkstra, K. K. et al. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell 174, 1586–1598.e12 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Manguso, R. T. et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547, 413–418 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Papanikolaou, A., Wang, Q. S., Papanikolaou, D., Whiteley, H. E. & Rosenberg, D. W. Sequential and morphological analyses of aberrant crypt foci formation in mice of differing susceptibility to azoxymethane-induced colon carcinogenesis. Carcinogenesis 21, 1567–1572 (2000).

    Article  CAS  PubMed  Google Scholar 

  163. Neufert, C., Becker, C. & Neurath, M. F. An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression. Nat. Protoc. 2, 1998–2004 (2007).

    Article  CAS  PubMed  Google Scholar 

  164. Moser, A. R. et al. Homozygosity for the Min allele of Apc results in disruption of mouse development prior to gastrulation. Dev. Dyn. 203, 422–433 (1995).

    Article  CAS  PubMed  Google Scholar 

  165. Halberg, R. B. et al. Tumorigenesis in the multiple intestinal neoplasia mouse: redundancy of negative regulators and specificity of modifiers. Proc. Natl Acad. Sci. USA 97, 3461–3466 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Hinoi, T. et al. Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation. Cancer Res. 67, 9721–9730 (2007).

    Article  CAS  PubMed  Google Scholar 

  167. Boutin, A. T. et al. Oncogenic Kras drives invasion and maintains metastases in colorectal cancer. Genes Dev. 31, 370–382 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Drost, J. et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature 521, 43–47 (2015).

    Article  CAS  PubMed  Google Scholar 

  169. Roper, J. et al. In vivo genome editing and organoid transplantation models of colorectal cancer and metastasis. Nat. Biotechnol. 35, 569–576 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. O’Rourke, K. P. et al. Transplantation of engineered organoids enables rapid generation of metastatic mouse models of colorectal cancer. Nat. Biotechnol. 35, 577–582 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Work in the laboratory of F.R.G. is supported by institutional funds from the Georg-Speyer-Haus, by the LOEWE Center Frankfurt Cancer Institute (FCI) funded by the Hessen State Ministry for Higher Education, Research and the Arts [III L 5 – 519/03/03.001 – (0015)], and by the Deutsche Forschungsgemeinschaft (FOR2438: Gr1916/11-1; SFB 815, 1177 and 1292 as well as GRK 2336). The Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, is funded jointly by the German Federal Ministry of Health and the Ministry of Higher Education, Research and the Arts of the State of Hessen (HMWK).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Florian R. Greten.

Ethics declarations

Competing interests

The authors declare no competing interests

Additional information

Peer review information

Nature Reviews Immunology thanks Y. Ben-Neriah and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Stage 4 colorectal cancer

The stage at which the colorectal cancer has spread to other parts of the body such as lung, liver, abdominal wall, ovary or distant lymph nodes.

Aneuploidy

The presence of an abnormal number of chromosomes in a cell.

Loss of heterozygosity

Describes a cross-chromosomal event that results in loss of the entire gene and the surrounding chromosomal region.

Microsatellite instability

(MSI). The phenotypic indication of non-functional DNA mismatch repair that results in genetic hypermutability.

Mismatch repair

A cellular system that recognizes and corrects DNA errors resulting from wrongly paired DNA bases that occur, for example, during DNA replication, DNA recombination or DNA damage.

Serrated pathway

An alternative pathway of genetic alterations occurring independently of APC mutations that is often initiated by the activation of the RAS–RAF–MEK–ERK–MAPK axis and is frequently characterized by a CpG island methylation pathway phenotype and subsequently by high-level DNA microsatellite instability, especially when located proximally and associated with BRAF mutations.

AJCC/UICC TNM classification

The AJCC/UICC staging system is a classification system developed by the American Joint Committee on Cancer and the Union Internationale Contre le Cancer for describing the extent of disease progression in patients with cancer using a system that scores for tumour size, lymph nodes affected and the presence of metastases.

Myeloid-derived suppressor cells

(MDSCs). A heterogeneous group of cells from the myeloid lineage that have immunosuppressive properties.

Immune-checkpoint blockade

A therapeutic concept that aims to block negative feedback signalling to immune cells to enhance an immune response against tumours.

AOM/DSS model

A mouse model of inflammation-associated colorectal cancer, in which intestinal tumorigenesis is triggered by injection of the mutagen azoxymethane (AOM) and subsequent cycles of inflammation induced by dextran sulfate sodium (DSS).

WNT pathway

An evolutionarily conserved pathway that is important for embryonic development and carcinogenesis, which is activated in more than 90% of colorectal cancers owing to mutations in its signalling components.

Mitophagy

Selective degradation of mitochondria by autophagy.

Immunoediting

Evolution of tumours with the result that tumour cells are no longer effectively recognized and suppressed by the immune system, resulting in the emergence of immune-resistant tumour cell variants.

Apc-mutant models

Mouse models of intestinal cancer in which tumorigenesis is driven by a loss of function of APC, resulting in the hyperactivation of the WNT pathway and the hyperproliferation of affected cells.

Apc Min/+ mouse model

A mouse model of intestinal cancer in which the Apc gene has a truncation mutation at codon 850, resulting in multiple intestinal neoplasia (Min).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmitt, M., Greten, F.R. The inflammatory pathogenesis of colorectal cancer. Nat Rev Immunol 21, 653–667 (2021). https://doi.org/10.1038/s41577-021-00534-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-021-00534-x

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer