Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The individual response to antibiotics and diet — insights into gut microbial resilience and host metabolism

Abstract

Antibiotic use disrupts microbial composition and activity in humans, but whether this disruption in turn affects host metabolic health is unclear. Cohort studies show associations between antibiotic use and an increased risk of developing obesity and type 2 diabetes mellitus. Here, we review available clinical trials and show the disruptive effect of antibiotic use on the gut microbiome in humans, as well as its impact on bile acid metabolism and microbial metabolites such as short-chain fatty acids. Placebo-controlled human studies do not show a consistent effect of antibiotic use on body weight and insulin sensitivity at a population level, but rather an individual-specific or subgroup-specific response. This response to antibiotic use is affected by the resistance and resilience of the gut microbiome, factors that determine the extent of disruption and the speed of recovery afterwards. Nutritional strategies to improve the composition and functionality of the gut microbiome, as well as its recovery after antibiotic use (for instance, with prebiotics), require a personalized approach to increase their efficacy. Improved insights into key factors that influence the individual-specific response to antibiotics and dietary intervention may lead to better efficacy in reversing or preventing antibiotic-induced microbial dysbiosis as well as strategies for preventing cardiometabolic diseases.

Key points

  • Antibiotic use disrupts gut microbial composition and diversity in humans.

  • Observational studies show associations between antibiotic use and an increased risk of weight gain and development of type 2 diabetes mellitus.

  • Short-term placebo-controlled studies do not show a consistent effect of antibiotic-induced disruptions of the gut microbiome on body weight and insulin sensitivity in humans but suggest an individual-specific or subgroup-specific response.

  • The individual-specific or subgroup-specific response to antibiotic use is determined by the resistance and resilience of the gut microbiome, among other factors.

  • Dietary substrates such as prebiotics modulate gut microbial composition and function and might be used to limit the detrimental effects of antibiotic use, but will require a personalized approach to increase their efficacy.

  • More insight into the personalized interaction between the gut microbiome and host metabolism in response to prebiotics and antibiotics might lead to effective prevention of cardiometabolic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Use of antibiotics and prebiotics modulates gut microbial composition and affects similar mechanisms in microbial function, although in opposite directions.
Fig. 2: Antibiotic-induced disruption of the gut microbiome can cause a shift towards an alternative (un)healthy state, depending on resistance, resilience and recovery.

Similar content being viewed by others

References

  1. World Obesity Federation. World Obesity Atlas https://data.worldobesity.org/publications/?cat (2023).

  2. Haslam, D. W. & James, W. P. T. Obesity. Lancet 366, 1197–1209 (2005).

    Article  PubMed  Google Scholar 

  3. Pi-Sunyer, X. The medical risks of obesity. Postgrad. Med. 121, 21–33 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  4. World Health Organization (WHO) Diabetes — Fact Sheet. https://www.who.int/news-room/fact-sheets/detail/diabetes (2022).

  5. Snel, M. et al. Ectopic fat and insulin resistance: pathophysiology and effect of diet and lifestyle interventions. Int. J. Endocrinol. 2012, 983814 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Blüher, M. Adipose tissue dysfunction contributes to obesity related metabolic diseases. Best Pract. Res. Clin. Endocrinol. Metab. 27, 163–177 (2013).

    Article  PubMed  Google Scholar 

  7. Canfora, E. E., Meex, R. C. R., Venema, K. & Blaak, E. E. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat. Rev. Endocrinol. 15, 261–273 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546 (2013).

    Article  PubMed  Google Scholar 

  9. Loftfield, E. et al. Association of body mass index with fecal microbial diversity and metabolites in the northern Finland birth cohort. Cancer Epidemiol. Biomark. Prev. 29, 2289–2299 (2020).

    Article  CAS  Google Scholar 

  10. Thursby, E. & Juge, N. Introduction to the human gut microbiota. Biochem. J. 474, 1823–1836 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Browne, A. J. et al. Global antibiotic consumption and usage in humans, 2000–18: a spatial modelling study. Lancet Planet. Health 5, e893–e904 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rinninella, E. et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 7, 14 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lloyd-Price, J., Abu-Ali, G. & Huttenhower, C. The healthy human microbiome. Genome Med. 8, 51–51 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tremaroli, V. & Backhed, F. Functional interactions between the gut microbiota and host metabolism. Nature 489, 242–249 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Kalbermatter, C., Fernandez Trigo, N., Christensen, S. & Ganal-Vonarburg, S. C. Maternal microbiota, early life colonization and breast milk drive immune development in the newborn. Front. Immunol. 12, 683022 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Heintz-Buschart, A. & Wilmes, P. Human gut microbiome: function matters. Trends Microbiol. 26, 563–574 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Zmora, N., Suez, J. & Elinav, E. You are what you eat: diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 16, 35–56 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Gibson, G. R. et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14, 491–502 (2017).

    Article  PubMed  Google Scholar 

  20. Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Bäckhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Hamer, H. M., De Preter, V., Windey, K. & Verbeke, K. Functional analysis of colonic bacterial metabolism: relevant to health? Am. J. Physiol. Gastrointest. Liver Physiol. 302, G1–G9 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Russell, W. R. et al. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am. J. Clin. Nutr. 93, 1062–1072 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Diether, N. E. & Willing, B. P. Microbial fermentation of dietary protein: an important factor in diet–microbe–host interaction. Microorganisms 7, 19 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gawałko, M. et al. Gut microbiota, dysbiosis and atrial fibrillation. Arrhythmogenic mechanisms and potential clinical implications. Cardiovasc. Res. 118, 2415–2427 (2022).

    Article  PubMed  Google Scholar 

  25. Agus, A., Clément, K. & Sokol, H. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut 70, 1174–1182 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Shah, S. et al. Physical activity-induced alterations of the gut microbiota are BMI dependent. FASEB J. 37, e22882 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Estaki, M. et al. Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome 4, 42 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Claesson, M. J. et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc. Natl Acad. Sci. USA 108, 4586–4591 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Xu, C., Zhu, H. & Qiu, P. Aging progression of human gut microbiota. BMC Microbiol. 19, 236 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Melander, R. J., Zurawski, D. V. & Melander, C. Narrow-spectrum antibacterial agents. MedChemComm 9, 12–21 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Brüssow, H. Problems with the concept of gut microbiota dysbiosis. Microb. Biotechnol. 13, 423–434 (2020).

    Article  PubMed  Google Scholar 

  32. Fassarella, M. et al. Gut microbiome stability and resilience: elucidating the response to perturbations in order to modulate gut health. Gut 70, 595–605 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Lange, K., Buerger, M., Stallmach, A. & Bruns, T. Effects of antibiotics on gut microbiota. Dig. Dis. 34, 260–268 (2016).

    Article  PubMed  Google Scholar 

  34. Gentile, C. L. & Weir, T. L. The gut microbiota at the intersection of diet and human health. Science 362, 776 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. European Centre for Disease Prevention and Control (ECDC) Antimicrobial Consumption in the EU/EEA (ESAC-Net) — Annual Epidemiological Report 2022 (ECDC, 2023).

  36. Kapoor, G., Saigal, S. & Elongavan, A. Action and resistance mechanisms of antibiotics: a guide for clinicians. J. Anaesthesiol. Clin. Pharmacol. 33, 300–305 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Durack, J. & Lynch, S. V. The gut microbiome: relationships with disease and opportunities for therapy. J. Exp. Med. 216, 20–40 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sommer, F., Anderson, J. M., Bharti, R., Raes, J. & Rosenstiel, P. The resilience of the intestinal microbiota influences health and disease. Nat. Rev. Microbiol. 15, 630–638 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Nel Van Zyl, K., Matukane, S. R., Hamman, B. L., Whitelaw, A. C. & Newton-Foot, M. Effect of antibiotics on the human microbiome: a systematic review. Int. J. Antimicrob. Agents 59, 106502 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Ferrer, M., Méndez-García, C., Rojo, D., Barbas, C. & Moya, A. Antibiotic use and microbiome function. Biochem. Pharmacol. 134, 114–126 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. McDonnell, L. et al. Association between antibiotics and gut microbiome dysbiosis in children: systematic review and meta-analysis. Gut Microbes 13, 1–18 (2021).

    Article  PubMed  Google Scholar 

  42. Ainonen, S. et al. Antibiotics at birth and later antibiotic courses: effects on gut microbiota. Pediatr. Res. 91, 154–162 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Bäckhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703 (2015).

    Article  PubMed  Google Scholar 

  44. Utzschneider, K. M., Kratz, M., Damman, C. J. & Hullar, M. Mechanisms linking the gut microbiome and glucose metabolism. J. Clin. Endocrinol. Metab. 101, 1445–1454 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mills, S., Stanton, C., Lane, J. A., Smith, G. J. & Ross, R. P. Precision nutrition and the microbiome, part I: current state of the science. Nutrients 11, 923 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Russell, D. W. The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 72, 137–174 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Pols, T. W. H., Noriega, L. G., Nomura, M., Auwerx, J. & Schoonjans, K. The bile acid membrane receptor TGR5: a valuable metabolic target. Dig. Dis. 29, 37–44 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Staels, B. & Fonseca, V. A. Bile acids and metabolic regulation: mechanisms and clinical responses to bile acid sequestration. Diabetes Care 32, S237–S245 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Thomas, C. et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 10, 167–177 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Winston, J. A. & Theriot, C. M. Diversification of host bile acids by members of the gut microbiota. Gut Microbes 11, 158–171 (2020).

    Article  PubMed  Google Scholar 

  51. de Aguiar Vallim, T. Q., Tarling, E. J. & Edwards, P. A. Pleiotropic roles of bile acids in metabolism. Cell Metab. 17, 657–669 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Stamler, J. et al. Relationship of baseline serum cholesterol levels in 3 large cohorts of younger men to long-term coronary, cardiovascular, and all-cause mortality and to longevity. JAMA 284, 311–318 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Brown, A. J. et al. The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278, 11312–11319 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Chambers, E. S. et al. Acute oral sodium propionate supplementation raises resting energy expenditure and lipid oxidation in fasted humans. Diabetes Obes. Metab. 20, 1034–1039 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. van der Beek, C. M. et al. Distal, not proximal, colonic acetate infusions promote fat oxidation and improve metabolic markers in overweight/obese men. Clin. Sci. 130, 2073–2082 (2016).

    Article  Google Scholar 

  56. Canfora, E. E. et al. Colonic infusions of short-chain fatty acid mixtures promote energy metabolism in overweight/obese men: a randomized crossover trial. Sci. Rep. 7, 2360 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  57. Canfora, E. E., Jocken, J. W. & Blaak, E. E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 11, 577–591 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Blaak, E. E. et al. Short chain fatty acids in human gut and metabolic health. Benef. Microbes 11, 411–455 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Chambers, E. S. et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64, 1744–1754 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Tolhurst, G. et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61, 364–371 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Karra, E., Chandarana, K. & Batterham, R. L. The role of peptide YY in appetite regulation and obesity. J. Physiol. 587, 19–25 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Baggio, L. L. & Drucker, D. J. Biology of incretins: GLP-1 and GIP. Gastroenterology 132, 2131–2157 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Rowlands, J., Heng, J., Newsholme, P. & Carlessi, R. Pleiotropic effects of GLP-1 and analogs on cell signaling, metabolism, and function. Front. Endocrinol. 9, 672 (2018).

    Article  Google Scholar 

  64. Feng, Y. et al. Antibiotics induced intestinal tight junction barrier dysfunction is associated with microbiota dysbiosis, activated NLRP3 inflammasome and autophagy. PLoS ONE 14, e0218384 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee, S. H. Intestinal permeability regulation by tight junction: implication on inflammatory bowel diseases. Intest. Res. 13, 11–18 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Moreira, A. P. B., Texeira, T. F. S., Ferreira, A. B., do Carmo Gouveia Peluzio, M. & de Cássia Gonçalves Alfenas, R. Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia. Br. J. Nutr. 108, 801–809 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Mehta, N. N. et al. Experimental endotoxemia induces adipose inflammation and insulin resistance in humans. Diabetes 59, 172–181 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Steimle, A., Autenrieth, I. B. & Frick, J.-S. Structure and function: lipid A modifications in commensals and pathogens. Int. J. Med. Microbiol. 306, 290–301 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Anhê, F. F., Barra, N. G., Cavallari, J. F., Henriksbo, B. D. & Schertzer, J. D. Metabolic endotoxemia is dictated by the type of lipopolysaccharide. Cell Rep. 36, 109691 (2021).

    Article  PubMed  Google Scholar 

  70. Ghosh, S. S., Wang, J., Yannie, P. J. & Ghosh, S. Intestinal barrier dysfunction, LPS translocation, and disease development. J. Endocr. Soc. 4, bvz039 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Cani, P. D. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Wolf, A. J. & Underhill, D. M. Peptidoglycan recognition by the innate immune system. Nat. Rev. Immunol. 18, 243–254 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Clasen, S. J. et al. Silent recognition of flagellins from human gut commensal bacteria by toll-like receptor 5. Sci. Immunol. 8, eabq7001 (2023).

    Article  CAS  PubMed  Google Scholar 

  75. Creely, S. J. et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 292, E740–E747 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Kallio, K. A. E. et al. Endotoxemia, nutrition, and cardiometabolic disorders. Acta Diabetol. 52, 395–404 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Geng, J., Ni, Q., Sun, W., Li, L. & Feng, X. The links between gut microbiota and obesity and obesity related diseases. Biomed. Pharmacother. 147, 112678 (2022).

    Article  CAS  PubMed  Google Scholar 

  78. Natividad, J. M. et al. Impaired aryl hydrocarbon receptor ligand production by the gut microbiota is a key factor in metabolic syndrome. Cell Metab. 28, 737–749.e4 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Mahana, D. et al. Antibiotic perturbation of the murine gut microbiome enhances the adiposity, insulin resistance, and liver disease associated with high-fat diet. Genome Med. 8, 48 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Cho, I. et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488, 621–626 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nobel, Y. R. et al. Metabolic and metagenomic outcomes from early-life pulsed antibiotic treatment. Nat. Commun. 6, 7486–7486 (2015).

    Article  ADS  PubMed  Google Scholar 

  82. Membrez, M. et al. Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice. FASEB J. 22, 2416–2426 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Carvalho, B. M. et al. Modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice. Diabetologia 55, 2823–2834 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Murphy, E. F. et al. Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet-induced obesity. Gut 62, 220–226 (2013).

    Article  PubMed  Google Scholar 

  85. Rodrigues, R. R. et al. Antibiotic-induced alterations in gut microbiota are associated with changes in glucose metabolism in healthy mice. Front. Microbiol. 8, 2306–2306 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Rausch, P. et al. Analysis of factors contributing to variation in the C57BL/6J fecal microbiota across German animal facilities. Int. J. Med. Microbiol. 306, 343–355 (2016).

    Article  PubMed  Google Scholar 

  87. Hild, B. et al. Neonatal exposure to a wild-derived microbiome protects mice against diet-induced obesity. Nat. Metab. 3, 1042–1057 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sprockett, D., Fukami, T. & Relman, D. A. Role of priority effects in the early-life assembly of the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 15, 197–205 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Jian, C. et al. Early-life gut microbiota and its connection to metabolic health in children: perspective on ecological drivers and need for quantitative approach. eBioMedicine 69, 103475 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Principi, N. & Esposito, S. Antibiotic administration and the development of obesity in children. Int. J. Antimicrob. Agents 47, 171–177 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. Shao, X. et al. Antibiotic exposure in early life increases risk of childhood obesity: a systematic review and meta-analysis. Front. Endocrinol. 8, 170 (2017).

    Article  Google Scholar 

  92. Rasmussen, S. H. et al. Antibiotic exposure in early life and childhood overweight and obesity: a systematic review and meta-analysis. Diabetes Obes. Metab. 20, 1508–1514 (2018).

    Article  PubMed  Google Scholar 

  93. Miller, S. A., Wu, R. K. S. & Oremus, M. The association between antibiotic use in infancy and childhood overweight or obesity: a systematic review and meta-analysis. Obes. Rev. 19, 1463–1475 (2018).

    Article  CAS  PubMed  Google Scholar 

  94. Mor, A. et al. Prenatal exposure to systemic antibacterials and overweight and obesity in Danish schoolchildren: a prevalence study. Int. J. Obes. 39, 1450–1455 (2015).

    Article  CAS  Google Scholar 

  95. Aversa, Z. et al. Association of infant antibiotic exposure with childhood health outcomes. Mayo Clin. Proc. 96, 66–77 (2021).

    Article  PubMed  Google Scholar 

  96. Furlong, M., Deming-Halverson, S. & Sandler, D. P. Chronic antibiotic use during adulthood and weight change in the Sister Study. PLoS ONE 14, e0216959 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mikkelsen, K. H., Knop, F. K., Frost, M., Hallas, J. & Pottegård, A. Use of antibiotics and risk of type 2 diabetes: a population-based case–control study. J. Clin. Endocrinol. Metab. 100, 3633–3640 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ye, M. et al. Systemic use of antibiotics and risk of diabetes in adults: a nested case–control study of Alberta’s Tomorrow Project. Diabetes Obes. Metab. 20, 849–857 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. Boursi, B., Mamtani, R., Haynes, K. & Yang, Y.-X. The effect of past antibiotic exposure on diabetes risk. Eur. J. Endocrinol. 172, 639–648 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kummeling, I. & Thijs, C. Reverse causation and confounding-by-indication: do they or do they not explain the association between childhood antibiotic treatment and subsequent development of respiratory illness? Clin. Exp. Allergy 38, 1249–1251 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Vrieze, A. et al. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. J. Hepatol. 60, 824–831 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Reijnders, D. et al. Effects of gut microbiota manipulation by antibiotics on host metabolism in obese humans: a randomized double-blind placebo-controlled trial. Cell Metab. 24, 63–74 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Reijnders, D. et al. Short-term microbiota manipulation and forearm substrate metabolism in obese men: a randomized, double-blind, placebo-controlled trial. Obes. Facts 11, 318–326 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Basolo, A. et al. Effects of underfeeding and oral vancomycin on gut microbiome and nutrient absorption in humans. Nat. Med. 26, 589–598 (2020).

    Article  CAS  PubMed  Google Scholar 

  105. Palleja, A. et al. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat. Microbiol. 3, 1255–1265 (2018).

    Article  CAS  PubMed  Google Scholar 

  106. Mikkelsen, K. H. et al. Effect of antibiotics on gut microbiota, gut hormones and glucose metabolism. PLoS ONE 10, e0142352 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Raymond, F. et al. The initial state of the human gut microbiome determines its reshaping by antibiotics. ISME J. 10, 707–720 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Vliex, L. M. M. et al. Fecal carriage of vanB antibiotic resistance gene affects adipose tissue function under vancomycin use. Gut Microbes 14, 2083905 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Stogios, P. J. & Savchenko, A. Molecular mechanisms of vancomycin resistance. Protein Sci. 29, 654–669 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Asnicar, F. et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat. Med. 27, 321–332 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  112. Wan, Y. et al. Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial. Gut 68, 1417–1429 (2019).

    Article  CAS  PubMed  Google Scholar 

  113. De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. USA 107, 14691–14696 (2010).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  114. Fragiadakis, G. K. et al. Long-term dietary intervention reveals resilience of the gut microbiota despite changes in diet and weight. Am. J. Clin. Nutr. 111, 1127–1136 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Berry, S. E. et al. Human postprandial responses to food and potential for precision nutrition. Nat. Med. 26, 964–973 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Müller, M. et al. Effect of wheat bran derived prebiotic supplementation on gastrointestinal transit, gut microbiota, and metabolic health: a randomized controlled trial in healthy adults with a slow gut transit. Gut Microbes 12, 1704141 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Hjorth, M. F. et al. Pre-treatment microbial Prevotella-to-Bacteroides ratio, determines body fat loss success during a 6-month randomized controlled diet intervention. Int. J. Obes. 42, 580–583 (2018).

    Article  CAS  Google Scholar 

  119. Hjorth, M. F. et al. Prevotella-to-Bacteroides ratio predicts body weight and fat loss success on 24-week diets varying in macronutrient composition and dietary fiber: results from a post-hoc analysis. Int. J. Obes. 43, 149–157 (2019).

    Article  CAS  Google Scholar 

  120. Cronin, P., Joyce, S. A., O’Toole, P. W. & O’Connor, E. M. Dietary fibre modulates the gut microbiota. Nutrients 13, 1655 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Healey, G. et al. Habitual dietary fibre intake influences gut microbiota response to an insulin-type fructan prebiotic: a randomised, double-blind, placebo-controlled, cross-over, human intervention study. Br. J. Nutr. 119, 176–189 (2018).

    Article  CAS  PubMed  Google Scholar 

  122. Kootte, R. S. et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab. 26, 611–619.e6 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. Jardon, K. M., Canfora, E. E., Goossens, G. H. & Blaak, E. E. Dietary macronutrients and the gut microbiome: a precision nutrition approach to improve cardiometabolic health. Gut 71, 1214–1226 (2022).

    Article  PubMed  Google Scholar 

  124. Roager, H. M. & Christensen, L. H. Personal diet–microbiota interactions and weight loss. Proc. Nutr. Soc. 81, 243–254 (2022).

    Article  CAS  PubMed  Google Scholar 

  125. Liu, H. et al. Butyrate: a double-edged sword for health? Adv. Nutr. 9, 21–29 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Pushpass, R.-A. G., Alzoufairi, S., Jackson, K. G. & Lovegrove, J. A. Circulating bile acids as a link between the gut microbiota and cardiovascular health: impact of prebiotics, probiotics and polyphenol-rich foods. Nutr. Res. Rev. 35, 161–180 (2022).

    Article  CAS  PubMed  Google Scholar 

  127. Delzenne, N. M., Neyrinck, A. M. & Cani, P. D. Modulation of the gut microbiota by nutrients with prebiotic properties: consequences for host health in the context of obesity and metabolic syndrome. Microb. Cell Fact. 10, S10 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Canfora, E. E. et al. Fiber mixture-specific effect on distal colonic fermentation and metabolic health in lean but not in prediabetic men. Gut Microbes 14, 2009297 (2022).

    Article  PubMed  Google Scholar 

  129. Holmes, Z. C. et al. Microbiota responses to different prebiotics are conserved within individuals and associated with habitual fiber intake. Microbiome 10, 114 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ladirat, S. E. et al. Exploring the effects of galacto-oligosaccharides on the gut microbiota of healthy adults receiving amoxicillin treatment. Br. J. Nutr. 112, 536–546 (2014).

    Article  CAS  PubMed  Google Scholar 

  131. Zierer, J. et al. The fecal metabolome as a functional readout of the gut microbiome. Nat. Genet. 50, 790–795 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. ClinicalTrials.gov. US National Library of Medicine. https://www.clinicaltrials.gov/study/NCT04561284 (2022).

Download references

Author information

Authors and Affiliations

Authors

Contributions

E.E.B. and J.P. made a substantial contribution to discussion of content and reviewed/edited the manuscript before submission. L.M.M.V. researched data for the article, made a substantial contribution to discussion of the content and wrote the article. A.N. and E.G.Z. reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Ellen E. Blaak.

Ethics declarations

Competing interests

A.N. is an employee of FrieslandCampina. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Martin Blaser and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Antibiotic

A compound with antibacterial activity. Can be bactericidal (kills bacteria) or bacteriostatic (stops growth).

Human gut microbiome

The ecosystem of bacteria, fungi, archaea and viruses residing in the gastrointestinal tract, especially the intestines and its ‘theatre of activity’.

Microbial dysbiosis

An imbalance in the regular bacterial composition, distribution or activity.

Perturbations

A trigger that can lead to changes in the ecosystem. Can be caused by antibiotic use or a dietary change, among other things.

Prebiotic

A substrate that is selectively utilized by host microorganisms conferring a healthy benefit (defined by the International Association for Probiotics and Prebiotics).

Recovery

The ability of an ecosystem to return to its initial state after a perturbation.

Resilience

The speed at and extent to which the ecosystem returns to its initial state after a perturbation.

Resistance

The ability of an ecosystem to be unaffected by a perturbation and therefore remain in its initial state.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vliex, L.M.M., Penders, J., Nauta, A. et al. The individual response to antibiotics and diet — insights into gut microbial resilience and host metabolism. Nat Rev Endocrinol (2024). https://doi.org/10.1038/s41574-024-00966-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41574-024-00966-0

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology