Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Insights into the success and failure of systemic therapy for hepatocellular carcinoma

Abstract

Systemic treatment for hepatocellular carcinoma (HCC) has been boosted by the incorporation of new agents after many negative phase III trials in the decade since the approval of sorafenib. Sorafenib introduced the concept that targeting specific hallmarks of hepatocarcinogenesis could modify the dismal prognosis of this disease, with the drug remaining a cornerstone in the upfront therapy for advanced HCC. The design of clinical trials in this malignancy is complicated by important obstacles related to patient selection, prognostic assessment and the need for endpoints that correlate with improvement in survival outcomes. In addition, the currently used criteria to determine treatment response or progression might prevent physicians from making appropriate clinical judgements and interpreting evidence arising from trials. In this Review, we discuss the advances in systemic therapy for HCC and critically review trial designs in HCC. Although novel therapies, such as new targeted agents and immunotherapies, are being rapidly incorporated, it is paramount to design future clinical trials based on the lessons learned from past failures and successes.

Key points

  • The changing landscape of hepatocellular carcinoma treatment demands a critical interpretation of how therapies have evolved and what future challenges lie ahead.

  • Improving overall survival is the main objective in advanced hepatocellular carcinoma, and the use of surrogate endpoints, such as response rate, time to progression or progression-free survival, lacks scientific evidence.

  • Criteria for response to treatment should evolve so that validated signals of activity prime transition into phase III trials.

  • Trial design and analysis should include novel clinical characteristics such as pattern of progression and pattern of adverse events with prior therapy.

  • Phase III trials in ill-defined target populations with limited clinical characterization might provide unreliable (positive or negative) results.

  • Molecular stratification is hampered by tumour heterogeneity and lacks prognostic power and linkage to treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tumour burden and survival.
Fig. 2: Refining concepts of response.
Fig. 3: Magnitude and duration of response.
Fig. 4: Prognostic value of progression patterns.
Fig. 5: Clinical decision-making upon detection of progression at imaging according to common criteria such as RECIST 1.1.
Fig. 6: Clinical trials performed in first-line therapies for hepatocellular carcinoma.
Fig. 7: Patients with tumours at high risk of recurrence because of conventional pathology features are followed at shorter intervals than patients at low risk of recurrence, aiming to detect and treat recurrence earlier.
Fig. 8: The Barcelona Clinic Liver Cancer stage and treatment system establishes prognosis and treatment recommendations with impact on survival for each of the five stages.
Fig. 9: Systemic treatment sequence for advanced hepatocellular carcinoma based on prospective trials.

Similar content being viewed by others

References

  1. International Agency for Research on Cancer. Population fact sheets. IARC http://gco.iarc.fr/today/fact-sheets-populations (2018).

  2. Schulze, K., Nault, J.-C. & Villanueva, A. Genetic profiling of hepatocellular carcinoma using next-generation sequencing. J. Hepatol. 65, 1031–1042 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Galle, P. R. et al. EASL clinical practice guidelines: management of hepatocellular carcinoma. J. Hepatol. 69, 182–236 (2018).

    Article  Google Scholar 

  4. Heimbach, J. K. et al. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 67, 358–380 (2018).

    Article  PubMed  Google Scholar 

  5. Johnson, P. J., Williams, R., Thomas, H., Sherlock, S. & Murray-Lyon, I. M. Induction of remission in hepatocellular carcinoma with doxorubicin. Lancet 1, 1006–1009 (1978).

    Article  CAS  PubMed  Google Scholar 

  6. Melia, W. M., Johnson, P. J. & Williams, R. Controlled clinical trial of doxorubicin and tamoxifen versus doxorubicin alone in hepatocellular carcinoma. Cancer Treat. Rep. 71, 1213–1216 (1987).

    CAS  PubMed  Google Scholar 

  7. Gish, R. G. et al. Phase III randomized controlled trial comparing the survival of patients with unresectable hepatocellular carcinoma treated with nolatrexed or doxorubicin. J. Clin. Oncol. 25, 3069–3075 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Qin, S. et al. Randomized, multicenter, open-label study of oxaliplatin plus fluorouracil/leucovorin versus doxorubicin as palliative chemotherapy in patients with advanced hepatocellular carcinoma from Asia. J. Clin. Oncol. 31, 3501–3508 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Lai, C. L., Wu, P. C., Chan, G. C., Lok, A. S. & Lin, H. J. Doxorubicin versus no antitumor therapy in inoperable hepatocellular carcinoma. A prospective randomized trial. Cancer 62, 479–483 (1988).

    Article  CAS  PubMed  Google Scholar 

  10. Llovet, J. M. & Bruix, J. Systematic review of randomized trials for unresectable hepatocellular carcinoma: chemoembolization improves survival. Hepatology 37, 429–442 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Llovet, J. M. et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 359, 378–390 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Rimassa, L. et al. Tivantinib for second-line treatment of MET-high, advanced hepatocellular carcinoma (METIV-HCC): a final analysis of a phase 3, randomised, placebo-controlled study. Lancet Oncol. 19, 682–693 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Llovet, J. M. et al. Brivanib in patients with advanced hepatocellular carcinoma who were intolerant to sorafenib or for whom sorafenib failed: results from the randomized phase III BRISK-PS study. J. Clin. Oncol. 31, 3509–3516 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Vilgrain, V. et al. Efficacy and safety of selective internal radiotherapy with yttrium-90 resin microspheres compared with sorafenib in locally advanced and inoperable hepatocellular carcinoma (SARAH): an open-label randomised controlled phase 3 trial. Lancet Oncol. 18, 1624–1636 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Chow, P. K. H. et al. SIRveNIB: selective internal radiation therapy versus sorafenib in Asia-Pacific patients with hepatocellular carcinoma. J. Clin. Oncol. 36, 1913–1921 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Johnson, P. J. et al. Brivanib versus sorafenib as first-line therapy in patients with unresectable, advanced hepatocellular carcinoma: results from the randomized phase III BRISK-FL study. J. Clin. Oncol. 31, 3517–3524 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Zhu, A. X. et al. Effect of everolimus on survival in advanced hepatocellular carcinoma after failure of sorafenib. JAMA 312, 57 (2014).

    Article  PubMed  CAS  Google Scholar 

  18. Zhu, A. X. et al. Ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma following first-line therapy with sorafenib (REACH): a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 16, 859–870 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Abou-Alfa, G. K. et al. Phase III randomized study of second line ADI-PEG 20 plus best supportive care versus placebo plus best supportive care in patients with advanced hepatocellular carcinoma. Ann. Oncol. 29, 1402–1408 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Cainap, C. et al. Linifanib versus sorafenib in patients with advanced hepatocellular carcinoma: results of a randomized phase III trial. J. Clin. Oncol. 33, 172–179 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Abou-Alfa, G. K. et al. Phase III randomized study of sorafenib plus doxorubicin versus sorafenib in patients with advanced hepatocellular carcinoma (HCC): CALGB 80802 (Alliance). J. Clin. Oncol. 34, 192–192 (2016).

    Article  Google Scholar 

  22. Zhu, A. X. et al. SEARCH: a phase III, randomized, double-blind, placebo-controlled trial of sorafenib plus erlotinib in patients with advanced hepatocellular carcinoma. J. Clin. Oncol. 33, 559–566 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Cheng, A.-L. et al. Sunitinib versus sorafenib in advanced hepatocellular cancer: results of a randomized phase III trial. J. Clin. Oncol. 31, 4067–4075 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Bruix, J. et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 389, 56–66 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Kudo, M. et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet 391, 1163–1173 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Abou-Alfa, G. K. et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N. Engl. J. Med. 379, 54–63 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhu, A. X. et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. Oncol. 20, 282–296 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Sena, E. S., van der Worp, H. B., Bath, P. M. W., Howells, D. W. & Macleod, M. R. Publication bias in reports of animal stroke studies leads to major overstatement of efficacy. PLOS Biol. 8, e1000344 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Common ground on the critical path [Editorial]. Nat. Rev. Drug Discov. 5, 267 (2006).

  30. Deininger, M., Buchdunger, E. & Druker, B. J. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 105, 2640–2653 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Solomon, B. J. et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N. Engl. J. Med. 371, 2167–2177 (2014).

    Article  PubMed  CAS  Google Scholar 

  32. Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 3, 711–716 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Ruggeri, B. A., Camp, F. & Miknyoczki, S. Animal models of disease: pre-clinical animal models of cancer and their applications and utility in drug discovery. Biochem. Pharmacol. 87, 150–161 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Kaitin, K. I. & DiMasi, J. A. Pharmaceutical innovation in the 21st century: new drug approvals in the first decade, 2000–2009. Clin. Pharmacol. Ther. 89, 183–188 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Delcò, F., Tchambaz, L., Schlienger, R., Drewe, J. & Krähenbühl, S. Dose adjustment in patients with liver disease. Drug Saf. 28, 529–545 (2005).

    Article  PubMed  Google Scholar 

  36. Tannock, I. F. et al. Chemotherapy with mitoxantrone plus prednisone or prednisone alone for symptomatic hormone-resistant prostate cancer: a Canadian randomized trial with palliative end points. J. Clin. Oncol. 14, 1756–1764 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Power, D. G. & Kemeny, N. E. Long-term outcome of unresectable metastatic colorectal cancer: does “adjuvant” chemotherapy play a role after resection? Ann. Surg. 250, 654–655 (2009).

    Article  PubMed  Google Scholar 

  38. Lencioni, R. et al. Objective response by mRECIST as a predictor and potential surrogate end-point of overall survival in advanced HCC. J. Hepatol. 66, 1166–1172 (2017).

    Article  PubMed  Google Scholar 

  39. Abou-Alfa, G. K. et al. Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J. Clin. Oncol. 24, 4293–4300 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Zhu, A. et al. A study of ramucirumab (LY3009806) versus placebo in patients with hepatocellular carcinoma and elevated baseline alpha-fetoprotein (REACH-2). J. Clin. Oncol. 36, 4003 (2018).

    Article  Google Scholar 

  41. Finn, R. S. et al. IMbrave150: a randomized phase III study of 1L atezolizumab plus bevacizumab versus sorafenib in locally advanced or metastatic hepatocellular carcinoma. J. Clin. Oncol. 36, TPS4141 (2018).

    Article  Google Scholar 

  42. Pishvaian, M. J. et al. Updated safety and clinical activity results from a phase Ib study of atezolizumab + bevacizumab in hepatocellular carcinoma (HCC). Presented at the 2018 ESMO Congress (2018).

  43. US Food & Drug Administration. FDA grants accelerated approval to nivolumab for HCC previously treated with sorafenib. FDA.gov https://www.fda.gov/drugs/informationondrugs/approveddrugs/ucm577166.htm (2017).

  44. US Food & Drug Administration. FDA grants accelerated approval to pembrolizumab for hepatocellular carcinoma. FDA.gov https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm625705.htm (2018).

  45. Finn, R. S. et al. Results of KEYNOTE-240: phase 3 study of pembrolizumab (Pembro) vs best supportive care (BSC) for second line therapy in advanced hepatocellular carcinoma (HCC). J. Clin. Oncol. 37, 4004–4004 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bristol-Myers Squibb. Bristol-Myers Squibb Announces Results from CheckMate -459 Study Evaluating Opdivo (nivolumab) as a First-Line Treatment for Patients with Unresectable Hepatocellular Carcinoma. bms.com https://news.bms.com/press-release/bmy/bristol-myers-squibb-announces-results-checkmate-459-study-evaluating-opdivo-nivol (2019).

  47. US Food & Drug Administration. Table of surrogate endpoints that were the basis of drug approval or licensure. FDA.gov https://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/ucm613636.htm (2019).

  48. Huang, L. et al. Weak correlation of overall survival and time to progression in advanced hepatocellular carcinoma. J. Clin. Oncol. 35, 233 (2017).

    Article  Google Scholar 

  49. Terashima, T. et al. Surrogacy of time to progression for overall survival in advanced hepatocellular carcinoma treated with systemic therapy: a systematic review and meta-analysis of randomized controlled trials. Liver Cancer 8, 130–139 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tan, A., Porcher, R., Crequit, P., Ravaud, P. & Dechartres, A. Differences in treatment effect size between overall survival and progression-free survival in immunotherapy trials: a meta-epidemiologic study of trials with results posted at ClinicalTrials.gov. J. Clin. Oncol. 35, 1686–1694 (2017).

    Article  PubMed  Google Scholar 

  51. Llovet, J. M., Montal, R. & Villanueva, A. Randomized trials and endpoints in advanced HCC: role of PFS as a surrogate of survival. J. Hepatol. 70, 1262–1277 (2019).

    Article  PubMed  Google Scholar 

  52. Moertel, C. G., Hanley, J. A. & Johnson, L. A. Streptozocin alone compared with streptozocin plus fluorouracil in the treatment of advanced islet-cell carcinoma. N. Engl. J. Med. 303, 1189–1194 (1980).

    Article  CAS  PubMed  Google Scholar 

  53. Moertel, C. G. & Hanley, J. A. The effect of measuring error on the results of therapeutic trials in advanced cancer. Cancer 38, 388–394 (1976).

    Article  CAS  PubMed  Google Scholar 

  54. Miller, A. B., Hoogstraten, B., Staquet, M. & Winkler, A. Reporting results of cancer treatment. Cancer 47, 207–214 (1981).

    Article  CAS  PubMed  Google Scholar 

  55. Therasse, P. et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J. Natl Cancer Inst. 92, 205–216 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Wolchok, J. D. et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin. Cancer Res. 15, 7412–7420 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Raoul, J.-L. et al. Updated use of TACE for hepatocellular carcinoma treatment: how and when to use it based on clinical evidence. Cancer Treat. Rev. 72, 28–36 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Litière, S., Collette, S., de Vries, E. G. E., Seymour, L. & Bogaerts, J. RECIST — learning from the past to build the future. Nat. Rev. Clin. Oncol. 14, 187–192 (2017).

    Article  PubMed  CAS  Google Scholar 

  60. Reig, M. et al. Postprogression survival of patients with advanced hepatocellular carcinoma: rationale for second-line trial design. Hepatology 58, 2023–2031 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Sorbye, H., Kohne, C.-H., Sargent, D. J. & Glimelius, B. Patient characteristics and stratification in medical treatment studies for metastatic colorectal cancer: a proposal for standardization of patient characteristic reporting and stratification. Ann. Oncol. 18, 1666–1672 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Takagi, T. et al. Prognostic markers for refined stratification of IMDC intermediate-risk metastatic clear cell renal cell carcinoma treated with first-line tyrosine kinase inhibitor therapy. Target. Oncol. 14, 179–186 (2019).

    Article  PubMed  Google Scholar 

  63. Bruix, J. et al. Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL Conference. J. Hepatol. 35, 421–430 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Lencioni, R. & Llovet, J. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin. Liver Dis. 30, 052–060 (2010).

    Article  CAS  Google Scholar 

  65. Reig, M. et al. Systemic therapy for hepatocellular carcinoma: the issue of treatment stage migration and registration of progression using the BCLC-refined RECIST. Semin. Liver Dis. 34, 444–455 (2014).

    Article  PubMed  Google Scholar 

  66. Zhao, Y. et al. Which criteria applied in multi-phasic CT can predict early tumor response in patients with hepatocellular carcinoma treated using conventional TACE: RECIST, mRECIST, EASL or qEASL? Cardiovasc. Intervent. Radiol. 41, 433–442 (2018).

    Article  PubMed  Google Scholar 

  67. Mejias, M. et al. Beneficial effects of sorafenib on splanchnic, intrahepatic, and portocollateral circulations in portal hypertensive and cirrhotic rats. Hepatology 49, 1245–1256 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Pinter, M. et al. The effects of sorafenib on the portal hypertensive syndrome in patients with liver cirrhosis and hepatocellular carcinoma—a pilot study. Aliment. Pharmacol. Ther. 35, 83–91 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Fernandez, M. et al. Reversal of portal hypertension and hyperdynamic splanchnic circulation by combined vascular endothelial growth factor and platelet-derived growth factor blockade in rats. Hepatology 46, 1208–1217 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Reig, M. & Bruix, J. Lenvatinib: can a non-inferiority trial change clinical practice? Lancet 391, 1123–1124 (2018).

    Article  PubMed  Google Scholar 

  71. Tugues, S. et al. Antiangiogenic treatment with sunitinib ameliorates inflammatory infiltrate, fibrosis, and portal pressure in cirrhotic rats. Hepatology 46, 1919–1926 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Bosch, J., Abraldes, J. G., Fernández, M. & García-Pagán, J. C. Hepatic endothelial dysfunction and abnormal angiogenesis: new targets in the treatment of portal hypertension. J. Hepatol. 53, 558–567 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Bruix, J., Reig, M. & Sangro, B. Assessment of treatment efficacy in hepatocellular carcinoma: response rate, delay in progression or none of them. J. Hepatol. 66, 1114–1117 (2017).

    Article  PubMed  Google Scholar 

  74. Amit, O. et al. Blinded independent central review of progression in cancer clinical trials: results from a meta-analysis. Eur. J. Cancer 47, 1772–1778 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. US Food & Drug Administration. Memorandum to the file BLA 125085 Avastin (bevacizumab). FDA.gov https://www.fda.gov/media/79525/download (2010).

  76. Brufsky, A. Is there room for bevacizumab in metastatic breast cancer? Lancet Oncol. 17, 1175–1176 (2016).

    Article  PubMed  Google Scholar 

  77. Aghajanian, C. et al. Final overall survival and safety analysis of OCEANS, a phase 3 trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent ovarian cancer. Gynecol. Oncol. 139, 10–16 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Turner, N. C. et al. Overall survival with palbociclib and fulvestrant in advanced breast cancer. N. Engl. J. Med. 379, 1926–1936 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Maindrault-Gœbel, F. et al. Oxaliplatin reintroduction in patients previously treated with leucovorin, fluorouracil and oxaliplatin for metastatic colorectal cancer. Ann. Oncol. 15, 1210–1214 (2004).

    Article  PubMed  Google Scholar 

  80. Extra, J.-M. et al. Efficacy of trastuzumab in routine clinical practice and after progression for metastatic breast cancer patients: the observational Hermine study. Oncologist 15, 799–809 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mathur, A. K. et al. Racial/ethnic disparities in access to care and survival for patients with early-stage hepatocellular carcinoma. Arch. Surg. 145, 1158 (2010).

    Article  PubMed  Google Scholar 

  82. Díaz-González, Á. et al. Systematic review with meta-analysis: the critical role of dermatological events in patients with hepatocellular carcinoma treated with sorafenib. Aliment. Pharmacol. Ther. 49, 482–491 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Kaye, F. J., Jantz, M. A. & Dallas, J. Erlotinib or gefitinib for non–small-cell lung cancer. N. Engl. J. Med. 364, 2367–2368 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Fornasier, G., Francescon, S. & Baldo, P. An update of efficacy and safety of cetuximab in metastatic colorectal cancer: a narrative review. Adv. Ther. 35, 1497–1509 (2018).

    Article  PubMed  Google Scholar 

  86. Larkin, J. et al. Vemurafenib in patients with BRAFV600 mutated metastatic melanoma: an open-label, multicentre, safety study. Lancet Oncol. 15, 436–444 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Horwitz, E. et al. Human and mouse VEGFA-amplified hepatocellular carcinomas are highly sensitive to sorafenib treatment. Cancer Discov. 4, 730–743 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Llovet, J. M. et al. Plasma biomarkers as predictors of outcome in patients with advanced hepatocellular carcinoma. Clin. Cancer Res. 18, 2290–2300 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Villanueva, A. et al. Combining clinical, pathology, and gene expression data to predict recurrence of hepatocellular carcinoma. Gastroenterology 140, 1501–1512 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Pinyol, R. et al. Molecular predictors of prevention of recurrence in HCC with sorafenib as adjuvant treatment and prognostic factors in the phase 3 STORM trial. Gut 68, 1065–1075 (2018).

    Article  PubMed  CAS  Google Scholar 

  91. Bruix, J. et al. Adjuvant sorafenib for hepatocellular carcinoma after resection or ablation (STORM): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Oncol. 16, 1344–1354 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Nakashima, T. & Kojiro, M. Hepatocellular Carcinoma: An Atlas of Its Pathology (Springer Japan, 1987).

  93. Chen, Y. J. et al. Chromosomal changes and clonality relationship between primary and recurrent hepatocellular carcinoma. Gastroenterology 119, 431–440 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Morimoto, O. et al. Diagnosis of intrahepatic metastasis and multicentric carcinogenesis by microsatellite loss of heterozygosity in patients with multiple and recurrent hepatocellular carcinomas. J. Hepatol. 39, 215–221 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Saeki, R. et al. Intratumoral genomic heterogeneity in human hepatocellular carcinoma detected by restriction landmark genomic scanning. J. Hepatol. 33, 99–105 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Friemel, J. et al. Intratumor heterogeneity in hepatocellular carcinoma. Clin. Cancer Res. 21, 1951–1961 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Zucman-Rossi, J., Villanueva, A., Nault, J.-C. & Llovet, J. M. Genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology 149, 1226–1239 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Rimassa, L. et al. Tumor biopsy and patient enrollment in clinical trials for advanced hepatocellular carcinoma. World J. Gastroenterol. 23, 2448 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Champiat, S. et al. Hyperprogressive disease: recognizing a novel pattern to improve patient management. Nat. Rev. Clin. Oncol. 15, 748–762 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Goumard, C. et al. Low levels of microsatellite instability at simple repeated sequences commonly occur in human hepatocellular carcinoma. Cancer Genomics Proteomics 14, 329–339 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Forner, A., Reig, M. & Bruix, J. Hepatocellular carcinoma. Lancet 391, 1301–1314 (2018).

    Article  PubMed  Google Scholar 

  102. Trotti, A. et al. CTCAE v3.0: development of a comprehensive grading system for the adverse effects of cancer treatment. Semin. Radiat. Oncol. 13, 176–181 (2003).

    Article  PubMed  Google Scholar 

  103. Bruix, J. et al. Efficacy and safety of sorafenib in patients with advanced hepatocellular carcinoma: subanalyses of a phase III trial. J. Hepatol. 57, 821–829 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Cheng, A.-L. et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 10, 25–34 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Bruix, J. et al. Prognostic factors and predictors of sorafenib benefit in patients with hepatocellular carcinoma: analysis of two phase III studies. J. Hepatol. 67, 999–1008 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Finn, R. S. et al. Outcomes of sequential treatment with sorafenib followed by regorafenib for HCC: additional analyses from the phase III RESORCE trial. J. Hepatol. 69, 353–358 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02576509 (2019).

Download references

Acknowledgements

M.R. received grant support from Instituto de Salud Carlos III (PI15/00145). J.B. received grant support from Instituto de Salud Carlos III (PI18/00768), AECC (PI044031), Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement (2014 SGR 605) and WCR (AICR) 16–0026. CIBERehd is funded by the Instituto de Salud Carlos III.

Author information

Authors and Affiliations

Authors

Contributions

J.B. mentored the ideas and concepts of the manuscript. All authors contributed to all aspects of the preparation of the manuscript, including writing, editing and discussion the content of the manuscript.

Corresponding author

Correspondence to Jordi Bruix.

Ethics declarations

Competing interests

J.B. has consulted for Arqule, Bayer-Shering Pharma, Novartis, BMS, BTG-Biocompatibles, Eisai, Kowa, Terumo, Gilead, Bio-Alliance, Roche, AbbVie, Merck, Roche, Sirtex, Ipsen, Astra-Medimmune, Incyte, Quirem, Adaptimmune, Lilly, Basilea and Nerviano; and has received research and educational grants from Bayer and BTG. L.d.F. has received travel grants from Bayer and speaker fees from Bayer-Shering Pharma, BTG-Biocompatibles, Eisai, Terumo, Sirtex and Ipsen. M.R. has received speaker fees from Gilead, BMS, BTG, Lilly and Bayer, and consultancy fees for Bayer, BMS and AstraZeneca.

Additional information

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks P. Galle and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruix, J., da Fonseca, L.G. & Reig, M. Insights into the success and failure of systemic therapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 16, 617–630 (2019). https://doi.org/10.1038/s41575-019-0179-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-019-0179-x

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer