Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is predicted to be the second most common cause of death within the next 10 years. The prognosis for this disease is poor despite diagnostic progress and new chemotherapeutic regimens. The oncogenic KRAS mutation is the major event in pancreatic cancer; it confers permanent activation of the KRAS protein, which acts as a molecular switch to activate various intracellular signalling pathways and transcription factors inducing cell proliferation, migration, transformation and survival. Several laboratory methods have been developed to detect KRAS mutations in biological samples, including digital droplet PCR (which displays high sensitivity). Clinical studies have revealed that a KRAS mutation assay in fine-needle aspiration material combined with cytopathology increases the sensitivity, accuracy and negative predictive value of cytopathology for a positive diagnosis of pancreatic cancer. In addition, the presence of KRAS mutations in serum and plasma (liquid biopsies) correlates with a worse prognosis. The presence of mutated KRAS can also have therapeutic implications, whether at the gene level per se, during its post-translational maturation, interaction with nucleotides and after activation of the various oncogenic signals. Further pharmacokinetic and toxicological studies on new molecules are required, especially small synthetic molecules, before they can be used in the therapeutic arsenal for pancreatic ductal adenocarcinoma.

Key points

  • The major genetic event in pancreatic ductal adenocarcinoma is the activating point mutation of the KRAS oncogene; the KRAS protein becomes permanently activated, consequently maintaining the cellular processes of proliferation, transformation, invasion and survival.

  • Detection of KRAS mutations can be performed in a variety of biological samples including fresh and fixed tumour tissue or biopsy samples, fine-needle aspiration materials and cytological samples, and in total blood and plasma.

  • The KRAS mutation assay can be combined with endoscopic ultrasonography-guided cytopathology to increase the sensitivity, the negative predictive value and accuracy of cytopathology alone for the positive diagnosis of pancreatic cancer and its differential diagnosis with chronic pancreatitis.

  • The presence of mutated KRAS correlates with a worse prognosis for patients with pancreatic cancer whether or not they undergo curative surgery. KRAS mutation assays could provide important predictive information on tumour progression and recurrence.

  • Mutated KRAS might be targeted therapeutically, especially at the gene level and during its post-translational maturation; the interactions between KRAS proteins and adaptor proteins or nucleotides and downstream oncogenic signals might also be targeted.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Activation of KRAS protein and its downstream intracellular pathways.
Fig. 2: KRAS mediates tumour cell reprogramming and interactions with the surrounding microenvironment.
Fig. 3: Different therapeutic strategies targeting the KRAS gene and KRAS protein.

References

  1. 1.

    Rahib, L. et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 74, 2913–2921 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Are, C. et al. Predictive global trends in the incidence and mortality of pancreatic cancer based on geographic location, socio-economic status, and demographic shift. J. Surg. Oncol. 114, 736–742 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Bouvier, A.-M. et al. Focus on an unusual rise in pancreatic cancer incidence in France. Int. J. Epidemiol 46, 1764–1772 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Ryan, D. P., Hong, T. S. & Bardeesy, N. Pancreatic adenocarcinoma. N. Engl. J. Med. 371, 1039–1049 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Ducreux, M., Boige, V. & Malka, D. Treatment of advanced pancreatic cancer. Semin. Oncol. 34, S25–S30 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Neoptolemos, J. P. et al. Therapeutic developments in pancreatic cancer: current and future perspectives. Nat. Rev. Gastroenterol. Hepatol. 15, 333–348 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Conroy, T. et al. FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer. N. Engl. J. Med. 379, 2395–2406 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Klemm, F. & Joyce, J. A. Microenvironmental regulation of therapeutic response in cancer. Trends Cell Biol. 25, 198–213 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Bijlsma, M. F., Sadanandam, A., Tan, P. & Vermeulen, L. Molecular subtypes in cancers of the gastrointestinal tract. Nat. Rev. Gastroenterol. Hepatol. 14, 333–342 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Witkiewicz, A. K. et al. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat. Commun. 6, 6744 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Bailey, P. et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531, 47–52 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Puleo, F. et al. Stratification of pancreatic ductal adenocarcinomas based on tumor and microenvironment features. Gastroenterology 155, 1999–2013.e3 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Delpu, Y. et al. Genetic and epigenetic alterations in pancreatic carcinogenesis. Curr. Genomics 12, 15–24 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Bournet, B., Buscail, C., Muscari, F., Cordelier, P. & Buscail, L. Targeting KRAS for diagnosis, prognosis, and treatment of pancreatic cancer: hopes and realities. Eur. J. Cancer 54, 75–83 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Haigis, K. M. KRAS alleles: the devil is in the detail. Trends Cancer 3, 686–697 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Sinicrope, F. A., Okamoto, K., Kasi, P. M. & Kawakami, H. Molecular biomarkers in the personalized treatment of colorectal cancer. Clin. Gastroenterol. Hepatol. 14, 651–658 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Lindsay, C. R., Jamal-Hanjani, M., Forster, M. & Blackhall, F. KRAS: reasons for optimism in lung cancer. Eur. J. Cancer 99, 20–27 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Fuccio, L. et al. The role of K-ras gene mutation analysis in EUS-guided FNA cytology specimens for the differential diagnosis of pancreatic solid masses: a meta-analysis of prospective studies. Gastrointest. Endosc. 78, 596–608 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    di Magliano, M. P. & Logsdon, C. D. Roles for KRAS in pancreatic tumor development and progression. Gastroenterology 144, 1220–1229 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Zeitouni, D., Pylayeva-Gupta, Y., Der, C. J. & Bryant, K. L. KRAS mutant pancreatic cancer: no lone path to an effective treatment. Cancers 8, E45 (2016).

    Article  CAS  Google Scholar 

  21. 21.

    Cox, A. D., Der, C. J. & Philips, M. R. Targeting RAS membrane association: back to the future for anti-RAS drug discovery? Clin. Cancer Res. 21, 1819–1827 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Jonckheere, N., Vasseur, R. & Van Seuningen, I. The cornerstone K-RAS mutation in pancreatic adenocarcinoma: from cell signaling network, target genes, biological processes to therapeutic targeting. Crit. Rev. Oncol. Hematol. 111, 7–19 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Löhr, M., Klöppel, G., Maisonneuve, P., Lowenfels, A. B. & Lüttges, J. Frequency of K-ras mutations in pancreatic intraductal neoplasias associated with pancreatic ductal adenocarcinoma and chronic pancreatitis: a meta-analysis. Neoplasia 7, 17–23 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Hingorani, S. R. et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4, 437–450 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Hingorani, S. R. et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7, 469–483 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Bardeesy, N. et al. Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev. 20, 3130–3146 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Bardeesy, N. et al. Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proc. Natl Acad. Sci. USA 103, 5947–5952 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Siveke, J. T. et al. Concomitant pancreatic activation of Kras(G12D) and Tgfa results in cystic papillary neoplasms reminiscent of human IPMN. Cancer Cell 12, 266–279 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Aguirre, A. J. et al. Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev. 17, 3112–3126 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Izeradjene, K. et al. Kras(G12D) and Smad4/Dpc4 haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive adenocarcinoma of the pancreas. Cancer Cell 11, 229–243 (2007).

    Article  CAS  Google Scholar 

  31. 31.

    Guerra, C. & Barbacid, M. Genetically engineered mouse models of pancreatic adenocarcinoma. Mol. Oncol 7, 232–247 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Guerra, C. et al. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 11, 291–302 (2007).

    Article  CAS  Google Scholar 

  33. 33.

    Guerra, C. et al. Pancreatitis-induced inflammation contributes to pancreatic cancer by inhibiting oncogene-induced senescence. Cancer Cell 19, 728–739 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Pinho, A. V., Chantrill, L. & Rooman, I. Chronic pancreatitis: a path to pancreatic cancer. Cancer Lett. 345, 203–209 (2014).

    Article  CAS  Google Scholar 

  35. 35.

    Ardito, C. M. et al. EGF receptor is required for KRAS-induced pancreatic tumorigenesis. Cancer Cell 22, 304–317 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Navas, C. et al. EGF receptor signaling is essential for k-ras oncogene-driven pancreatic ductal adenocarcinoma. Cancer Cell 22, 318–330 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Chiou, S.-H. et al. Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing. Genes Dev. 29, 1576–1585 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Maresch, R. et al. Multiplexed pancreatic genome engineering and cancer induction by transfection-based CRISPR/Cas9 delivery in mice. Nat. Commun. 7, 10770 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Bailey, J. M. et al. p53 mutations cooperate with oncogenic Kras to promote adenocarcinoma from pancreatic ductal cells. Oncogene 35, 4282–4288 (2016).

    Article  CAS  Google Scholar 

  40. 40.

    Lee, A. Y. L. et al. Cell of origin affects tumour development and phenotype in pancreatic ductal adenocarcinoma. Gut 68, 487–498 (2019).

    Article  CAS  Google Scholar 

  41. 41.

    Gidekel Friedlander, S. Y. et al. Context-dependent transformation of adult pancreatic cells by oncogenic K-Ras. Cancer Cell 16, 379–389 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Mueller, S. et al. Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes. Nature 554, 62–68 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Collins, M. A. et al. Metastatic pancreatic cancer is dependent on oncogenic Kras in mice. PLOS ONE 7, e49707 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Collins, M. A. et al. Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. J. Clin. Invest. 122, 639–653 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Huang, L. et al. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat. Med. 21, 1364–1371 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Tiriac, H., Plenker, D., Baker, L. A. & Tuveson, D. A. Organoid models for translational pancreatic cancer research. Curr. Opin. Genet. Dev. 54, 7–11 (2019).

    Article  CAS  Google Scholar 

  47. 47.

    Perera, R. M. & Bardeesy, N. Pancreatic cancer metabolism: breaking it down to build it back up. Cancer Discov. 5, 1247–1261 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Commisso, C. et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497, 633–637 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Tape, C. J. et al. Oncogenic KRAS regulates tumor cell signaling via stromal reciprocation. Cell 165, 910–920 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Zhang, W. et al. Downstream of mutant KRAS, the transcription regulator YAP is essential for neoplastic progression to pancreatic ductal adenocarcinoma. Sci. Signal. 7, ra42 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Lesina, M. et al. Stat3/Socs3 activation by IL-6 trans-signaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell 19, 456–469 (2011).

    Article  CAS  Google Scholar 

  52. 52.

    Pylayeva-Gupta, Y., Lee, K. E., Hajdu, C. H., Miller, G. & Bar-Sagi, D. Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 21, 836–847 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Clark, C. E. et al. Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res. 67, 9518–9527 (2007).

    Article  CAS  Google Scholar 

  54. 54.

    Zhang, Y. et al. Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer. Gut 66, 124–136 (2017).

    Article  CAS  Google Scholar 

  55. 55.

    Matsuo, Y. et al. K-Ras promotes angiogenesis mediated by immortalized human pancreatic epithelial cells through mitogen-activated protein kinase signaling pathways. Mol. Cancer Res. 7, 799–808 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Mann, K. M., Ying, H., Juan, J., Jenkins, N. A. & Copeland, N. G. KRAS-related proteins in pancreatic cancer. Pharmacol. Ther. 168, 29–42 (2016).

    Article  CAS  Google Scholar 

  57. 57.

    Collins, M. A., Yan, W., Sebolt-Leopold, J. S. & Pasca di Magliano, M. MAPK signaling is required for dedifferentiation of acinar cells and development of pancreatic intraepithelial neoplasia in mice. Gastroenterology 146, 822–834.e7 (2014).

    Article  CAS  Google Scholar 

  58. 58.

    Shin, S. Y., Choi, C., Lee, H. G., Lim, Y. & Lee, Y. H. Transcriptional regulation of the interleukin-11 gene by oncogenic Ras. Carcinogenesis 33, 2467–2476 (2012).

    Article  CAS  Google Scholar 

  59. 59.

    Zheng, C., Jiao, X., Jiang, Y. & Sun, S. ERK1/2 activity contributes to gemcitabine resistance in pancreatic cancer cells. J. Int. Med. Res. 41, 300–306 (2013).

    Article  CAS  Google Scholar 

  60. 60.

    Baer, R., Cintas, C., Therville, N. & Guillermet-Guibert, J. Implication of PI3K/Akt pathway in pancreatic cancer: when PI3K isoforms matter? Adv. Biol. Regul. 59, 19–35 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Prabhu, L., Mundade, R., Korc, M., Loehrer, P. J. & Lu, T. Critical role of NF-κB in pancreatic cancer. Oncotarget 5, 10969–10975 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Seguin, L. et al. An integrin β3-KRAS-RalB complex drives tumour stemness and resistance to EGFR inhibition. Nat. Cell Biol. 16, 457–468 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Miller, M. S. & Miller, L. D. RAS mutations and oncogenesis: not all RAS mutations are created equally. Front. Genet. 2, 100 (2011).

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Ihle, N. T. et al. Effect of KRAS oncogene substitutions on protein behavior: implications for signaling and clinical outcome. J. Natl Cancer Inst. 104, 228–239 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Hunter, J. C. et al. Biochemical and structural analysis of common cancer-associated KRAS mutations. Mol. Cancer Res. 13, 1325–1335 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Pantsar, T. et al. Assessment of mutation probabilities of KRAS G12 missense mutants and their long-timescale dynamics by atomistic molecular simulations and Markov state modeling. PLOS Comput. Biol. 14, e1006458 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Zhang, L., Sanagapalli, S. & Stoita, A. Challenges in diagnosis of pancreatic cancer. World J. Gastroenterol. 24, 2047–2060 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Costello, E., Greenhalf, W. & Neoptolemos, J. P. New biomarkers and targets in pancreatic cancer and their application to treatment. Nat. Rev. Gastroenterol. Hepatol. 9, 435–444 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Buscail, L., Faure, P., Bournet, B., Selves, J. & Escourrou, J. Interventional endoscopic ultrasound in pancreatic diseases. Pancreatology 6, 7–16 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Kamata, K. et al. Impact of avascular areas, as measured by contrast-enhanced harmonic EUS, on the accuracy of FNA for pancreatic adenocarcinoma. Gastrointest. Endosc. 87, 158–163 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Hewitt, M. J. et al. EUS-guided FNA for diagnosis of solid pancreatic neoplasms: a meta-analysis. Gastrointest. Endosc. 75, 319–331 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Savides, T. J. et al. EUS-guided FNA diagnostic yield of malignancy in solid pancreatic masses: a benchmark for quality performance measurement. Gastrointest. Endosc. 66, 277–282 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Yoshinaga, S., Suzuki, H., Oda, I. & Saito, Y. Role of endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) for diagnosis of solid pancreatic masses. Dig. Endosc. 23 (Suppl 1), 29–33 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Sanjeevi, S. et al. Impact of delay between imaging and treatment in patients with potentially curable pancreatic cancer. Br. J. Surg. 103, 267–275 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Swords, D. S., Firpo, M. A., Scaife, C. L. & Mulvihill, S. J. Biomarkers in pancreatic adenocarcinoma: current perspectives. Onco Targets Ther. 9, 7459–7467 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Imamura, T. et al. Liquid biopsy in patients with pancreatic cancer: circulating tumor cells and cell-free nucleic acids. World J. Gastroenterol. 22, 5627–5641 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Zhang, R. et al. Synthetic circulating cell-free DNA as quality control materials for somatic mutation detection in liquid biopsy for cancer. Clin. Chem. 63, 1465–1475 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Riva, F. et al. Clinical applications of circulating tumor DNA and circulating tumor cells in pancreatic cancer. Mol. Oncol. 10, 481–493 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Bernard, V. et al. Circulating nucleic acids are associated with outcomes of patients with pancreatic cancer. Gastroenterology 156, 108–118.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Earl, J. et al. Circulating tumor cells (Ctc) and kras mutant circulating free Dna (cfdna) detection in peripheral blood as biomarkers in patients diagnosed with exocrine pancreatic cancer. BMC Cancer 15, 797 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Isler, J. A., Vesterqvist, O. E. & Burczynski, M. E. Analytical validation of genotyping assays in the biomarker laboratory. Pharmacogenomics 8, 353–368 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Fariña Sarasqueta, A. et al. SNaPshot and StripAssay as valuable alternatives to direct sequencing for KRAS mutation detection in colon cancer routine diagnostics. J. Mol. Diagn. 13, 199–205 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Shackelford, R. E., Whitling, N. A., McNab, P., Japa, S. & Coppola, D. KRAS testing: a tool for the implementation of personalized medicine. Genes Cancer 3, 459–466 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Liu, Y., Gudnason, H., Li, Y.-P., Bang, D. D. & Wolff, A. An oligonucleotide-tagged microarray for routine diagnostics of colon cancer by genotyping KRAS mutations. Int. J. Oncol. 45, 1556–1564 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Lin, M.-T. et al. Clinical validation of KRAS, BRAF, and EGFR mutation detection using next-generation sequencing. Am. J. Clin. Pathol. 141, 856–866 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Oh, J. E. et al. Detection of low-level KRAS mutations using PNA-mediated asymmetric PCR clamping and melting curve analysis with unlabeled probes. J. Mol. Diagn. 12, 418–424 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Linardou, H. et al. All about KRAS for clinical oncology practice: gene profile, clinical implications and laboratory recommendations for somatic mutational testing in colorectal cancer. Cancer Treat. Rev. 37, 221–233 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Zuo, Z. et al. Application of COLD-PCR for improved detection of KRAS mutations in clinical samples. Mod. Pathol. 22, 1023–1031 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    How Kit, A. et al. Sensitive detection of KRAS mutations using enhanced-ice-COLD-PCR mutation enrichment and direct sequence identification. Hum. Mutat. 34, 1568–1580 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Azuara, D. et al. Nanofluidic digital PCR for KRAS mutation detection and quantification in gastrointestinal cancer. Clin. Chem. 58, 1332–1341 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Taly, V. et al. Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients. Clin. Chem. 59, 1722–1731 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Dong, L., Wang, S., Fu, B. & Wang, J. Evaluation of droplet digital PCR and next generation sequencing for characterizing DNA reference material for KRAS mutation detection. Sci. Rep. 8, 9650 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Bournet, B. et al. Endoscopic ultrasound-guided fine-needle aspiration biopsy coupled with a KRAS mutation assay using allelic discrimination improves the diagnosis of pancreatic cancer. J. Clin. Gastroenterol. 49, 50–56 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Bournet, B. et al. Endoscopic ultrasound-guided fine-needle aspiration biopsy coupled with KRAS mutation assay to distinguish pancreatic cancer from pseudotumoral chronic pancreatitis. Endoscopy 41, 552–557 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Anderson, S. M. Laboratory methods for KRAS mutation analysis. Expert Rev. Mol. Diagn. 11, 635–642 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Pritchard, C. C., Akagi, L., Reddy, P. L., Joseph, L. & Tait, J. F. COLD-PCR enhanced melting curve analysis improves diagnostic accuracy for KRAS mutations in colorectal carcinoma. BMC Clin. Pathol. 10, 6 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Oliner, K. et al. A comparability study of 5 commercial KRAS tests. Diagn. Pathol. 5, 23 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    De Roock, W. et al. Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab. JAMA 304, 1812–1820 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Boulaiz, H. et al. What’s new in the diagnosis of pancreatic cancer: a patent review (2011–present). Expert Opin. Ther. Pat. 27, 1319–1328 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Sho, S. et al. Digital PCR improves mutation analysis in pancreas fine needle aspiration biopsy specimens. PLOS ONE 12, e0170897 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Pellisé, M. et al. Clinical usefulness of KRAS mutational analysis in the diagnosis of pancreatic adenocarcinoma by means of endosonography-guided fine-needle aspiration biopsy. Aliment. Pharmacol. Ther. 17, 1299–1307 (2003).

    Article  Google Scholar 

  102. 102.

    Takahashi, K. et al. Differential diagnosis of pancreatic cancer and focal pancreatitis by using EUS-guided FNA. Gastrointest. Endosc. 61, 76–79 (2005).

    Article  Google Scholar 

  103. 103.

    Maluf-Filho, F. et al. Kras mutation analysis of fine needle aspirate under EUS guidance facilitates risk stratification of patients with pancreatic mass. J. Clin. Gastroenterol. 41, 906–910 (2007).

    Article  Google Scholar 

  104. 104.

    Reicher, S. et al. Fluorescence in situ hybridization and K-ras analyses improve diagnostic yield of endoscopic ultrasound-guided fine-needle aspiration of solid pancreatic masses. Pancreas 40, 1057–1062 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Ogura, T. et al. Clinical impact of K-ras mutation analysis in EUS-guided FNA specimens from pancreatic masses. Gastrointest. Endosc. 75, 769–774 (2012).

    Article  Google Scholar 

  106. 106.

    Ginestà, M. M. et al. Genetic and epigenetic markers in the evaluation of pancreatic masses. J. Clin. Pathol. 66, 192–197 (2013).

    Article  CAS  Google Scholar 

  107. 107.

    Matsubayashi, H. Role of K-ras mutation analysis in EUS-FNA samples obtained from pancreatic solid mass. J. Clin. Gastroenterol. 49, 173 (2015).

    Article  Google Scholar 

  108. 108.

    Trisolini, E. et al. KRAS mutation testing on all non-malignant diagnosis of pancreatic endoscopic ultrasound-guided fine-needle aspiration biopsies improves diagnostic accuracy. Pathology 49, 379–386 (2017).

    Article  CAS  Google Scholar 

  109. 109.

    Sekita-Hatakeyama, Y. et al. K-ras mutation analysis of residual liquid-based cytology specimens from endoscopic ultrasound-guided fine needle aspiration improves cell block diagnosis of pancreatic ductal adenocarcinoma. PLOS ONE 13, e0193692 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Khalid, A. et al. EUS-FNA mutational analysis in differentiating autoimmune pancreatitis and pancreatic cancer. Pancreatology 11, 482–486 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Mandel, P. & Metais, P. Les acides nucleiques du plasma sanguin chez l’homme [French]. C. R. Seances Soc. Biol. Fil. 142, 241–243 (1948).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Bendich, A., Wilczok, T. & Borenfreund, E. Circulation DNA as a possible factor in oncogenesis. Science 148, 374–376 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Diaz, L. A. & Bardelli, A. Liquid biopsies: genotyping circulating tumor DNA. J. Clin. Oncol. 32, 579–586 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Diehl, F. et al. Circulating mutant DNA to assess tumor dynamics. Nat. Med. 14, 985–990 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Buscail, E. et al. Tumor-proximal liquid biopsy to improve diagnostic and prognostic performances of circulating tumor cells. Mol. Oncol. 13, 1811–1826 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Chemi, F. et al. Pulmonary venous circulating tumor cell dissemination before tumor resection and disease relapse. Nat. Med. 25, 1534–1539 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Wei, T. et al. Monitoring tumor burden in response to FOLFIRINOX chemotherapy via profiling circulating cell-free DNA in pancreatic cancer. Mol. Cancer Ther. 18, 196–203 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Sausen, M. et al. Clinical implications of genomic alterations in the tumour and circulation of pancreatic cancer patients. Nat. Commun. 6, 7686 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Brychta, N., Krahn, T. & von Ahsen, O. Detection of KRAS mutations in circulating tumor DNA by digital PCR in early stages of pancreatic cancer. Clin. Chem. 62, 1482–1491 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Park, G. et al. Utility of targeted deep sequencing for detecting circulating tumor DNA in pancreatic cancer patients. Sci. Rep. 8, 11631 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Cohen, J. D. et al. Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers. Proc. Natl Acad. Sci. USA 114, 10202–10207 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Buscail, E. et al. Liquid biopsy approach for pancreatic ductal adenocarcinoma. Cancers 11, 852 (2019).

    Article  CAS  Google Scholar 

  124. 124.

    Andriamanampisoa, C.-L. et al. BIABooster: online DNA concentration and size profiling with a limit of detection of 10 fg/μL and application to high-sensitivity characterization of circulating cell-free DNA. Anal. Chem. 90, 3766–3774 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Cacheux, J., Brut, M., Bancaud, A., Cordelier, P. & Leïchlé, T. Spatial analysis of nanofluidic-embedded biosensors for wash-free single-nucleotide difference discrimination. ACS Sens. 3, 606–611 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Däbritz, J., Preston, R., Hänfler, J. & Oettle, H. Follow-up study of K-ras mutations in the plasma of patients with pancreatic cancer: correlation with clinical features and carbohydrate antigen 19-9. Pancreas 38, 534–541 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Chen, H. et al. K-ras mutational status predicts poor prognosis in unresectable pancreatic cancer. Eur. J. Surg. Oncol. 36, 657–662 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Singh, N., Gupta, S., Pandey, R. M., Chauhan, S. S. & Saraya, A. High levels of cell-free circulating nucleic acids in pancreatic cancer are associated with vascular encasement, metastasis and poor survival. Cancer Invest. 33, 78–85 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Kinugasa, H. et al. Detection of K-ras gene mutation by liquid biopsy in patients with pancreatic cancer. Cancer 121, 2271–2280 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. 130.

    Takai, E. et al. Clinical utility of circulating tumor DNA for molecular assessment in pancreatic cancer. Sci. Rep. 5, 18425 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Hadano, N. et al. Prognostic value of circulating tumour DNA in patients undergoing curative resection for pancreatic cancer. Br. J. Cancer 115, 59–65 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Cheng, H. et al. Analysis of ctDNA to predict prognosis and monitor treatment responses in metastatic pancreatic cancer patients. Int. J. Cancer 140, 2344–2350 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Pietrasz, D. et al. Plasma circulating tumor DNA in pancreatic cancer patients is a prognostic marker. Clin. Cancer Res. 23, 116–123 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. 134.

    Van Laethem, J.-L. et al. Phase I/II study of refametinib (BAY 86-9766) in combination with gemcitabine in advanced pancreatic cancer. Target. Oncol. 12, 97–109 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  135. 135.

    Allenson, K. et al. High prevalence of mutant KRAS in circulating exosome-derived DNA from early-stage pancreatic cancer patients. Ann. Oncol. 28, 741–747 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. 136.

    Kim, M. K. et al. Prognostic implications of multiplex detection of KRAS mutations in cell-free DNA from patients with pancreatic ductal adenocarcinoma. Clin. Chem. 64, 726–734 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Lin, M. et al. Circulating tumor DNA as a sensitive marker in patients undergoing irreversible electroporation for pancreatic cancer. Cell Physiol. Biochem. 47, 1556–1564 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. 138.

    Lee, B. et al. Circulating tumor DNA as a potential marker of adjuvant chemotherapy benefit following surgery for localised pancreatic cancer. Ann. Oncol. 30, 1472–1478 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. 139.

    Kawesha, A. et al. K-ras oncogene subtype mutations are associated with survival but not expression of p53, p16(INK4A), p21(WAF-1), cyclin D1, erbB-2 and erbB-3 in resected pancreatic ductal adenocarcinoma. Int. J. Cancer 89, 469–474 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. 140.

    Niedergethmann, M. et al. Prognostic implications of routine, immunohistochemical, and molecular staging in resectable pancreatic adenocarcinoma. Am. J. Surg. Pathol. 26, 1578–1587 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  141. 141.

    Lee, J. et al. Impact of epidermal growth factor receptor (EGFR) kinase mutations, EGFR gene amplifications, and KRAS mutations on survival of pancreatic adenocarcinoma. Cancer 109, 1561–1569 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. 142.

    Franko, J. et al. Loss of heterozygosity predicts poor survival after resection of pancreatic adenocarcinoma. J. Gastrointest. Surg. 12, 1664–1672; discussion 1672–1673 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  143. 143.

    Salek, C. et al. Evaluation of clinical relevance of examining K-ras, p16 and p53 mutations along with allelic losses at 9p and 18q in EUS-guided fine needle aspiration samples of patients with chronic pancreatitis and pancreatic cancer. World J. Gastroenterol. 13, 3714–3720 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. 144.

    Kim, S. T. et al. Impact of KRAS mutations on clinical outcomes in pancreatic cancer patients treated with first-line gemcitabine-based chemotherapy. Mol. Cancer Ther. 10, 1993–1999 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. 145.

    Schultz, N. A. et al. Frequencies and prognostic role of KRAS and BRAF mutations in patients with localized pancreatic and ampullary adenocarcinomas. Pancreas 41, 759–766 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. 146.

    Boeck, S. et al. KRAS mutation status is not predictive for objective response to anti-EGFR treatment with erlotinib in patients with advanced pancreatic cancer. J. Gastroenterol. 48, 544–548 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. 147.

    Oliveira-Cunha, M., Hadfield, K. D., Siriwardena, A. K. & Newman, W. EGFR and KRAS mutational analysis and their correlation to survival in pancreatic and periampullary cancer. Pancreas 41, 428–434 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. 148.

    Ogura, T. et al. Prognostic value of K-ras mutation status and subtypes in endoscopic ultrasound-guided fine-needle aspiration specimens from patients with unresectable pancreatic cancer. J. Gastroenterol. 48, 640–646 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. 149.

    Shin, S. H. et al. Genetic alterations of K-ras, p53, c-erbB-2, and DPC4 in pancreatic ductal adenocarcinoma and their correlation with patient survival. Pancreas 42, 216–222 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. 150.

    Rachakonda, P. S. et al. Somatic mutations in exocrine pancreatic tumors: association with patient survival. PLOS ONE 8, e60870 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. 151.

    Sinn, B. V. et al. KRAS mutations in codon 12 or 13 are associated with worse prognosis in pancreatic ductal adenocarcinoma. Pancreas 43, 578–583 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. 152.

    Kwon, M. J. et al. Low frequency of KRAS mutation in pancreatic ductal adenocarcinomas in Korean patients and its prognostic value. Pancreas 44, 484–492 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. 153.

    Huang, J. et al. Variant profiling of candidate genes in pancreatic ductal adenocarcinoma. Clin. Chem. 61, 1408–1416 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. 154.

    Bournet, B. et al. KRAS G12D mutation subtype is a prognostic factor for advanced pancreatic adenocarcinoma. Clin. Transl. Gastroenterol. 7, e157 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. 155.

    Qian, Z. R. et al. Association of alterations in main driver genes with outcomes of patients with resected pancreatic ductal adenocarcinoma. JAMA Oncol. 4, e173420 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  156. 156.

    Bachet, J.-B. et al. S100A2 is a predictive biomarker of adjuvant therapy benefit in pancreatic adenocarcinoma. Eur. J. Cancer 49, 2643–2653 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. 157.

    Gayral, M. et al. MicroRNAs as emerging biomarkers and therapeutic targets for pancreatic cancer. World J. Gastroenterol. 20, 11199–11209 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. 158.

    Kapoor, A. et al. Yap1 activation enables bypass of oncogenic Kras addiction in pancreatic cancer. Cell 158, 185–197 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. 159.

    Wilson, C. Y. & Tolias, P. Recent advances in cancer drug discovery targeting RAS. Drug Discov. Today 21, 1915–1919 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. 160.

    Asati, V., Mahapatra, D. K. & Bharti, S. K. K-Ras and its inhibitors towards personalized cancer treatment: pharmacological and structural perspectives. Eur. J. Med. Chem. 125, 299–314 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. 161.

    Matera, R. & Saif, M. W. New therapeutic directions for advanced pancreatic cancer: cell cycle inhibitors, stromal modifiers and conjugated therapies. Expert Opin. Emerg. Drugs 22, 223–233 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. 162.

    Fleming, J. B., Shen, G.-L., Holloway, S. E., Davis, M. & Brekken, R. A. Molecular consequences of silencing mutant K-ras in pancreatic cancer cells: justification for K-ras-directed therapy. Mol. Cancer Res. 3, 413–423 (2005).

    Article  CAS  Google Scholar 

  163. 163.

    Yuan, T. L. et al. Development of siRNA payloads to target KRAS-mutant cancer. Cancer Discov. 4, 1182–1197 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. 164.

    Xue, W. et al. Small RNA combination therapy for lung cancer. Proc. Natl Acad. Sci. USA 111, E3553–E3561 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. 165.

    Zorde Khvalevsky, E. et al. Mutant KRAS is a druggable target for pancreatic cancer. Proc. Natl Acad. Sci. USA 110, 20723–20728 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. 166.

    Golan, T. et al. RNAi therapy targeting KRAS in combination with chemotherapy for locally advanced pancreatic cancer patients. Oncotarget 6, 24560–24570 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  167. 167.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01676259 (2019).

  168. 168.

    Kamerkar, S. et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 546, 498–503 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. 169.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03608631 (2019).

  170. 170.

    Pecot, C. V. et al. Therapeutic silencing of KRAS using systemically delivered siRNAs. Mol. Cancer Ther. 13, 2876–2885 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. 171.

    Ostrem, J. M., Peters, U., Sos, M. L., Wells, J. A. & Shokat, K. M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503, 548–551 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. 172.

    Lim, S. M. et al. Therapeutic targeting of oncogenic K-Ras by a covalent catalytic site inhibitor. Angew. Chem. Int. Ed Engl. 53, 199–204 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. 173.

    Tichauer, R. H. et al. Water distribution within wild-type NRas protein and Q61 mutants during unrestrained QM/MM dynamics. Biophys. J. 115, 1417–1430 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. 174.

    Mosolits, S., Ullenhag, G. & Mellstedt, H. Therapeutic vaccination in patients with gastrointestinal malignancies. A review of immunological and clinical results. Ann. Oncol. 16, 847–862 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. 175.

    Toubaji, A. et al. Pilot study of mutant ras peptide-based vaccine as an adjuvant treatment in pancreatic and colorectal cancers. Cancer Immunol. Immunother. 57, 1413–1420 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. 176.

    Hartley, M. L., Bade, N. A., Prins, P. A., Ampie, L. & Marshall, J. L. Pancreatic cancer, treatment options, and GI-4000. Hum. Vaccines Immunother. 11, 931–937 (2015).

    Article  Google Scholar 

  177. 177.

    Quandt, J. et al. Long-peptide vaccination with driver gene mutations in p53 and Kras induces cancer mutation-specific effector as well as regulatory T cell responses. Oncoimmunology 7, e1500671 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  178. 178.

    Cohn, A. et al. Whole recombinant saccharomyces cerevisiae yeast expressing ras mutations as treatment for patients with solid tumors bearing ras mutations: results from a phase 1 trial. J. Immunother. 41, 141–150 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. 179.

    Van Cutsem, E. et al. Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. J. Clin. Oncol. 22, 1430–1438 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. 180.

    Berndt, N., Hamilton, A. D. & Sebti, S. M. Targeting protein prenylation for cancer therapy. Nat. Rev. Cancer 11, 775–791 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. 181.

    Martin, N. E. et al. A phase I trial of the dual farnesyltransferase and geranylgeranyltransferase inhibitor L-778,123 and radiotherapy for locally advanced pancreatic cancer. Clin. Cancer Res. 10, 5447–5454 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. 182.

    Chandra, A. et al. The GDI-like solubilizing factor PDEδ sustains the spatial organization and signalling of Ras family proteins. Nat. Cell Biol. 14, 148–158 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. 183.

    Zimmermann, G. et al. Small molecule inhibition of the KRAS-PDEδ interaction impairs oncogenic KRAS signalling. Nature 497, 638–642 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. 184.

    Laheru, D. et al. Integrated preclinical and clinical development of S-trans, trans-farnesylthiosalicylic acid (FTS, Salirasib) in pancreatic cancer. Invest. New Drugs 30, 2391–2399 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. 185.

    Riely, G. J. et al. A phase II trial of Salirasib in patients with lung adenocarcinomas with KRAS mutations. J. Thorac. Oncol. 6, 1435–1437 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  186. 186.

    Morgan, R. J. Jr et al. Phase II trial of bryostatin-1 in combination with cisplatin in patients with recurrent or persistent epithelial ovarian cancer: a California cancer consortium study. Invest. New Drugs 30, 723–728 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. 187.

    Lugowska, I., Koseła-Paterczyk, H., Kozak, K. & Rutkowski, P. Trametinib: a MEK inhibitor for management of metastatic melanoma. OncoTargets Ther 8, 2251–2259 (2015).

    CAS  Google Scholar 

  188. 188.

    Bodoky, G. et al. A phase II open-label randomized study to assess the efficacy and safety of selumetinib (AZD6244 [ARRY-142886]) versus capecitabine in patients with advanced or metastatic pancreatic cancer who have failed first-line gemcitabine therapy. Invest. New Drugs 30, 1216–1223 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. 189.

    Infante, J. R. et al. A randomised, double-blind, placebo-controlled trial of trametinib, an oral MEK inhibitor, in combination with gemcitabine for patients with untreated metastatic adenocarcinoma of the pancreas. Eur. J. Cancer 50, 2072–2081 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. 190.

    Van Cutsem, E. et al. Phase I/II trial of pimasertib plus gemcitabine in patients with metastatic pancreatic cancer. Int. J. Cancer 143, 2053–2064 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. 191.

    Fruman, D. A. & Rommel, C. PI3K and cancer: lessons, challenges and opportunities. Nat. Rev. Drug Discov. 13, 140–156 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. 192.

    Mahapatra, D. K., Asati, V. & Bharti, S. K. MEK inhibitors in oncology: a patent review (2015–present). Expert Opin. Ther. Pat. 27, 887–906 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. 193.

    Ning, C. et al. Targeting ERK enhances the cytotoxic effect of the novel PI3K and mTOR dual inhibitor VS-5584 in preclinical models of pancreatic cancer. Oncotarget 8, 44295–44311 (2017).

    PubMed  PubMed Central  Google Scholar 

  194. 194.

    Kinsey, C. G. et al. Protective autophagy elicited by RAF→MEK→ERK inhibition suggests a treatment strategy for RAS-driven cancers. Nat. Med. 25, 620–627 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. 195.

    Bryant, K. L. et al. Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nat. Med. 25, 628–640 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. 196.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03825289 (2019).

  197. 197.

    Shodeinde, A., Ginjupalli, K., Lewis, H. D., Riaz, S. & Barton, B. E. STAT3 inhibition induces apoptosis in cancer cells independent of STAT1 or STAT2. J. Mol. Biochem. 2, 18–26 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank E. Buscail for his helpful advice on liquid biopsies in cancer.

Author information

Affiliations

Authors

Contributions

L.B. and P.C. researched data for the article, made a substantial contribution to discussion of content, and wrote and reviewed/edited the manuscript before submission. B.B. researched data for the article, made a substantial contribution to discussion of content and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Louis Buscail.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Mariana di Magliano and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Buscail, L., Bournet, B. & Cordelier, P. Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer. Nat Rev Gastroenterol Hepatol 17, 153–168 (2020). https://doi.org/10.1038/s41575-019-0245-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing