Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mouse models of hepatocellular carcinoma: an overview and highlights for immunotherapy research

Abstract

Mouse models are the basis of preclinical and translational research in hepatocellular carcinoma (HCC). Multiple methods exist to induce tumour formation in mice, including genetically engineered mouse models, chemotoxic agents, intrahepatic or intrasplenic injection of tumour cells and xenograft approaches. Additionally, as HCC generally develops in the context of diseased liver, methods exist to induce liver disease in mice to mimic viral hepatitis, fatty liver disease, fibrosis, alcohol-induced liver disease and cholestasis. Similar to HCC in humans, response to therapy in mouse models is monitored with imaging modalities such as CT or MRI, as well as additional techniques involving bioluminescence. As immunotherapy is increasingly applied to HCC, mouse models for these approaches are required for preclinical data. In studying cancer immunotherapy, it is important to consider aspects of antitumour immune responses and to produce a model that mimics the complexity of the immune system. This Review provides an overview of the different mouse models of HCC, presenting techniques to prepare an HCC mouse model and discussing different approaches to help researchers choose an appropriate model for a specific hypothesis. Specific aspects of immunotherapy research in HCC and the applied mouse models in this field are also highlighted.

Key points

  • Hepatocellular carcinoma (HCC) is a heterogeneous tumour and requires genetically engineered models to study different genetic mutations in detail; however, these models are limited to one specific driver mutation.

  • Liver-specific induction of HCC can be achieved by transgenic modification using liver-specific promoters, plasmid injection via liver-specific viruses, hydrodynamic injection or orthotopic implantation of tumour cells.

  • Comorbid liver disease must be considered and can be modelled by diets, injection of chemotoxic agents or expression of inflammation promoting genes.

  • Only syngeneic orthotopic and subcutaneous mouse models can be utilized to investigate immunotherapy for HCC, whereas orthotopic models in HCC mimic the tumour microenvironment more accurately.

  • Xenograft models in immunocompromised mice are useful to study specific treatment effects but lack a full immune response that includes all immune cell subsets, lymphangiogenesis and chemokine signalling.

  • Immunologically humanized mouse models might overcome the shortcomings of traditional xenograft models, but the techniques to create these models are challenging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hepatocellular carcinoma induction in diseased liver.
Fig. 2: Methods for creating models of hepatocellular carcinoma and liver disease.
Fig. 3: Imaging in hepatocellular carcinoma mouse models.
Fig. 4: Overview of immunotherapy strategies in hepatocellular carcinoma.

Similar content being viewed by others

References

  1. Fitzmaurice, C. et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the Global Burden of Disease Study. JAMA Oncol. 3, 524–548 (2017).

    Article  PubMed  Google Scholar 

  2. Duffy, A. G. & Greten, T. F. Liver cancer: Regorafenib as second-line therapy in hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 14, 141–142 (2017).

    Article  PubMed  CAS  Google Scholar 

  3. El-Khoueiry, A. B. et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 389, 2492–2502 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Llovet, J. M. et al. Hepatocellular carcinoma. Nat. Rev. Dis. Primers 2, 16018 (2016).

    Article  PubMed  Google Scholar 

  5. Schambach, S. J., Bag, S., Schilling, L., Groden, C. & Brockmann, M. A. Application of micro-CT in small animal imaging. Methods 50, 2–13 (2010).

    Article  PubMed  CAS  Google Scholar 

  6. Rothe, J. H. et al. Time course of contrast enhancement by micro-CT with dedicated contrast agents in normal mice and mice with hepatocellular carcinoma: comparison of one iodinated and two nanoparticle-based agents. Academ. Radiol. 22, 169–178 (2015).

    Article  Google Scholar 

  7. Fiebig, T. et al. Three-dimensional in vivo imaging of the murine liver: a micro-computed tomography-based anatomical study. PLoS ONE 7, e31179 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Heindryckx, F., Colle, I. & Van Vlierberghe, H. Experimental mouse models for hepatocellular carcinoma research. Int. J. Exp. Pathol. 90, 367–386 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Newell, P., Villanueva, A., Friedman, S. L., Koike, K. & Llovet, J. M. Experimental models of hepatocellular carcinoma. J. Hepatol. 48, 858–879 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Ju, H. L., Han, K. H., Lee, J. D. & Ro, S. W. Transgenic mouse models generated by hydrodynamic transfection for genetic studies of liver cancer and preclinical testing of anti-cancer therapy. International journal of cancer. J. Int. Cancer 138, 1601–1608 (2016).

    Article  CAS  Google Scholar 

  11. Li, Y., Tang, Z. Y. & Hou, J. X. Hepatocellular carcinoma: insight from animal models. Nat. Rev. Gastroenterol. Hepatol. 9, 32–43 (2011).

    Article  PubMed  CAS  Google Scholar 

  12. The Cancer Genome Atlas Research Network. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell 169, 1327–1341.e23 (2017). This paper presents multiplex genomic profiling of human HCCs from the TCGA Research Network.

    Article  PubMed Central  CAS  Google Scholar 

  13. Lin, H. H. et al. Inhibition of the Wnt/beta-catenin signaling pathway improves the anti-tumor effects of sorafenib against hepatocellular carcinoma. Cancer Lett. 381, 58–66 (2016).

    Article  PubMed  CAS  Google Scholar 

  14. Katz, S. F. et al. Disruption of Trp53 in livers of mice induces formation of carcinomas with bilineal differentiation. Gastroenterology 142, 1229–1239.e3 (2012).

    Article  PubMed  CAS  Google Scholar 

  15. Liu, Y. et al. CRISPR/Cas9-mediated p53 and Pten dual mutation accelerates hepatocarcinogenesis in adult hepatitis B virus transgenic mice. Sci. Rep. 7, 2796 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Xue, W. et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514, 380–384 (2014). This is the first paper that uses hydrodynamic injection of the CRISPR–Cas system to create a liver-specific genetic knockout to induce HCC.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Suda, T. & Liu, D. Hydrodynamic gene delivery: its principles and applications. Mol. Ther. 15, 2063–2069 (2007).

    Article  PubMed  CAS  Google Scholar 

  18. Shibata, T. & Aburatani, H. Exploration of liver cancer genomes. Nat. Rev. Gastroenterol. Hepatol. 11, 340–349 (2014).

    Article  PubMed  CAS  Google Scholar 

  19. Felsher, D. W. & Bishop, J. M. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol. Cell 4, 199–207 (1999).

    Article  PubMed  CAS  Google Scholar 

  20. Jain, M. et al. Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science 297, 102–104 (2002).

    Article  PubMed  CAS  Google Scholar 

  21. Shachaf, C. M. et al. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 431, 1112–1117 (2004).

    Article  PubMed  Google Scholar 

  22. Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl Acad. Sci. USA 89, 5547–5551 (1992).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Conner, E. A. et al. Dual functions of E2F-1 in a transgenic mouse model of liver carcinogenesis. Oncogene 19, 5054–5062 (2000).

    Article  PubMed  CAS  Google Scholar 

  24. Conner, E. A., Lemmer, E. R., Sanchez, A., Factor, V. M. & Thorgeirsson, S. S. E2F1 blocks and c-Myc accelerates hepatic ploidy in transgenic mouse models. Biochem. Biophys. Res. Commun. 302, 114–120 (2003).

    Article  PubMed  CAS  Google Scholar 

  25. Calvisi, D. F. et al. Activation of the canonical Wnt/beta-catenin pathway confers growth advantages in c-Myc/E2F1 transgenic mouse model of liver cancer. J. Hepatol. 42, 842–849 (2005).

    Article  PubMed  CAS  Google Scholar 

  26. Zender, L. & Hemann, M. Reconstitution of mice with modified liver stem cells. Cold Spring Harb. Protoc. 2015, 685–688 (2015).

    Article  PubMed  Google Scholar 

  27. Nitou, M., Sugiyama, Y., Ishikawa, K. & Shiojiri, N. Purification of fetal mouse hepatoblasts by magnetic beads coated with monoclonal anti-e-cadherin antibodies and their in vitro culture. Exp. Cell Res. 279, 330–343 (2002).

    Article  PubMed  CAS  Google Scholar 

  28. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  PubMed  CAS  Google Scholar 

  29. Pitot, H. C. & Dragan, Y. P. Facts and theories concerning the mechanisms of carcinogenesis. FASEB J. 5, 2280–2286 (1991).

    Article  PubMed  CAS  Google Scholar 

  30. Vesselinovitch, S. D. & Mihailovich, N. Kinetics of diethylnitrosamine hepatocarcinogenesis in the infant mouse. Cancer Res. 43, 4253–4259 (1983).

    PubMed  CAS  Google Scholar 

  31. Kawanishi, S., Hiraku, Y., Murata, M. & Oikawa, S. The role of metals in site-specific DNA damage with reference to carcinogenesis. Free Radic. Biol. Med. 32, 822–832 (2002).

    Article  PubMed  CAS  Google Scholar 

  32. Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M. & Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 160, 1–40 (2006).

    Article  PubMed  CAS  Google Scholar 

  33. Verna, L., Whysner, J. & Williams, G. M. N-Nitrosodiethylamine mechanistic data and risk assessment: bioactivation, DNA-adduct formation, mutagenicity, and tumor initiation. Pharmacol. Ther. 71, 57–81 (1996).

    Article  PubMed  CAS  Google Scholar 

  34. Rao, K. V. & Vesselinovitch, S. D. Age- and sex-associated diethylnitrosamine dealkylation activity of the mouse liver and hepatocarcinogenesis. Cancer Res. 33, 1625–1627 (1973). This is an important paper about the influence of age and sex on HCC induction by DEN.

    PubMed  CAS  Google Scholar 

  35. Bakiri, L. & Wagner, E. F. Mouse models for liver cancer. Mol. Oncol. 7, 206–223 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Park, E. J. et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140, 197–208 (2010). This paper presents the influence of IL-6 and TNF in obesity-promoted HCC in a mouse model using DEN and an HFD.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Yoshimoto, S. et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499, 97–101 (2013).

    Article  PubMed  CAS  Google Scholar 

  38. Serrano, M. et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell 85, 27–37 (1996).

    Article  PubMed  CAS  Google Scholar 

  39. He, L., Tian, D. A., Li, P. Y. & He, X. X. Mouse models of liver cancer: progress and recommendations. Oncotarget 6, 23306–23322 (2015).

    PubMed  PubMed Central  Google Scholar 

  40. Hernandez-Gea, V., Toffanin, S., Friedman, S. L. & Llovet, J. M. Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology 144, 512–527 (2013).

    Article  PubMed  Google Scholar 

  41. Kerbel, R. S. Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans: better than commonly perceived-but they can be improved. Cancer Biol. Ther. 2, S134–S139 (2003).

    PubMed  CAS  Google Scholar 

  42. Jung, J. Human tumor xenograft models for preclinical assessment of anticancer drug development. Toxicol. Res. 30, 1–5 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Richmond, A. & Su, Y. Mouse xenograft models versus GEM models for human cancer therapeutics. Dis. Model. Mech. 1, 78–82 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Morton, J. J., Bird, G., Refaeli, Y. & Jimeno, A. Humanized mouse xenograft models: narrowing the tumor-microenvironment gap. Cancer Res. 76, 6153–6158 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Zhou, Q., Facciponte, J., Jin, M., Shen, Q. & Lin, Q. Humanized NOD-SCID IL2rg−/− mice as a preclinical model for cancer research and its potential use for individualized cancer therapies. Cancer Lett. 344, 13–19 (2014).

    Article  PubMed  CAS  Google Scholar 

  46. Friedman, D. et al. Programmed cell death-1 blockade enhances response to stereotactic radiation in an orthotopic murine model of hepatocellular carcinoma. Hepatol. Res. 47, 702–714 (2016).

    Article  PubMed  CAS  Google Scholar 

  47. Wu, T. et al. Multimodal imaging of a humanized orthotopic model of hepatocellular carcinoma in immunodeficient mice. Sci. Rep. 6, 35230 (2016). This is an overview of imaging techniques to monitor HCC in mice.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Sun, F. X. et al. Establishment of a metastatic model of human hepatocellular carcinoma in nude mice via orthotopic implantation of histologically intact tissues. International journal of cancer. J. Int. Cancer 66, 239–243 (1996).

    Article  CAS  Google Scholar 

  49. Yan, M. et al. Establishment of NOD/SCID mouse models of human hepatocellular carcinoma via subcutaneous transplantation of histologically intact tumor tissue. Chin. J. Cancer Res. 25, 289–298 (2013).

    PubMed  PubMed Central  Google Scholar 

  50. Golebiewska, A., Brons, N. H., Bjerkvig, R. & Niclou, S. P. Critical appraisal of the side population assay in stem cell and cancer stem cell research. Cell Stem Cell 8, 136–147 (2011).

    Article  PubMed  CAS  Google Scholar 

  51. Behbod, F. & Vivanco, M. D. Side population. Methods Mol. Biol. 1293, 73–81 (2015).

    Article  PubMed  Google Scholar 

  52. Xia, H. et al. Hepatocellular carcinoma-propagating cells are detectable by side population analysis and possess an expression profile reflective of a primitive origin. Sci. Rep. 6, 34856 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Chow, A. K. et al. The Enhanced metastatic potential of hepatocellular carcinoma (HCC) cells with sorafenib resistance. PLoS ONE 8, e78675 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Shultz, L. D., Ishikawa, F. & Greiner, D. L. Humanized mice in translational biomedical research. Nat. Rev. Immunol. 7, 118–130 (2007).

    Article  PubMed  CAS  Google Scholar 

  55. Shultz, L. D. et al. Human cancer growth and therapy In NOD/SCID/IL2Rγ(null) (NSG) mice. Cold Spring Harb. Protoc. 2014, 694–708 (2014).

    PubMed  PubMed Central  Google Scholar 

  56. Martin-Padura, I., Agliano, A., Marighetti, P., Porretti, L. & Bertolini, F. Sex-related efficiency in NSG mouse engraftment. Blood 116, 2616–2617 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Notta, F., Doulatov, S. & Dick, J. E. Engraftment of human hematopoietic stem cells is more efficient in female NOD/SCID/IL-2Rgc-null recipients. Blood 115, 3704–3707 (2010).

    Article  PubMed  CAS  Google Scholar 

  58. Wilson, E. M. et al. Extensive double humanization of both liver and hematopoiesis in FRGN mice. Stem Cell Res. 13, 404–412 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Greten, T. F., Duffy, A. G. & Korangy, F. Hepatocellular carcinoma from an immunologic perspective. Clin. Cancer Res. 19, 6678–6685 (2013).

    Article  PubMed  CAS  Google Scholar 

  60. Akinyemiju, T. et al. The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: results from the Global Burden of Disease Study 2015. JAMA Oncol. 3, 1683–1691 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Constandinou, C., Henderson, N. & Iredale, J. P. Modeling liver fibrosis in rodents. Methods Mol. Med. 117, 237–250 (2005).

    PubMed  Google Scholar 

  62. Liu, Y. et al. Animal models of chronic liver diseases. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G449–G468 (2013).

    Article  PubMed  CAS  Google Scholar 

  63. Starkel, P. & Leclercq, I. A. Animal models for the study of hepatic fibrosis. Best practice and research. Clin. Gastroenterol. 25, 319–333 (2011).

    Article  CAS  Google Scholar 

  64. Iredale, J. P. et al. Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J. Clin. Invest. 102, 538–549 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Salguero Palacios, R. et al. Activation of hepatic stellate cells is associated with cytokine expression in thioacetamide-induced hepatic fibrosis in mice. Lab. Invest. 88, 1192–1203 (2008).

    Article  PubMed  CAS  Google Scholar 

  66. Kuriyama, S. et al. Hepatocellular carcinoma in an orthotopic mouse model metastasizes intrahepatically in cirrhotic but not in normal liver. Int. J. Cancer 80, 471–476 (1999).

    Article  PubMed  CAS  Google Scholar 

  67. Li, X., Benjamin, I. S. & Alexander, B. Reproducible production of thioacetamide-induced macronodular cirrhosis in the rat with no mortality. J. Hepatol. 36, 488–493 (2002).

    Article  PubMed  Google Scholar 

  68. Farazi, P. A. & DePinho, R. A. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat. Rev. Cancer 6, 674–687 (2006).

    Article  PubMed  CAS  Google Scholar 

  69. Nakagawa, H. et al. ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development. Cancer Cell 26, 331–343 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Sandgren, E. P. et al. Complete hepatic regeneration after somatic deletion of an albumin-plasminogen activator transgene. Cell 66, 245–256 (1991).

    Article  PubMed  CAS  Google Scholar 

  71. Shalapour, S. et al. Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity. Nature 551, 340–345 (2017). This is an important paper showing that the IgA + cell-mediated suppression of cytotoxic CD8 + T cells promotes tumorigenesis in several mouse models of NASH-mediated HCC.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Smit, J. J. et al. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 75, 451–462 (1993).

    Article  PubMed  CAS  Google Scholar 

  73. Katzenellenbogen, M. et al. Molecular mechanisms of liver carcinogenesis in the mdr2-knockout mice. Mol. Cancer Res. 5, 1159–1170 (2007).

    Article  PubMed  CAS  Google Scholar 

  74. Mauad, T. H. et al. Mice with homozygous disruption of the mdr2 P-glycoprotein gene. A novel animal model for studies of nonsuppurative inflammatory cholangitis and hepatocarcinogenesis. Am. J. Pathol. 145, 1237–1245 (1994).

    PubMed  PubMed Central  CAS  Google Scholar 

  75. Katzenellenbogen, M. et al. Multiple adaptive mechanisms to chronic liver disease revealed at early stages of liver carcinogenesis in the Mdr2-knockout mice. Cancer Res. 66, 4001–4010 (2006).

    Article  PubMed  CAS  Google Scholar 

  76. Popov, Y., Patsenker, E., Fickert, P., Trauner, M. & Schuppan, D. Mdr2 (Abcb4)−/− mice spontaneously develop severe biliary fibrosis via massive dysregulation of pro- and antifibrogenic genes. J. Hepatol. 43, 1045–1054 (2005).

    Article  PubMed  CAS  Google Scholar 

  77. Endig, J. et al. Dual role of the adaptive immune system in liver injury and hepatocellular carcinoma development. Cancer Cell 30, 308–323 (2016).

    Article  PubMed  CAS  Google Scholar 

  78. Grompe, M. et al. Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice. Genes Dev. 7, 2298–2307 (1993).

    Article  PubMed  CAS  Google Scholar 

  79. Marhenke, S. et al. Activation of nuclear factor E2-related factor 2 in hereditary tyrosinemia type 1 and its role in survival and tumor development. Hepatology 48, 487–496 (2008).

    Article  PubMed  CAS  Google Scholar 

  80. Chisari, F. V. et al. Structural and pathological effects of synthesis of hepatitis B virus large envelope polypeptide in transgenic mice. Proc. Natl Acad. Sci. USA 84, 6909–6913 (1987).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  81. Chisari, F. V. et al. Expression of hepatitis B virus large envelope polypeptide inhibits hepatitis B surface antigen secretion in transgenic mice. J. Virol. 60, 880–887 (1986).

    PubMed  PubMed Central  CAS  Google Scholar 

  82. Chisari, F. V. et al. A transgenic mouse model of the chronic hepatitis B surface antigen carrier state. Science 230, 1157–1160 (1985). This is the first design and description of a mouse model to study hepatitis B infection.

    Article  PubMed  CAS  Google Scholar 

  83. Dunsford, H. A., Sell, S. & Chisari, F. V. Hepatocarcinogenesis due to chronic liver cell injury in hepatitis B virus transgenic mice. Cancer Res. 50, 3400–3407 (1990).

    PubMed  CAS  Google Scholar 

  84. Wang, Y. et al. HBsAg and HBx knocked into the p21 locus causes hepatocellular carcinoma in mice. Hepatology 39, 318–324 (2004).

    Article  PubMed  CAS  Google Scholar 

  85. Ye, H. et al. Synergistic function of Kras mutation and HBx in initiation and progression of hepatocellular carcinoma in mice. Oncogene 33, 5133–5138 (2014).

    Article  PubMed  CAS  Google Scholar 

  86. Koike, K. et al. Expression of hepatitis C virus envelope proteins in transgenic mice. J. Gen. Virol. 76, 3031–3038 (1995).

    Article  PubMed  CAS  Google Scholar 

  87. Kamegaya, Y. et al. Hepatitis C virus acts as a tumor accelerator by blocking apoptosis in a mouse model of hepatocarcinogenesis. Hepatology 41, 660–667 (2005).

    Article  PubMed  Google Scholar 

  88. Chen, J. et al. Persistent hepatitis C virus infections and hepatopathological manifestations in immune-competent humanized mice. Cell Res. 24, 1050–1066 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Wang, Z., Wu, N., Tesfaye, A., Feinstone, S. & Kumar, A. HCV infection-associated hepatocellular carcinoma in humanized mice. Infect. Agents Cancer 10, 24 (2015).

    Article  CAS  Google Scholar 

  90. Tesfaye, A. et al. Chimeric mouse model for the infection of hepatitis B and C viruses. PLoS ONE 8, e77298 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Ploss, A. et al. Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature 457, 882–886 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Dorner, M. et al. Completion of the entire hepatitis C virus life cycle in genetically humanized mice. Nature 501, 237–241 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. McKillop, I. H. & Schrum, L. W. Role of alcohol in liver carcinogenesis. Semin. Liver Dis. 29, 222–232 (2009).

    Article  PubMed  CAS  Google Scholar 

  94. Jinjuvadia, R. & Liangpunsakul, S. Trends in alcoholic hepatitis-related hospitalizations, financial burden, and mortality in the United States. J. Clin. Gastroenterol. 49, 506–511 (2015).

    PubMed  PubMed Central  Google Scholar 

  95. Singal, A. K., Kamath, P. S., Gores, G. J. & Shah, V. H. Alcoholic hepatitis: current challenges and future directions. Clin. Gastroenterol. Hepatol. 12, 555–564 (2014).

    Article  PubMed  Google Scholar 

  96. Seitz, H. K. & Becker, P. Alcohol metabolism and cancer risk. Alcohol Res. Health 30, 38–41 (2007).

    PubMed  PubMed Central  Google Scholar 

  97. Lu, Y. & Cederbaum, A. I. CYP2E1 and oxidative liver injury by alcohol. Free Radic. Biol. Med. 44, 723–738 (2008).

    Article  PubMed  CAS  Google Scholar 

  98. Brooks, P. J. & Theruvathu, J. A. DNA adducts from acetaldehyde: implications for alcohol-related carcinogenesis. Alcohol 35, 187–193 (2005).

    Article  PubMed  CAS  Google Scholar 

  99. Eriksson, C. J. The role of acetaldehyde in the actions of alcohol (update 2000). Alcohol. Clin. Exp. Res. 25 (Suppl.), 15S–32S (2001).

    Article  PubMed  CAS  Google Scholar 

  100. Bajaj, J. S. et al. Altered profile of human gut microbiome is associated with cirrhosis and its complications. J. Hepatol. 60, 940–947 (2014).

    Article  PubMed  CAS  Google Scholar 

  101. Bode, C. & Bode, J. C. Activation of the innate immune system and alcoholic liver disease: effects of ethanol per se or enhanced intestinal translocation of bacterial toxins induced by ethanol? Alcohol. Clin. Exp. Res. 29 (Suppl.), 166S–171S (2005).

    Article  PubMed  CAS  Google Scholar 

  102. Thurman, R. G. I. I. Alcoholic liver injury involves activation of Kupffer cells by endotoxin. Am. J. Physiol. 275, G605–G611 (1998).

    PubMed  CAS  Google Scholar 

  103. Nagata, K., Suzuki, H. & Sakaguchi, S. Common pathogenic mechanism in development progression of liver injury caused by non-alcoholic or alcoholic steatohepatitis. J. Toxicol. Sci. 32, 453–468 (2007).

    Article  PubMed  CAS  Google Scholar 

  104. Lieber, C. S. & DeCarli, L. M. The feeding of alcohol in liquid diets: two decades of applications and 1982 update. Alcohol. Clin. Exp. Res. 6, 523–531 (1982).

    Article  PubMed  CAS  Google Scholar 

  105. Bertola, A., Mathews, S., Ki, S. H., Wang, H. & Gao, B. Mouse model of chronic and binge ethanol feeding (the NIAAA model). Nat. Protoc. 8, 627–637 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Mandrekar, P., Ambade, A., Lim, A., Szabo, G. & Catalano, D. An essential role for monocyte chemoattractant protein-1 in alcoholic liver injury: regulation of proinflammatory cytokines and hepatic steatosis in mice. Hepatology 54, 2185–2197 (2011).

    Article  PubMed  CAS  Google Scholar 

  107. Cohen, J. I., Roychowdhury, S., McMullen, M. R., Stavitsky, A. B. & Nagy, L. E. Complement and alcoholic liver disease: role of C1q in the pathogenesis of ethanol-induced liver injury in mice. Gastroenterology 139, 664–674 (2010).

    Article  PubMed  CAS  Google Scholar 

  108. Tsukamoto, H. et al. Severe and progressive steatosis and focal necrosis in rat liver induced by continuous intragastric infusion of ethanol and low fat diet. Hepatology 5, 224–232 (1985).

    Article  PubMed  CAS  Google Scholar 

  109. Ueno, A. et al. Mouse intragastric infusion (iG) model. Nat. Protoc. 7, 771–781 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Beltran-Sanchez, H., Harhay, M. O., Harhay, M. M. & McElligott, S. Prevalence and trends of metabolic syndrome in the adult U. S. population, 1999–2010. J. Am. Coll. Cardiol. 62, 697–703 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Younossi, Z. M. et al. Global epidemiology of nonalcoholic fatty liver disease — meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64, 73–84 (2016).

    Article  PubMed  Google Scholar 

  112. Younossi, Z. et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 15, 11–20 (2018).

    Article  PubMed  Google Scholar 

  113. Ibrahim, S. H., Hirsova, P., Malhi, H. & Gores, G. J. Animal models of nonalcoholic steatohepatitis: eat, delete, and inflame. Dig. Dis. Sci. 61, 1325–1336 (2016).

    Article  PubMed  Google Scholar 

  114. Santhekadur, P. K., Kumar, D. P. & Sanyal, A. J. Preclinical models of non-alcoholic fatty liver disease. J. Hepatol. 68, 230–237 (2018). This is an overview of preclinical models of NASH.

    Article  PubMed  CAS  Google Scholar 

  115. Dela Pena, A. et al. NF-kappaB activation, rather than TNF, mediates hepatic inflammation in a murine dietary model of steatohepatitis. Gastroenterology 129, 1663–1674 (2005).

    Article  CAS  Google Scholar 

  116. Ip, E., Farrell, G., Hall, P., Robertson, G. & Leclercq, I. Administration of the potent PPARα agonist, Wy-14,643, reverses nutritional fibrosis and steatohepatitis in mice. Hepatology 39, 1286–1296 (2004).

    Article  PubMed  CAS  Google Scholar 

  117. Rinella, M. E. & Green, R. M. The methionine-choline deficient dietary model of steatohepatitis does not exhibit insulin resistance. J. Hepatol. 40, 47–51 (2004).

    Article  PubMed  CAS  Google Scholar 

  118. Nakae, D. et al. Comparative changes in the liver of female Fischer-344 rats after short-term feeding of a semipurified or a semisynthetic L-amino acid-defined choline-deficient diet. Toxicol. Pathol. 23, 583–590 (1995).

    Article  PubMed  CAS  Google Scholar 

  119. Hebbard, L. & George, J. Animal models of nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 8, 35–44 (2011).

    Article  PubMed  CAS  Google Scholar 

  120. Kodama, Y. et al. c-Jun N-terminal kinase-1 from hematopoietic cells mediates progression from hepatic steatosis to steatohepatitis and fibrosis in mice. Gastroenterology 137, 1467–1477.e5 (2009).

    Article  PubMed  CAS  Google Scholar 

  121. Deng, Q. G. et al. Steatohepatitis induced by intragastric overfeeding in mice. Hepatology 42, 905–914 (2005).

    Article  PubMed  CAS  Google Scholar 

  122. Ito, M. et al. Longitudinal analysis of murine steatohepatitis model induced by chronic exposure to high-fat diet. Hepatol. Res. 37, 50–57 (2007).

    Article  PubMed  CAS  Google Scholar 

  123. Charlton, M. et al. Fast food diet mouse: novel small animal model of NASH with ballooning, progressive fibrosis, and high physiological fidelity to the human condition. Am. J. Physiol. Gastrointest. Liver Physiol. 301, G825–G834 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Chheda, T. K. et al. Fast food diet with CCl4 micro-dose induced hepatic-fibrosis — a novel animal model. BMC Gastroenterol. 14, 89 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Ouyang, X. et al. Fructose consumption as a risk factor for non-alcoholic fatty liver disease. J. Hepatol. 48, 993–999 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Sanches, S. C., Ramalho, L. N., Augusto, M. J., da Silva, D. M. & Ramalho, F. S. Nonalcoholic steatohepatitis: a search for factual animal models. BioMed Res. Int. 2015, 574832 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Spruss, A. et al. Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice. Hepatology 50, 1094–1104 (2009).

    Article  PubMed  CAS  Google Scholar 

  128. Matsumoto, M. et al. An improved mouse model that rapidly develops fibrosis in non-alcoholic steatohepatitis. Int. J. Exp. Pathol. 94, 93–103 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Yamazaki, Y. et al. Interstrain differences in susceptibility to non-alcoholic steatohepatitis. J. Gastroenterol. Hepatol. 23, 276–282 (2008).

    Article  PubMed  CAS  Google Scholar 

  130. Brennan, A. M. & Mantzoros, C. S. Drug Insight: the role of leptin in human physiology and pathophysiology — emerging clinical applications. Nat. Clin. Pract. Endocrinol. Metab. 2, 318–327 (2006).

    Article  PubMed  CAS  Google Scholar 

  131. Diehl, A. M. Lessons from animal models of NASH. Hepatol. Res. 33, 138–144 (2005).

    Article  PubMed  CAS  Google Scholar 

  132. Mayer, J., Bates, M. W. & Dickie, M. M. Hereditary diabetes in genetically obese mice. Science 113, 746–747 (1951).

    Article  PubMed  CAS  Google Scholar 

  133. Takahashi, Y., Soejima, Y. & Fukusato, T. Animal models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J. Gastroenterol. 18, 2300–2308 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Leclercq, I. A., Farrell, G. C., Schriemer, R. & Robertson, G. R. Leptin is essential for the hepatic fibrogenic response to chronic liver injury. J. Hepatol. 37, 206–213 (2002).

    Article  PubMed  CAS  Google Scholar 

  135. Wortham, M., He, L., Gyamfi, M., Copple, B. L. & Wan, Y. J. The transition from fatty liver to NASH associates with SAMe depletion in db/db mice fed a methionine choline-deficient diet. Dig. Dis. Sci. 53, 2761–2774 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Horie, Y. et al. Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J. Clin. Invest. 113, 1774–1783 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Stiles, B. et al. Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity [corrected]. Proc. Natl Acad. Sci. USA 101, 2082–2087 (2004).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  138. Xu, H. E. et al. Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol. Cell 3, 397–403 (1999).

    Article  PubMed  CAS  Google Scholar 

  139. Costet, P. et al. Peroxisome proliferator-activated receptor alpha-isoform deficiency leads to progressive dyslipidemia with sexually dimorphic obesity and steatosis. J. Biol. Chem. 273, 29577–29585 (1998).

    Article  PubMed  CAS  Google Scholar 

  140. Okumura, K. et al. Exacerbation of dietary steatohepatitis and fibrosis in obese, diabetic KK-A(y) mice. Hepatol. Res. 36, 217–228 (2006).

    Article  PubMed  CAS  Google Scholar 

  141. Tsuchida, T. et al. A simple diet- and chemical-induced murine NASH model with rapid progression of steatohepatitis, fibrosis and liver cancer. J. Hepatol. https://doi.org/10.1016/j.jhep.2018.03.011 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Dapito, D. H. et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 21, 504–516 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Uehara, T. et al. Molecular mechanisms of fibrosis-associated promotion of liver carcinogenesis. Toxicol. Sci. 132, 53–63 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Uehara, T., Pogribny, I. P. & Rusyn, I. The DEN and CCl4-induced mouse model of fibrosis and inflammation-associated hepatocellular carcinoma. Curr. Protoc. Pharmacol. 66, 14.30.1–14.30.10 (2014).

    Article  Google Scholar 

  145. Reiberger, T. et al. An orthotopic mouse model of hepatocellular carcinoma with underlying liver cirrhosis. Nat. Protoc. 10, 1264–1274 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Li, G. et al. Successful chemoimmunotherapy against hepatocellular cancer in a novel murine model. J. Hepatol. 66, 75–85 (2017).

    Article  PubMed  CAS  Google Scholar 

  147. Ambade, A., Satishchandran, A., Gyongyosi, B., Lowe, P. & Szabo, G. Adult mouse model of early hepatocellular carcinoma promoted by alcoholic liver disease. World J. Gastroenterol. 22, 4091–4108 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Ma, C. et al. NAFLD causes selective CD4(+) T lymphocyte loss and promotes hepatocarcinogenesis. Nature 531, 253–257 (2016). This paper presents the influence of fatty acids on immune-mediated HCC progression in livers with NASH.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Hill-Baskin, A. E. et al. Diet-induced hepatocellular carcinoma in genetically predisposed mice. Hum. Mol. Genet. 18, 2975–2988 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Wolf, M. J. et al. Metabolic activation of intrahepatic CD8+ T cells and NKT cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes. Cancer Cell 26, 549–564 (2014). This paper describes the CD8 + T cell-mediated and NKT cell-mediated liver damage and progression to HCC in a mouse model of CD-HFD.

    Article  PubMed  CAS  Google Scholar 

  151. Asgharpour, A. et al. A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer. J. Hepatol. 65, 579–588 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Klevorn, L. E. & Teague, R. M. Adapting cancer immunotherapy models for the real world. Trends Immunol. 37, 354–363 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Crispe, I. N. Liver antigen-presenting cells. J. Hepatol. 54, 357–365 (2011).

    Article  PubMed  CAS  Google Scholar 

  154. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    Article  PubMed  CAS  Google Scholar 

  155. Petrizzo, A. et al. Identification and validation of HCC-specific gene transcriptional signature for tumor antigen discovery. Sci. Rep. 6, 29258 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Bernstein, M. B., Krishnan, S., Hodge, J. W. & Chang, J. Y. Immunotherapy and stereotactic ablative radiotherapy (ISABR): a curative approach? Nat. Rev. Clin. Oncol. 13, 516–524 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Kaufman, H. L., Kohlhapp, F. J. & Zloza, A. Oncolytic viruses: a new class of immunotherapy drugs. Nat. Rev. Drug Discov. 15, 660–660 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Lee, J. H. et al. Adjuvant immunotherapy with autologous cytokine-induced killer cells for hepatocellular carcinoma. Gastroenterology 148, 1383–1391.e6 (2015).

    Article  PubMed  CAS  Google Scholar 

  159. Zhang, Q. et al. CAR-T cell therapy in gastrointestinal tumors and hepatic carcinoma: from bench to bedside. Oncoimmunology 5, e1251539 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Zou, W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat. Rev. Cancer 5, 263–274 (2005).

    Article  PubMed  CAS  Google Scholar 

  161. Waldmann, T. The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat. Rev. Immunol. 6, 595–601 (2006).

    Article  PubMed  CAS  Google Scholar 

  162. Gabeen, A. A., Abdel-Hamid, F. F., El-Houseini, M. E. & Fathy, S. A. Potential immunotherapeutic role of interleukin-2 and interleukin-12 combination in patients with hepatocellular carcinoma. J. Hepatocell. Carcinoma 1, 55–63 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Subleski, J. J. et al. Serum-based tracking of de novo initiated liver cancer progression reveals early immunoregulation and response to therapy. J. Hepatol. 63, 1181–1189 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Topalian, S. L., Taube, J. M., Anders, R. A. & Pardoll, D. M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer 16, 275–287 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455–2465 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Kapanadze, T. et al. Regulation of accumulation and function of myeloid derived suppressor cells in different murine models of hepatocellular carcinoma. J. Hepatol. 59, 1007–1013 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Kapanadze, T. et al. Tumor-induced CD11b(+) Gr-1(+) myeloid-derived suppressor cells exacerbate immune-mediated hepatitis in mice in a CD40-dependent manner. Eur. J. Immunol. 45, 1148–1158 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Tu, J. F. et al. Regulatory T cells, especially ICOS(+) FOXP3(+) regulatory T cells, are increased in the hepatocellular carcinoma microenvironment and predict reduced survival. Sci. Rep. 6, 35056 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Zschaler, J., Schlorke, D. & Arnhold, J. Differences in innate immune response between man and mouse. Crit. Rev. Immunol. 34, 433–454 (2014).

    PubMed  CAS  Google Scholar 

  172. Mestas, J. & Hughes, C. C. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738 (2004).

    Article  PubMed  CAS  Google Scholar 

  173. Bogdanos, D. P., Gao, B. & Gershwin, M. E. Liver Immunology. Compr. Physiol. 3, 567–598 (2013).

    PubMed  PubMed Central  Google Scholar 

  174. Tian, Z., Chen, Y. & Gao, B. Natural killer cells in liver disease. Hepatology 57, 1654–1662 (2013).

    Article  PubMed  CAS  Google Scholar 

  175. Colucci, F., Di Santo, J. P. & Leibson, P. J. Natural killer cell activation in mice and men: different triggers for similar weapons? Nat. Immunol. 3, 807–813 (2002).

    Article  PubMed  CAS  Google Scholar 

  176. Haley, P. J. Species differences in the structure and function of the immune system. Toxicology 188, 49–71 (2003).

    Article  PubMed  CAS  Google Scholar 

  177. Duffy, A. G. et al. Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma. J. Hepatol. 66, 545–551 (2017).

    Article  PubMed  CAS  Google Scholar 

  178. Seung, S. K. et al. Phase 1 study of stereotactic body radiotherapy and interleukin-2 — tumor and immunological responses. Sci. Transl Med. 4, 137ra74 (2012).

    Article  PubMed  CAS  Google Scholar 

  179. Baird, J. R. et al. Radiotherapy combined with novel STING-targeting oligonucleotides results in regression of established tumors. Cancer Res. 76, 50–61 (2016).

    Article  PubMed  CAS  Google Scholar 

  180. Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Woller, N. et al. Viral Infection of tumors overcomes resistance to PD-1-immunotherapy by broadening neoantigenome-directed T cell responses. Mol. Ther. 23, 1630–1640 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Gurlevik, E. et al. Adjuvant gemcitabine therapy improves survival in a locally induced, R0-resectable model of metastatic intrahepatic cholangiocarcinoma. Hepatology 58, 1031–1041 (2013).

    Article  PubMed  CAS  Google Scholar 

  183. Boozari, B. et al. Antitumoural immunity by virus-mediated immunogenic apoptosis inhibits metastatic growth of hepatocellular carcinoma. Gut 59, 1416–1426 (2010).

    Article  PubMed  CAS  Google Scholar 

  184. Zhang, H. et al. Targeting VCP enhances anticancer activity of oncolytic virus M1 in hepatocellular carcinoma. Sci. Transl Med. 9, eaam7996 (2017).

    Article  PubMed  Google Scholar 

  185. Wepsic, H. T. Overview of oncofetal antigens in cancer. Ann. Clin. Lab. Sci. 13, 261–266 (1983).

    PubMed  CAS  Google Scholar 

  186. Stern, P. L. in Encyclopedia of Cancer (ed. Schwab, M.) 2610–2613 (Springer, Berlin Heidelberg, 2011).

  187. Liu, C. et al. Value of alpha-fetoprotein in association with clinicopathological features of hepatocellular carcinoma. World J. Gastroenterol. 19, 1811–1819 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Butterfield, L. H. et al. T cell responses to HLA-A*0201 immunodominant peptides derived from alpha-fetoprotein in patients with hepatocellular cancer. Clin. Cancer Res. 9, 5902–5908 (2003).

    PubMed  CAS  Google Scholar 

  189. Wang, X. P. et al. Recombinant heat shock protein 70 functional peptide and alpha-fetoprotein epitope peptide vaccine elicits specific anti-tumor immunity. Oncotarget 7, 71274–71284 (2016).

    PubMed  PubMed Central  Google Scholar 

  190. Walker, K. B., Keeble, J. & Colaco, C. Mycobacterial heat shock proteins as vaccines - a model of facilitated antigen presentation. Curr. Mol. Med. 7, 339–350 (2007).

    Article  PubMed  CAS  Google Scholar 

  191. Singh-Jasuja, H. et al. The heat shock protein gp96: a receptor-targeted cross-priming carrier and activator of dendritic cells. Cell Stress Chaperones 5, 462–470 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Binder, R. J., Han, D. K. & Srivastava, P. K. CD91: a receptor for heat shock protein gp96. Nat. Immunol. 1, 151–155 (2000).

    Article  PubMed  CAS  Google Scholar 

  193. Su, H., Li, B., Zheng, L., Wang, H. & Zhang, L. Immunotherapy based on dendritic cells pulsed with CTPFoxM1 fusion protein protects against the development of hepatocellular carcinoma. Oncotarget 7, 48401–48411 (2016).

    PubMed  PubMed Central  Google Scholar 

  194. Capurro, M. et al. Glypican-3: a novel serum and histochemical marker for hepatocellular carcinoma. Gastroenterology 125, 89–97 (2003).

    Article  PubMed  CAS  Google Scholar 

  195. Baumhoer, D. et al. Glypican 3 expression in human nonneoplastic, preneoplastic, and neoplastic tissues: a tissue microarray analysis of 4,387 tissue samples. Am. J. Clin. Pathol. 129, 899–906 (2008).

    Article  PubMed  Google Scholar 

  196. Zhu, Z. W. et al. Enhanced glypican-3 expression differentiates the majority of hepatocellular carcinomas from benign hepatic disorders. Gut 48, 558–564 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Shirakawa, H. et al. Glypican-3 expression is correlated with poor prognosis in hepatocellular carcinoma. Cancer Sci. 100, 1403–1407 (2009).

    Article  PubMed  CAS  Google Scholar 

  198. Dargel, C. et al. T cells engineered to express a T-cell receptor specific for glypican-3 to recognize and kill hepatoma cells in vitro and in mice. Gastroenterology 149, 1042–1052 (2015).

    Article  PubMed  CAS  Google Scholar 

  199. Chmielewski, M., Hombach, A. A. & Abken, H. Antigen-specific T-cell activation independently of the MHC: chimeric antigen receptor-redirected T cells. Front. Immunol. 4, 371 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Kershaw, M. H., Westwood, J. A., Slaney, C. Y. & Darcy, P. K. Clinical application of genetically modified T cells in cancer therapy. Clin. Transl Immunol. 3, e16 (2014).

    Article  CAS  Google Scholar 

  201. Kershaw, M. H., Westwood, J. A. & Darcy, P. K. Gene-engineered T cells for cancer therapy. Nat. Rev. Cancer 13, 525–541 (2013).

    Article  PubMed  CAS  Google Scholar 

  202. Gao, H. et al. Development of T cells redirected to glypican-3 for the treatment of hepatocellular carcinoma. Clin. Cancer Res. 20, 6418–6428 (2014).

    Article  PubMed  CAS  Google Scholar 

  203. Feng, M. et al. Therapeutically targeting glypican-3 via a conformation-specific single-domain antibody in hepatocellular carcinoma. Proc. Natl Acad. Sci. USA 110, E1083–E1091 (2013).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  204. Llovet, J. M. et al. A molecular signature to discriminate dysplastic nodules from early hepatocellular carcinoma in HCV cirrhosis. Gastroenterology 131, 1758–1767 (2006).

    Article  PubMed  CAS  Google Scholar 

  205. Gauttier, V. et al. Agonistic anti-CD137 antibody treatment leads to antitumor response in mice with liver cancer. International journal of cancer. J. Int. Cancer 135, 2857–2867 (2014).

    Article  CAS  Google Scholar 

  206. Makkouk, A., Chester, C. & Kohrt, H. E. Rationale for anti-CD137 cancer immunotherapy. Eur. J. Cancer 54, 112–119 (2016).

    Article  PubMed  CAS  Google Scholar 

  207. Subleski, J. J., Hall, V. L., Back, T. C., Ortaldo, J. R. & Wiltrout, R. H. Enhanced antitumor response by divergent modulation of natural killer and natural killer T cells in the liver. Cancer Res. 66, 11005–11012 (2006).

    Article  PubMed  CAS  Google Scholar 

  208. Dinarello, C. A. & Fantuzzi, G. Interleukin-18 and host defense against infection. J. Infecti. Diseases 187 (Suppl. 2), S370–S384 (2003).

    Article  CAS  Google Scholar 

  209. Eggert, T. et al. Immune studies in a mouse model of MET and CAT induced liver tumors [abstract]. J. Immunother. Cancer 2 (Suppl. 3), P202 (2014).

    Article  PubMed Central  Google Scholar 

  210. Sangro, B. et al. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J. Hepatol. 59, 81–88 (2013).

    Article  PubMed  CAS  Google Scholar 

  211. Wolchok, J. D. PD-1 Blockers. Cell 162, 937 (2015).

    Article  PubMed  CAS  Google Scholar 

  212. Chen, Y. et al. CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Hepatology 61, 1591–1602 (2015).

    Article  PubMed  CAS  Google Scholar 

  213. Zhou, D. et al. Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell 16, 425–438 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. Teufel, A. et al. Comparison of gene expression patterns between mouse models of nonalcoholic fatty liver disease and liver tissues from patients. Gastroenterology 151, 513–525.e10 (2016).

    Article  PubMed  CAS  Google Scholar 

  215. Allweiss, L. & Dandri, M. Experimental in vitro and in vivo models for the study of human hepatitis B virus infection. J. Hepatol. 64, S17–31 (2016).

    Article  PubMed  CAS  Google Scholar 

  216. Kimura, K. & Kohara, M. An experimental mouse model for hepatitis C virus. Exp. Animals 60, 93–100 (2011).

    Article  CAS  Google Scholar 

  217. Dorner, M. et al. A genetically humanized mouse model for hepatitis C virus infection. Nature 474, 208–211 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Vucur, M. et al. Mouse models of hepatocarcinogenesis: what can we learn for the prevention of human hepatocellular carcinoma? Oncotarget 1, 373–378 (2010).

    PubMed  PubMed Central  Google Scholar 

  219. Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996).

    Article  PubMed  CAS  Google Scholar 

  220. Xiao, Y. & Freeman, G. J. The microsatellite instable subset of colorectal cancer is a particularly good candidate for checkpoint blockade immunotherapy. Cancer Discov. 5, 16–18 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Chen, K., Ahmed, S., Adeyi, O., Dick, J. E. & Ghanekar, A. Human solid tumor xenografts in immunodeficient mice are vulnerable to lymphomagenesis associated with Epstein-Barr virus. PLoS ONE 7, e39294 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Sangro, B. et al. A randomized, multicenter, phase 3 study of nivolumab versus sorafenib as first-line treatment in patients (pts) with advanced hepatocellular carcinoma (HCC): CheckMate-459. J. Clin. Oncol. https://doi.org/10.1200/JCO.2016.34.15_suppl.TPS4147 (2016).

    Article  Google Scholar 

  223. Boll, H. et al. Micro-CT based experimental liver imaging using a nanoparticulate contrast agent: a longitudinal study in mice. PLoS ONE 6, e25692 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Freimuth, J. et al. Application of magnetic resonance imaging in transgenic and chemical mouse models of hepatocellular carcinoma. Mol. Cancer 9, 94 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Thaker, A. A. et al. Combination therapy of radiofrequency ablation and bevacizumab monitored with power Doppler ultrasound in a murine model of hepatocellular carcinoma. Int. J. Hyperthermia 28, 766–775 (2012).

    Article  PubMed  CAS  Google Scholar 

  226. Lee, T. K., Na, K. S., Kim, J. & Jeong, H. J. Establishment of animal models with orthotopic hepatocellular carcinoma. Nuclear Med. Mol. Imag. 48, 173–179 (2014).

    Article  CAS  Google Scholar 

  227. Fleten, K. G. et al. Use of non-invasive imaging to monitor response to aflibercept treatment in murine models of colorectal cancer liver metastases. Clin. Exp. Metastasis 34, 51–62 (2017).

    Article  PubMed  CAS  Google Scholar 

  228. Lee, W. C. et al. Vaccination of advanced hepatocellular carcinoma patients with tumor lysate-pulsed dendritic cells: a clinical trial. J. Immunother. 28, 496–504 (2005).

    Article  PubMed  Google Scholar 

  229. Lee, J.-H. et al. A phase I/IIa study of adjuvant immunotherapy with tumour antigen-pulsed dendritic cells in patients with hepatocellular carcinoma. Br. J. Cancer 113, 1666–1676 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  230. Palmer, D. H. et al. A phase II study of adoptive immunotherapy using dendritic cells pulsed with tumor lysate in patients with hepatocellular carcinoma. Hepatology 49, 124–132 (2009).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Mouse Imaging Facility (MIF) at the NIH for preparing and providing pictures for imaging in hepatocellular carcinoma mouse models.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim F. Greten.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Glossary

Immunocompetent

Having a fully functional immune system.

Humanized

A mouse model with modifications to incorporate or mimic human cells or tissue.

Cre–Lox recombination

A method of site-specific recombination enabling investigators to manipulate genes at targeted locations in the DNA.

CRISPR–Cas9

Enables RNA-guided cutting of DNA for targeting genes to be deleted or inserted.

Hydrodynamic injection

Injection of 10% volume per mouse weight and with high pressure to cause swelling of the liver to allow for better plasmid delivery.

Plasmids

Small DNA molecules distinct from the host DNA that can be induced as a vector for genetic engineering.

Latency period

The time between the exposure of a chemotoxic agent or the manipulation of a gene or genes to the development of tumour.

Orthotopic

A procedure that occurs in the original place, such as inducing a tumour within its tissue of origin.

Heterotopic

A procedure occurring outside the original place, such as inducing a tumour in a foreign tissue.

Syngeneic

Genetically similar cells arising from the same species.

Xenograft

Tissue or cells from one species transplanted into a different species.

Immunodeficient

An organism in which certain immune subsets are absent or nonfunctional, rendering the organism unable to mount a full immune response.

Sleeping Beauty Transposon

A synthetic DNA transposon that enables incorporation of introduced genetic material into the host DNA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, Z.J., Heinrich, B. & Greten, T.F. Mouse models of hepatocellular carcinoma: an overview and highlights for immunotherapy research. Nat Rev Gastroenterol Hepatol 15, 536–554 (2018). https://doi.org/10.1038/s41575-018-0033-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-018-0033-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing