Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sarcopenic obesity in older adults: a clinical overview

Abstract

Sarcopenic obesity is characterized by a concurrent decline in muscle mass and function, along with increased adipose tissue. Sarcopenic obesity is a growing concern in older adults owing to significant health consequences, including implications for mortality, comorbidities and risk of developing geriatric syndromes. A 2022 consensus statement established a new definition and diagnostic criteria for sarcopenic obesity. The pathophysiology of this condition involves a complex interplay between muscle, adipose tissue, hormonal changes, inflammation, oxidative stress and lifestyle factors, among others. Sarcopenic obesity is treated with a range of management approaches, such as lifestyle interventions, exercise, nutrition and medical therapies. Emerging therapies that were developed for treating other conditions may be relevant to sarcopenic obesity, including novel pharmacological agents and personalized approaches such as precision medicine. In this Review, we synthesize the current knowledge of the clinical importance of sarcopenic obesity, its assessment and diagnosis, along with current and emerging management strategies.

Key points

  • Sarcopenic obesity involves an ageing-associated increase in adiposity and reduction in muscle mass and function, poses a major health risk to older adults, and presents diagnostic and management challenges in clinical settings.

  • The multifaceted pathophysiology of sarcopenic obesity requires a comprehensive understanding of hormonal shifts, inflammation, muscle and adipose tissue changes, and lifestyle factors for effective patient care.

  • Recently proposed consensus criteria developed by international experts are enhancing the clinical diagnosis and assessment of sarcopenic obesity and aid in achieving more precise and consistent patient evaluations.

  • Management strategies vary from lifestyle modifications, including exercise and targeted nutritional plans, to emerging drug therapies, broadening the treatment options for sarcopenic obesity.

  • As sarcopenic obesity research progresses, the need for clinician involvement in collaborative research efforts and the implementation of new findings into clinical practice is paramount.

  • The increasing use of digital technology in delivering diet and exercise interventions offers a promising avenue for modernized, patient-centred care, countering outdated perceptions about engagement with e-health by older adults.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Clinical consequences of sarcopenic obesity.
Fig. 2: Risk of various clinical consequences of sarcopenic obesity.
Fig. 3: Factors contributing to the development of sarcopenic obesity.
Fig. 4: Factors that contribute to weight gain and resulting changes in body composition, including sarcopenic obesity.
Fig. 5: Proposed algorithm for screening and diagnosis of sarcopenic obesity.
Fig. 6: Current, emerging and potential management strategies for sarcopenic obesity.

Similar content being viewed by others

References

  1. Heber, D. et al. Clinical detection of sarcopenic obesity by bioelectrical impedance analysis. Am. J. Clin. Nutr. 64, 472s–477s (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Donini, L. M. et al. Definition and diagnostic criteria for sarcopenic obesity: ESPEN and EASO consensus statement. Clin. Nutr. 41, 990–1000 (2022). Collaboration between ESPEN and EASO has established a unified definition and diagnostic criteria for sarcopenic obesity, aiming to streamline research and treatment approaches for this prevalent condition.

    Article  CAS  PubMed  Google Scholar 

  3. Donini, L. M. et al. Definition and diagnostic criteria for sarcopenic obesity: ESPEN and EASO consensus statement. Obes. Facts 15, 321–335 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Roubenoff, R. Sarcopenic obesity: the confluence of two epidemics. Obes. Res. 12, 887–888 (2004). This commentary discusses how the convergence of the obesity epidemic with an ageing population magnifies the risk of sarcopenic obesity, posing unprecedented health challenges and underscoring the urgent need for interdisciplinary collaboration.

    Article  PubMed  Google Scholar 

  5. Gao, Q. et al. Global prevalence of sarcopenic obesity in older adults: a systematic review and meta-analysis. Clin. Nutr. 40, 4633–4641 (2021).

    Article  PubMed  Google Scholar 

  6. Donini, L. M. et al. Critical appraisal of definitions and diagnostic criteria for sarcopenic obesity based on a systematic review. Clin. Nutr. 39, 2368–2388 (2020). This systematic review, sponsored by ESPEN and EASO, examines various definitions and diagnostic criteria for sarcopenic obesity across studies, highlighting significant inconsistencies and emphasizing the urgent need for a universally accepted definition, diagnostic standards and relevant cut-off values to improve research, prevalence assessments and intervention strategies.

    Article  PubMed  Google Scholar 

  7. Murdock, D. J. et al. The prevalence of low muscle mass associated with obesity in the USA. Skelet. Muscle 12, 26 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kirwan, R. et al. Sarcopenia during COVID-19 lockdown restrictions: long-term health effects of short-term muscle loss. Geroscience 42, 1547–1578 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Montes-Ibarra, M. et al. The impact of long COVID-19 on muscle health. Clin. Geriatr. Med. 38, 545–557 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Montes-Ibarra, M. et al. Prevalence and clinical implications of abnormal body composition phenotypes in patients with COVID-19: a systematic review. Am. J. Clin. Nutr. 117, 1288–1305 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Stenholm, S. et al. Sarcopenic obesity: definition, cause and consequences. Curr. Opin. Clin. Nutr. Metab. Care 11, 693–700 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Siervo, M. et al. Body composition indices of a load-capacity model: gender- and BMI-specific reference curves. Public. Health Nutr. 18, 1245–1254 (2015).

    Article  PubMed  Google Scholar 

  13. Wells, J. C. Historical cohort studies and the early origins of disease hypothesis: making sense of the evidence. Proc. Nutr. Soc. 68, 179–188 (2009).

    Article  PubMed  Google Scholar 

  14. Prado, C. M. M., Wells, J. C. K., Smith, S. R., Stephan, B. C. M. & Siervo, M. Sarcopenic obesity: a critical appraisal of the current evidence. Clin. Nutr. 31, 583–601 (2012). This review highlights the significance of sarcopenic obesity due to its dual metabolic burden, and underscores the inconsistency in study methodologies.

    Article  CAS  PubMed  Google Scholar 

  15. Baumgartner, R. N. & Waters, D. L. in Principles and Practice of Geriatric Medicine (eds Pathy, M. S. J., Sinclair, A. J. & Morley, J. E.) 909–933 (Wiley, 2005).

  16. Cruz-Jentoft, A. J., Gonzalez, M. C. & Prado, C. M. Sarcopenia ≠ low muscle mass. Eur. Geriatr. Med. 14, 225–228 (2023).

    Article  PubMed  Google Scholar 

  17. Baumgartner, R. N. Body composition in healthy aging. Ann. N. Y. Acad. Sci. 904, 437–448 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Baumgartner, R. N. et al. Sarcopenic obesity predicts instrumental activities of daily living disability in the elderly. Obes. Res. 12, 1995–2004 (2004). This is one of the first studies to show that older adults with sarcopenic obesity are two to three times more likely to experience a decline in daily activity capabilities, underscoring the independent link between sarcopenic obesity and the onset of functional limitations in community-dwelling seniors.

    Article  PubMed  Google Scholar 

  19. Bahat, G., Kilic, C., Ozkok, S., Ozturk, S. & Karan, M. A. Associations of sarcopenic obesity versus sarcopenia alone with functionality. Clin. Nutr. 40, 2851–2859 (2021).

    Article  PubMed  Google Scholar 

  20. Misra, D. et al. Risk of knee osteoarthritis with obesity, sarcopenic obesity, and sarcopenia. Arthritis Rheumatol. 71, 232–237 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Atmis, V. et al. The relationship between all-cause mortality sarcopenia and sarcopenic obesity among hospitalized older people. Aging Clin. Exp. Res. 31, 1563–1572 (2019).

    Article  PubMed  Google Scholar 

  22. Batsis, J. A., Mackenzie, T. A., Jones, J. D., Lopez-Jimenez, F. & Bartels, S. J. Sarcopenia, sarcopenic obesity and inflammation: results from the 1999–2004 National Health and Nutrition Examination Survey. Clin. Nutr. 35, 1472–1483 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chung, J. H., Hwang, H. J., Shin, H.-Y. & Han, C. H. Association between sarcopenic obesity and bone mineral density in middle-aged and elderly Korean. Ann. Nutr. Metab. 68, 77–84 (2015).

    Article  PubMed  Google Scholar 

  24. Fábrega-Cuadros, R. et al. Associations of sleep and depression with obesity and sarcopenia in middle-aged and older adults. Maturitas 142, 1–7 (2020).

    Article  PubMed  Google Scholar 

  25. Gandham, A. et al. Falls, fractures, and areal bone mineral density in older adults with sarcopenic obesity: a systematic review and meta-analysis. Obes. Rev. 22, e13187 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Gao, Q. et al. Prevalence and prognostic value of sarcopenic obesity in patients with cancer: a systematic review and meta-analysis. Nutrition 101, 111704 (2022).

    Article  PubMed  Google Scholar 

  27. Gortan Cappellari, G. et al. Sarcopenic obesity: what about in the cancer setting? Nutrition 98, 111624 (2022).

    Article  PubMed  Google Scholar 

  28. Ishii, S. et al. The association between sarcopenic obesity and depressive symptoms in older Japanese adults. PLoS ONE 11, e0162898 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Frisoli, A. Jr et al. Sarcopenic obesity definitions and their associations with physical frailty in older Brazilian adults: data from the SARCOS study. Arch. Endocrinol. Metab. 67, 361–371 (2023).

    PubMed  PubMed Central  Google Scholar 

  30. Juez, L. D. et al. Impact of sarcopenic obesity on long-term cancer outcomes and postoperative complications after gastrectomy for gastric cancer. J. Gastrointest. Surg. 27, 35–46 (2023).

    Article  PubMed  Google Scholar 

  31. Kim, M. K. et al. Vitamin D deficiency is associated with sarcopenia in older Koreans, regardless of obesity: the fourth Korea National Health and Nutrition Examination Surveys (KNHANES IV) 2009. J. Clin. Endocrinol. Metab. 96, 3250–3256 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Kobayashi, A. et al. Impact of sarcopenic obesity on outcomes in patients undergoing hepatectomy for hepatocellular carcinoma. Ann. Surg. 269, 924–931 (2019).

    Article  PubMed  Google Scholar 

  33. Lee, S. E., Park, J.-H., Kim, K.-A., Kang, Y.-S. & Choi, H. S. Association between sarcopenic obesity and pulmonary function in Korean elderly: results from the Korean National Health and Nutrition Examination Survey. Calcif. Tissue Int. 106, 124–130 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Liao, C.-D., Huang, S.-W., Huang, Y.-Y. & Lin, C.-L. Effects of sarcopenic obesity and its confounders on knee range of motion outcome after total knee replacement in older adults with knee osteoarthritis: a retrospective study. Nutrients 13, 3817 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liu, C. et al. Deciphering the “obesity paradox” in the elderly: a systematic review and meta-analysis of sarcopenic obesity. Obes. Rev. 24, e13534 (2023).

    Article  CAS  PubMed  Google Scholar 

  36. Mintziras, I. et al. Sarcopenia and sarcopenic obesity are significantly associated with poorer overall survival in patients with pancreatic cancer: systematic review and meta-analysis. Int. J. Surg. 59, 19–26 (2018).

    Article  PubMed  Google Scholar 

  37. Murawiak, M. et al. Sarcopenia, obesity, sarcopenic obesity and risk of poor nutritional status in Polish community-dwelling older people aged 60 years and over. Nutrients 14, 2889 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Pedrazzani, C. et al. Impact of visceral obesity and sarcobesity on surgical outcomes and recovery after laparoscopic resection for colorectal cancer. Clin. Nutr. 39, 3763–3770 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Pilati, I., Slee, A. & Frost, R. Sarcopenic obesity and depression: a systematic review. J. Frailty Aging 11, 51–58 (2022).

    CAS  PubMed  Google Scholar 

  40. Rossi, A. P. et al. Dynapenic abdominal obesity as a predictor of worsening disability, hospitalization, and mortality in older adults: results from the InCHIANTI study. J. Gerontol. A Biol. Sci. 72, 1098–1104 (2017). This study reveals that older adults with dynapenic abdominal obesity have an increased risk of disability progression, hospitalization and death.

    Article  Google Scholar 

  41. Saito, H. et al. Sarcopenic obesity is associated with impaired physical function and mortality in older patients with heart failure: insight from FRAGILE-HF. BMC Geriatr. 22, 556 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Silva Neto, L. S., Karnikowiski, M. G. O., Tavares, A. B. & Lima, R. M. Association between sarcopenia, sarcopenic obesity, muscle strength and quality of life variables in elderly women. Rev. Bras. Fisioter. 16, 360–367 (2012).

    Article  PubMed  Google Scholar 

  43. Someya, Y. et al. Sarcopenic obesity is associated with cognitive impairment in community-dwelling older adults: the Bunkyo Health Study. Clin. Nutr. 41, 1046–1051 (2022).

    Article  PubMed  Google Scholar 

  44. Yamashita, M. et al. Prognostic value of sarcopenic obesity estimated by computed tomography in patients with cardiovascular disease and undergoing surgery. J. Cardiol. 74, 273–278 (2019).

    Article  PubMed  Google Scholar 

  45. Yang, M. et al. Sarcopenic obesity is associated with frailty among community-dwelling older adults: findings from the WCHAT study. BMC Geriatr. 22, 863 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yoshimura, Y. et al. The applicability of the ESPEN and EASO-defined diagnostic criteria for sarcopenic obesity in Japanese patients after stroke: prevalence and association with outcomes. Nutrients 14, 4205 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  47. JafariNasabian, P., Inglis, J. E., Reilly, W., Kelly, O. J. & Ilich, J. Z. Aging human body: changes in bone, muscle and body fat with consequent changes in nutrient intake. J. Endocrinol. 234, R37–R51 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Sakuma, K. & Yamaguchi, A. Sarcopenic obesity and endocrinal adaptation with age. Int. J. Endocrinol. 2013, 204164 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Moreira-Pais, A., Ferreira, R., Oliveira, P. A. & Duarte, J. A. A neuromuscular perspective of sarcopenia pathogenesis: deciphering the signaling pathways involved. Geroscience 44, 1199–1213 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gonzalez, A. et al. The critical role of oxidative stress in sarcopenic obesity. Oxid. Med. Cell Longev. 2021, 4493817 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Huo, F., Liu, Q. & Liu, H. Contribution of muscle satellite cells to sarcopenia. Front. Physiol. 13, 892749 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jeon, Y. K. et al. Vascular dysfunction as a potential culprit of sarcopenia. Exp. Gerontol. 145, 111220 (2021).

    Article  PubMed  Google Scholar 

  53. Cruz-Jentoft, A. J. et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48, 16–31 (2019). The European Working Group on Sarcopenia in Older People (EWGSOP2) updated their 2010 sarcopenia definition in 2018, emphasizing muscle strength as a primary indicator, streamlining diagnosis methods, and advocating for early detection, treatment and increased research.

    Article  PubMed  Google Scholar 

  54. Volpi, E., Nazemi, R. & Fujita, S. Muscle tissue changes with aging. Curr. Opin. Clin. Nutr. Metab. Care 7, 405–410 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Correa-de-Araujo, R. et al. Myosteatosis in the context of skeletal muscle function deficit: an Interdisciplinary Workshop at the National Institute on Aging. Front. Physiol. 11, 963 (2020). This workshop discusses the impact of myosteatosis on skeletal muscle function during aging, detailing its connection to metabolic disease, evaluation techniques and prospective interventions, and emphasizing the importance of innovative research domains and interdisciplinary synergy.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Larsson, L. et al. Sarcopenia: aging-related loss of muscle mass and function. Physiol. Rev. 99, 427–511 (2019).

    Article  PubMed  Google Scholar 

  57. Kawai, T., Autieri, M. V. & Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Cell Physiol. 320, C375–C391 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Shou, J., Chen, P. J. & Xiao, W. H. Mechanism of increased risk of insulin resistance in aging skeletal muscle. Diabetol. Metab. Syndr. 12, 14 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Meng, S. J. & Yu, L. J. Oxidative stress, molecular inflammation and sarcopenia. Int. J. Mol. Sci. 11, 1509–1526 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Powers, S. K., Smuder, A. J. & Criswell, D. S. Mechanistic links between oxidative stress and disuse muscle atrophy. Antioxid. Redox Signal. 15, 2519–2528 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen, M., Wang, Y., Deng, S., Lian, Z. & Yu, K. Skeletal muscle oxidative stress and inflammation in aging: focus on antioxidant and anti-inflammatory therapy. Front. Cell Dev. Biol. 10, 964130 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lian, D., Chen, M. M., Wu, H., Deng, S. & Hu, X. The role of oxidative stress in skeletal muscle myogenesis and muscle disease. Antioxidants 11, 755 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ferri, E. et al. Role of age-related mitochondrial dysfunction in sarcopenia. Int. J. Mol. Sci. 21, 5236 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. White, T. A. & LeBrasseur, N. K. Myostatin and sarcopenia: opportunities and challenges – a mini-review. Gerontology 60, 289–293 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Chang, J. S. et al. Circulating irisin levels as a predictive biomarker for sarcopenia: a cross-sectional community-based study. Geriatr. Gerontol. Int. 17, 2266–2273 (2017).

    Article  PubMed  Google Scholar 

  66. Gupta, P. & Kumar, S. Sarcopenia and endocrine ageing: are they related? Cureus 14, e28787 (2022).

    PubMed  PubMed Central  Google Scholar 

  67. Braun, T. P. & Marks, D. L. The regulation of muscle mass by endogenous glucocorticoids. Front. Physiol. 6, 12 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Yanagita, I. et al. A high serum cortisol/DHEA-S ratio is a risk factor for sarcopenia in elderly diabetic patients. J. Endocr. Soc. 3, 801–813 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shimizu, N. et al. Crosstalk between glucocorticoid receptor and nutritional sensor mTOR in skeletal muscle. Cell Metab. 13, 170–182 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Brownlee, K. K., Moore, A. W. & Hackney, A. C. Relationship between circulating cortisol and testosterone: influence of physical exercise. J. Sports Sci. Med. 4, 76–83 (2005).

    PubMed  PubMed Central  Google Scholar 

  71. Sun, L., Trausch-Azar, J. S., Muglia, L. J. & Schwartz, A. L. Glucocorticoids differentially regulate degradation of MyoD and Id1 by N-terminal ubiquitination to promote muscle protein catabolism. Proc. Natl Acad. Sci. USA 105, 3339–3344 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. van Rossum, E. F. C. Obesity and cortisol: new perspectives on an old theme. Obesity 25, 500–501 (2017).

    Article  PubMed  Google Scholar 

  73. Chiodini, I., Torlontano, M., Carnevale, V., Trischitta, V. & Scillitani, A. Skeletal involvement in adult patients with endogenous hypercortisolism. J. Endocrinol. Invest. 31, 267–276 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Ormsbee, M. J. et al. Osteosarcopenic obesity: the role of bone, muscle, and fat on health. J. Cachexia Sarcopenia Muscle 5, 183–192 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Bauer, J. M. et al. Is there enough evidence for osteosarcopenic obesity as a distinct entity? A critical literature review. Calcif. Tissue Int. 105, 109–124 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Sverdlov, A. L., Ngo, D. T. M., Chan, W. P. A., Chirkov, Y. Y. & Horowitz, J. D. Aging of the nitric oxide system: are we as old as our NO? J. Am. Heart Assoc. 3, e000973 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hearon, C. M. Jr & Dinenno, F. A. Regulation of skeletal muscle blood flow during exercise in ageing humans. J. Physiol. 594, 2261–2273 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Cleasby, M. E., Jamieson, P. M. & Atherton, P. J. Insulin resistance and sarcopenia: mechanistic links between common co-morbidities. J. Endocrinol. 229, R67–R81 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Timmerman, K. L. & Volpi, E. Endothelial function and the regulation of muscle protein anabolism in older adults. Nutr. Metab. Cardiovasc. Dis. 23, S44–S50 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Bergandi, L. et al. Insulin stimulates glucose transport via nitric oxide/cyclic GMP pathway in human vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 23, 2215–2221 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Siervo, M., Jackson, S. J. & Bluck, L. J. In-vivo nitric oxide synthesis is reduced in obese patients with metabolic syndrome: application of a novel stable isotopic method. J. Hypertens. 29, 1515–1527 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Muniyappa, R. & Sowers, J. R. Role of insulin resistance in endothelial dysfunction. Rev. Endocr. Metab. Disord. 14, 5–12 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Murrant, C. L. & Sarelius, I. H. Coupling of muscle metabolism and muscle blood flow in capillary units during contraction. Acta Physiol. Scand. 168, 531–541 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Wagenmakers, A. J., Strauss, J. A., Shepherd, S. O., Keske, M. A. & Cocks, M. Increased muscle blood supply and transendothelial nutrient and insulin transport induced by food intake and exercise: effect of obesity and ageing. J. Physiol. 594, 2207–2222 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Tengan, C. H., Rodrigues, G. S. & Godinho, R. O. Nitric oxide in skeletal muscle: role on mitochondrial biogenesis and function. Int. J. Mol. Sci. 13, 17160–17184 (2012). The review discusses the physiological roles of nitric oxide in mitochondrial energetics and skeletal muscle function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Shoemaker, M. E. et al. Differences in muscle energy metabolism and metabolic flexibility between sarcopenic and nonsarcopenic older adults. J. Cachexia Sarcopenia Muscle 13, 1224–1237 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Du, Y. et al. Associations of physical activity with sarcopenia and sarcopenic obesity in middle-aged and older adults: the Louisiana Osteoporosis Study. BMC Public. Health 22, 896 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Yaribeygi, H., Maleki, M., Sathyapalan, T., Jamialahmadi, T. & Sahebkar, A. Pathophysiology of physical inactivity-dependent insulin resistance: a theoretical mechanistic review emphasizing clinical evidence. J. Diabetes Res. 2021, 7796727 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Deutz, N. E. et al. Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN Expert Group. Clin. Nutr. 33, 929–936 (2014). This expert opinion highlights the importance of maintaining muscle function during ageing through adequate protein intake (1.0–1.2 g/kg body weight daily for healthy older adults and 1.2–1.5 g/kg daily for malnourished adults or those facing illness) and daily physical activity or exercise for sustained muscle health.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Robinson, S., Cooper, C. & Aihie Sayer, A. Nutrition and sarcopenia: a review of the evidence and implications for preventive strategies. J. Aging Res. 2012, 510801 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Fonseca-Pérez, D., Arteaga-Pazmiño, C., Maza-Moscoso, C. P., Flores-Madrid, S. & Álvarez-Córdova, L. Food insecurity as a risk factor of sarcopenic obesity in older adults. Front. Nutr. 9, 1040089 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Cho, J., Lee, I. & Kang, H. ACTN3 gene and susceptibility to sarcopenia and osteoporotic status in older Korean adults. Biomed. Res. Int. 2017, 4239648 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Lin, C. H. et al. A novel caveolin-1 biomarker for clinical outcome of sarcopenia. Vivo 28, 383–389 (2014).

    CAS  Google Scholar 

  94. Roth, S. M., Zmuda, J. M., Cauley, J. A., Shea, P. R. & Ferrell, R. E. Vitamin D receptor genotype is associated with fat-free mass and sarcopenia in elderly men. J. Gerontol. A Biol. Sci. Med. Sci. 59, 10–15 (2004).

    Article  PubMed  Google Scholar 

  95. Urzi, F., Pokorny, B. & Buzan, E. Pilot study on genetic associations with age-related sarcopenia. Front. Genet. 11, 615238 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Day, K. et al. Differential DNA methylation with age displays both common and dynamic features across human tissues that are influenced by CpG landscape. Genome Biol. 14, R102 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Turner, D. C. et al. DNA methylation across the genome in aged human skeletal muscle tissue and muscle-derived cells: the role of HOX genes and physical activity. Sci. Rep. 10, 15360 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Voisin, S. et al. An epigenetic clock for human skeletal muscle. J. Cachexia Sarcopenia Muscle 11, 887–898 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Voisin, S. et al. Meta-analysis of genome-wide DNA methylation and integrative omics of age in human skeletal muscle. J. Cachexia Sarcopenia Muscle 12, 1064–1078 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Zykovich, A. et al. Genome-wide DNA methylation changes with age in disease-free human skeletal muscle. Aging Cell 13, 360–366 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Antoun, E. et al. Epigenome-wide association study of sarcopenia: findings from the Hertfordshire Sarcopenia Study (HSS). J. Cachexia Sarcopenia Muscle 13, 240–253 (2022).

    Article  PubMed  Google Scholar 

  102. Loos, R. J. F. & Yeo, G. S. H. The genetics of obesity: from discovery to biology. Nat. Rev. Genet. 23, 120–133 (2022).

    Article  CAS  PubMed  Google Scholar 

  103. Nakamura, S. et al. Gene–environment interactions in obesity: implication for future applications in preventive medicine. J. Hum. Genet. 61, 317–322 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Gortan Cappellari, G. et al. Sarcopenic obesity research perspectives outlined by the Sarcopenic Obesity Global Leadership Initiative (SOGLI) – proceedings from the SOGLI Consortium meeting in Rome November 2022. Clin. Nutr. 42, 687–699 (2023).

    Article  PubMed  Google Scholar 

  105. Batsis, J. A. et al. Diagnostic accuracy of body mass index to identify obesity in older adults: NHANES 1999-2004. Int. J. Obes. 40, 761–767 (2016).

    Article  CAS  Google Scholar 

  106. Barbosa-Silva, T. G., Menezes, A. M. B., Bielemann, R. M., Malmstrom, T. K. & Gonzalez, M. C. Enhancing SARC-F: improving sarcopenia screening in the clinical practice. J. Am. Med. Dir. Assoc. 17, 1136–1141 (2016). This paper shows that addition of calf circumference to the SARC-F questionnaire improves its efficacy for sarcopenia screening among community-dwelling older adults.

    Article  PubMed  Google Scholar 

  107. Cesari, M., Marzetti, E. & Calvani, R. Sarcopenia and SARC-F: “Perfect is the Enemy of Good”. J. Am. Med. Dir. Assoc. 22, 1862–1863 (2021).

    Article  PubMed  Google Scholar 

  108. Maeda, S. S. et al. Official position of the Brazilian Association of Bone Assessment and Metabolism (ABRASSO) on the evaluation of body composition by densitometry: part I (technical aspects) – general concepts, indications, acquisition, and analysis. Adv. Rheumatol. 62, 7 (2022).

    Article  PubMed  Google Scholar 

  109. Johnson Stoklossa, C. A., Forhan, M., Padwal, R. S., Gonzalez, M. C. & Prado, C. M. Practical considerations for body composition assessment of adults with class II/III obesity using bioelectrical impedance analysis or dual-energy x-ray absorptiometry. Curr. Obes. Rep. 5, 389–396 (2016).

    Article  PubMed  Google Scholar 

  110. Barazzoni, R. et al. Guidance for assessment of the muscle mass phenotypic criterion for the Global Leadership Initiative on Malnutrition (GLIM) diagnosis of malnutrition. Clin. Nutr. 41, 1425–1433 (2022).

    Article  PubMed  Google Scholar 

  111. Compher, C. et al. Guidance for assessment of the muscle mass phenotypic criterion for the Global Leadership Initiative on Malnutrition diagnosis of malnutrition. JPEN J. Parenter. Enter. Nutr. 46, 1232–1242 (2022).

    Article  Google Scholar 

  112. Prado, C. M. et al. Nascent to novel methods to evaluate malnutrition and frailty in the surgical patient. JPEN J. Parenter. Enter. Nutr. 47, S54–S68 (2023).

    Article  Google Scholar 

  113. Prado, C. M. et al. Advances in muscle health and nutrition: a toolkit for healthcare professionals. Clin. Nutr. 41, 2244–2263 (2022).

    Article  PubMed  Google Scholar 

  114. Gonzalez, M. C., Mehrnezhad, A., Razaviarab, N., Barbosa-Silva, T. G. & Heymsfield, S. B. Calf circumference: cutoff values from the NHANES 1999-2006. Am. J. Clin. Nutr. 113, 1679–1687 (2021). The study introduces a BMI adjustment methodology for calf circumference measurements, which effectively mitigates the confounding influences of adiposity, enhancing the accuracy of this measurement for estimating skeletal muscle mass.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kaiser, M. J. et al. Validation of the Mini Nutritional Assessment short-form (MNA-SF): a practical tool for identification of nutritional status. J. Nutr. Health Aging 13, 782–788 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Rolland, Y. et al. Sarcopenia, calf circumference, and physical function of elderly women: a cross-sectional study. J. Am. Geriatr. Soc. 51, 1120–1124 (2003).

    Article  PubMed  Google Scholar 

  117. Heymsfield, S. B., Heo, M., Thomas, D. & Pietrobelli, A. Scaling of body composition to height: relevance to height-normalized indexes. Am. J. Clin. Nutr. 93, 736–740 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Bahat, G., Kilic, C., Ilhan, B., Karan, M. A. & Cruz-Jentoft, A. Association of different bioimpedanciometry estimations of muscle mass with functional measures. Geriatr. Gerontol. Int. 19, 593–597 (2019).

    Article  PubMed  Google Scholar 

  119. Bahat, G. Sarcopenic obesity: a hot yet under considered evolving concept. Eur. Geriatr. Med. 13, 1023–1024 (2022).

    Article  PubMed  Google Scholar 

  120. Roh, E. & Choi, K. M. Health consequences of sarcopenic obesity: a narrative review. Front. Endocrinol. 11, 332 (2020).

    Article  Google Scholar 

  121. Studenski, S. et al. Gait speed and survival in older adults. JAMA 305, 50–58 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gortan Cappellari, G. et al. Sarcopenic obesity in free-living older adults detected by the ESPEN-EASO consensus diagnostic algorithm: validation in an Italian cohort and predictive value of insulin resistance and altered plasma ghrelin profile. Metabolism 145, 155595 (2023).

    Article  CAS  PubMed  Google Scholar 

  123. Wood, B. S. et al. Impact of EASO/ESPEN-defined sarcopenic obesity following a technology-based weight loss intervention. Calcif. Tissue Int. https://doi.org/10.1007/s00223-023-01138-4 (2023).

  124. Trouwborst, I. et al. Exercise and nutrition strategies to counteract sarcopenic obesity. Nutrients 10, 605 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Petroni, M. L. et al. Prevention and treatment of sarcopenic obesity in women. Nutrients 11, 1302 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Schoufour, J. D. et al. The relevance of diet, physical activity, exercise, and persuasive technology in the prevention and treatment of sarcopenic obesity in older adults. Front. Nutr. 8, 661449 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Batsis, J. A. & Villareal, D. T. Sarcopenic obesity in older adults: aetiology, epidemiology and treatment strategies. Nat. Rev. Endocrinol. 14, 513–537 (2018). This comprehensive review addresses the mechanisms, definitions and diagnostic approaches for sarcopenic obesity in older adults, as well as treatments such as dietary modifications, exercise and emerging therapeutic interventions, focusing on their clinical implications for this high-risk demographic group.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Bouchonville, M. F. & Villareal, D. T. Sarcopenic obesity: how do we treat it? Curr. Opin. Endocrinol. Diabetes Obes. 20, 412–419 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Heymsfield, S. B., Gonzalez, M. C. C., Shen, W., Redman, L. & Thomas, D. Weight loss composition is one-fourth fat-free mass: a critical review and critique of this widely cited rule. Obes. Rev. 15, 310–321 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Weinheimer, E. M., Sands, L. P. & Campbell, W. W. A systematic review of the separate and combined effects of energy restriction and exercise on fat-free mass in middle-aged and older adults: implications for sarcopenic obesity. Nutr. Rev. 68, 375–388 (2010). This systematic review indicates that exercise, when combined with energy restriction, helps middle-aged and older adults with overweight or obesity to preserve fat-free mass during weight loss, countering sarcopenic obesity.

    Article  PubMed  Google Scholar 

  131. Eglseer, D. et al. Nutritional and exercise interventions in individuals with sarcopenic obesity around retirement age: a systematic review and meta-analysis. Nutr. Rev. 81, 1077–1090 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Pahor, M. et al. Effect of structured physical activity on prevention of major mobility disability in older adults: the LIFE study randomized clinical trial. JAMA 311, 2387–2396 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Bernabei, R. et al. Multicomponent intervention to prevent mobility disability in frail older adults: randomised controlled trial (SPRINTT project). BMJ 377, e068788 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Cruz, C., Prado, C. M., Punja, S. & Tandon, P. Use of digital technologies in the nutritional management of catabolism-prone chronic diseases: a rapid review. Clin. Nutr. ESPEN 46, 152–166 (2021).

    Article  PubMed  Google Scholar 

  135. Sixsmith, A., Horst, B. A.-O., Simeonov, D. & Mihailidis, A. Older people’s use of digital technology during the COVID-19 pandemic. Sci. Technol. Soc. 42, 19–24 (2022).

    Google Scholar 

  136. Mace, R. A., Mattos, M. K. & Vranceanu, A. M. Older adults can use technology: why healthcare professionals must overcome ageism in digital health. Transl. Behav. Med. 12, 1102–1105 (2022).

    Article  PubMed  Google Scholar 

  137. Reiter, L. et al. Effects of nutrition and exercise interventions on persons with sarcopenic obesity: an umbrella review of meta-analyses of randomised controlled trials. Curr. Obes. Rep. 12, 250–263 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Shen, Y. et al. Exercise for sarcopenia in older people: a systematic review and network meta-analysis. J. Cachexia Sarcopenia Muscle 14, 1199–1211 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Hambrecht, R. et al. Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation 107, 3152–3158 (2003).

    Article  CAS  PubMed  Google Scholar 

  140. Sessa, W. C., Pritchard, K., Seyedi, N., Wang, J. & Hintze, T. H. Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circ. Res. 74, 349–353 (1994).

    Article  CAS  PubMed  Google Scholar 

  141. Holloszy, J. O. Exercise-induced increase in muscle insulin sensitivity. J. Appl. Physiol. 99, 338–343 (2005).

    Article  CAS  PubMed  Google Scholar 

  142. Richter, E. A., Garetto, L. P., Goodman, M. N. & Ruderman, N. B. Muscle glucose metabolism following exercise in the rat: increased sensitivity to insulin. J. Clin. Invest. 69, 785–793 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Atherton, P. J. & Smith, K. Muscle protein synthesis in response to nutrition and exercise. J. Physiol. 590, 1049–1057 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kapur, S., Bédard, S., Marcotte, B., Côté, C. H. & Marette, A. Expression of nitric oxide synthase in skeletal muscle: a novel role for nitric oxide as a modulator of insulin action. Diabetes 46, 1691–1700 (1997).

    Article  CAS  PubMed  Google Scholar 

  145. Westerterp, K. R. Exercise, energy balance and body composition. Eur. J. Clin. Nutr. 72, 1246–1250 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Hittel, D. S. et al. Myostatin decreases with aerobic exercise and associates with insulin resistance. Med. Sci. Sports Exerc. 42, 2023–2029 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Sterczala, A. J. et al. Insulin-like growth factor-I biocompartmentalization across blood, interstitial fluid and muscle, before and after 3 months of chronic resistance exercise. J. Appl. Physiol. 133, 170–182 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Frøsig, C. et al. Effects of endurance exercise training on insulin signaling in human skeletal muscle: interactions at the level of phosphatidylinositol 3-kinase, Akt, and AS160. Diabetes 56, 2093–2102 (2007).

    Article  PubMed  Google Scholar 

  149. Timmerman, K. L. et al. A moderate acute increase in physical activity enhances nutritive flow and the muscle protein anabolic response to mixed nutrient intake in older adults. Am. J. Clin. Nutr. 95, 1403–1412 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lim, A. Y., Chen, Y. C., Hsu, C. C., Fu, T. C. & Wang, J. S. The effects of exercise training on mitochondrial function in cardiovascular diseases: a systematic review and meta-analysis. Int. J. Mol. Sci. 23, 12559 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Snijders, T. et al. A single bout of exercise activates skeletal muscle satellite cells during subsequent overnight recovery. Exp. Physiol. 97, 762–773 (2012).

    Article  CAS  PubMed  Google Scholar 

  152. Lambert, C. P., Wright, N. R., Finck, B. N. & Villareal, D. T. Exercise but not diet-induced weight loss decreases skeletal muscle inflammatory gene expression in frail obese elderly persons. J. Appl. Physiol. 105, 473–478 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Nelson, M. E. et al. Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Circulation 116, 1094–1105 (2007).

    Article  PubMed  Google Scholar 

  154. Chen, H. T., Chung, Y. C., Chen, Y. J., Ho, S. Y. & Wu, H. J. Effects of different types of exercise on body composition, muscle strength, and IGF-1 in the elderly with sarcopenic obesity. J. Am. Geriatr. Soc. 65, 827–832 (2017).

    Article  PubMed  Google Scholar 

  155. Yoshimura, Y. et al. Interventions for treating sarcopenia: a systematic review and meta-analysis of randomized controlled studies. J. Am. Med. Dir. Assoc. 18, 553.e1–553.e16 (2017).

    Article  PubMed  Google Scholar 

  156. Groennebaek, T. & Vissing, K. Impact of resistance training on skeletal muscle mitochondrial biogenesis, content, and function. Front. Physiol. 8, 713 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Lundby, C. & Jacobs, R. A. Adaptations of skeletal muscle mitochondria to exercise training. Exp. Physiol. 101, 17–22 (2016).

    Article  CAS  PubMed  Google Scholar 

  158. Donato, D. M. D. et al. Influence of aerobic exercise intensity on myofibrillar and mitochondrial protein synthesis in young men during early and late postexercise recovery. Am. J. Physiol. Endocrinol. Metab. 306, E1025–E1032 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Villareal, D. T. et al. Aerobic or resistance exercise, or both, in dieting obese older adults. N. Engl. J. Med. 376, 1943–1955 (2017). This study involving 160 older adults with obesity finds that weight loss combined with aerobic and resistance exercise is most effective in enhancing functional status and mitigating the muscle and bone mass loss typically seen with weight reduction, compared with other exercise modalities or no exercise at all.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Bell, K. E., Séguin, C., Parise, G., Baker, S. K. & Phillips, S. M. Day-to-day changes in muscle protein synthesis in recovery from resistance, aerobic, and high-intensity interval exercise in older men. J. Gerontol. A Biol. Sci. 70, 1024–1029 (2015).

    Article  CAS  Google Scholar 

  161. Kim, H. et al. Exercise and nutritional supplementation on community-dwelling elderly Japanese women with sarcopenic obesity: a randomized controlled trial. J. Am. Med. Dir. Assoc. 17, 1011–1019 (2016).

    Article  PubMed  Google Scholar 

  162. Kritchevsky, S. B. et al. Exercise’s effect on mobility disability in older adults with and without obesity: the LIFE study randomized clinical trial. Obesity 25, 1199–1205 (2017).

    Article  PubMed  Google Scholar 

  163. Little, J. P., Safdar, A., Bishop, D., Tarnopolsky, M. A. & Gibala, M. J. An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1α and activates mitochondrial biogenesis in human skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 300, R1303–R1310 (2011).

    Article  CAS  PubMed  Google Scholar 

  164. Axelrod, C. L., Dantas, W. S. & Kirwan, J. P. Sarcopenic obesity: emerging mechanisms and therapeutic potential. Metabolism 146, 155639 (2023).

    Article  CAS  PubMed  Google Scholar 

  165. Batsis, J. A. et al. Weight loss interventions in older adults with obesity: a systematic review of randomized controlled trials since 2005. J. Am. Geriatr. Soc. 65, 257–268 (2017). This systematic review of clinical trials between 2005 and 2015 finds that combined dietary and exercise interventions are more effective for improving physical performance and quality of life in older adults with obesity than either intervention alone.

    Article  PubMed  Google Scholar 

  166. Jiang, B. C. & Villareal, D. T. Weight loss-induced reduction of bone mineral density in older adults with obesity. J. Nutr. Gerontol. 38, 100–114 (2019).

    Article  Google Scholar 

  167. Villareal, D. T. et al. Weight loss, exercise, or both and physical function in obese older adults. N. Engl. J. Med. 364, 1218–1229 (2011). In a 1-year study of 107 older adults with obesity, combining weight loss and exercise led to greater enhancements in physical function and performance than either strategy alone, with participants also experiencing less decrease in lean body mass and bone density.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Poggiogalle, E., Migliaccio, S., Lenzi, A. & Donini, L. M. Treatment of body composition changes in obese and overweight older adults: insight into the phenotype of sarcopenic obesity. Endocrine 47, 699–716 (2014).

    Article  CAS  PubMed  Google Scholar 

  169. Jensen, M. D. et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. Circulation 129, S102–S138 (2014).

    Article  PubMed  Google Scholar 

  170. Goisser, S. et al. Sarcopenic obesity and complex interventions with nutrition and exercise in community-dwelling older persons – a narrative review. Clin. Interv. Aging 10, 1267–1282 (2015).

    PubMed  PubMed Central  Google Scholar 

  171. Haywood, C. J. et al. Very low calorie diets for weight loss in obese older adults – a randomized trial. J. Gerontol. A Biol. Sci. Med. Sci. 73, 59–65 (2017).

    Article  PubMed  Google Scholar 

  172. Janssen, T. A. H., Van Every, D. W. & Phillips, S. M. The impact and utility of very low-calorie diets: the role of exercise and protein in preserving skeletal muscle mass. Curr. Opin. Clin. Nutr. Metab. Care 26, 521–527 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Weijs, P. J. M. & Wolfe, R. R. Exploration of the protein requirement during weight loss in obese older adults. Clin. Nutr. 35, 394–398 (2016).

    Article  CAS  PubMed  Google Scholar 

  174. Burd, N. A., Gorissen, S. H. & van Loon, L. J. C. Anabolic resistance of muscle protein synthesis with aging. Exerc. Sport. Sci. Rev. 41, 169–173 (2013).

    Article  PubMed  Google Scholar 

  175. Boirie, Y., Morio, B., Caumon, E. & Cano, N. J. Nutrition and protein energy homeostasis in elderly. Mech. Ageing Dev. 136–137, 76–84 (2014).

    Article  PubMed  Google Scholar 

  176. Agergaard, J. et al. Effect of light-load resistance exercise on postprandial amino acid transporter expression in elderly men. Physiol. Rep. 5, e13444 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Arnal, M. A. et al. Protein pulse feeding improves protein retention in elderly women. Am. J. Clin. Nutr. 69, 1202–1208 (1999).

    Article  CAS  PubMed  Google Scholar 

  178. Boirie, Y., Gachon, P. & Beaufrère, B. Splanchnic and whole-body leucine kinetics in young and elderly men. Am. J. Clin. Nutr. 65, 489–495 (1997).

    Article  CAS  PubMed  Google Scholar 

  179. van Vliet, S., Burd, N. A. & van Loon, L. J. C. The skeletal muscle anabolic response to plant- versus animal-based protein consumption. J. Nutr. 145, 1981–1991 (2015).

    Article  PubMed  Google Scholar 

  180. Hector, A. J. et al. Whey protein supplementation preserves postprandial myofibrillar protein synthesis during short-term energy restriction in overweight and obese adults. J. Nutr. 145, 246–252 (2015).

    Article  PubMed  Google Scholar 

  181. Devries, M. C. et al. Protein leucine content is a determinant of shorter- and longer-term muscle protein synthetic responses at rest and following resistance exercise in healthy older women: a randomized, controlled trial. Am. J. Clin. Nutr. 107, 217–226 (2018).

    Article  PubMed  Google Scholar 

  182. Hita-Contreras, F. et al. Effect of exercise alone or combined with dietary supplements on anthropometric and physical performance measures in community-dwelling elderly people with sarcopenic obesity: a meta-analysis of randomized controlled trials. Maturitas 116, 24–35 (2018).

    Article  PubMed  Google Scholar 

  183. Martínez-Amat, A. et al. Exercise alone or combined with dietary supplements for sarcopenic obesity in community-dwelling older people: a systematic review of randomized controlled trials. Maturitas 110, 92–103 (2018).

    Article  PubMed  Google Scholar 

  184. Kim, J. S., Wilson, J. M. & Lee, S. R. Dietary implications on mechanisms of sarcopenia: roles of protein, amino acids and antioxidants. J. Nutr. Biochem. 21, 1–13 (2010).

    Article  PubMed  Google Scholar 

  185. Stockton, K. A., Mengersen, K., Paratz, J. D., Kandiah, D. & Bennell, K. L. Effect of vitamin D supplementation on muscle strength: a systematic review and meta-analysis. Osteoporos. Int. 22, 859–871 (2011).

    CAS  PubMed  Google Scholar 

  186. Prado, C. M., Anker, S. D., Coats, A. J. S., Laviano, A. & von Haehling, S. Nutrition in the spotlight in cachexia, sarcopenia and muscle: avoiding the wildfire. J. Cachexia Sarcopenia Muscle 12, 3–8 (2021).

    Article  PubMed  Google Scholar 

  187. Poggiogalle, E., Parrinello, E., Barazzoni, R., Busetto, L. & Donini, L. M. Therapeutic strategies for sarcopenic obesity: a systematic review. Curr. Opin. Clin. Nutr. Metab. Care 24, 33–41 (2021).

    Article  CAS  PubMed  Google Scholar 

  188. Kirkham, A. A. et al. Implementation of weekday time-restricted eating to improve metabolic health in breast cancer survivors with overweight/obesity. Obesity 31, 150–160 (2023).

    Article  PubMed  Google Scholar 

  189. Kirkham, A. A., Parr, E. B. & Kleckner, A. S. Cardiometabolic health impacts of time-restricted eating: implications for type 2 diabetes, cancer and cardiovascular diseases. Curr. Opin. Clin. Nutr. Metab. Care 25, 378–387 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Martens, C. R. et al. Short-term time-restricted feeding is safe and feasible in non-obese healthy midlife and older adults. Geroscience 42, 667–686 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Baad, V. M. A. et al. Body composition, sarcopenia and physical performance after bariatric surgery: differences between sleeve gastrectomy and Roux-en-Y gastric bypass. Obes. Surg. 32, 3830–3838 (2022).

    Article  PubMed  Google Scholar 

  192. Mastino, D. et al. Bariatric surgery outcomes in sarcopenic obesity. Obes. Surg. 26, 2355–2362 (2016).

    Article  PubMed  Google Scholar 

  193. Gil, S. et al. A randomized clinical trial on the effects of exercise on muscle remodelling following bariatric surgery. J. Cachexia Sarcopenia Muscle 12, 1440–1455 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Voican, C. S. et al. Predictive score of sarcopenia occurrence one year after bariatric surgery in severely obese patients. PLoS ONE 13, e0197248 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Alba, D. L. et al. Changes in lean mass, absolute and relative muscle strength, and physical performance after gastric bypass surgery. J. Clin. Endocrinol. Metab. 104, 711–720 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Reinmann, A. et al. Bariatric surgery: consequences on functional capacities in patients with obesity. Front. Endocrinol. 12, 646283 (2021).

    Article  Google Scholar 

  197. Hassannejad, A., Khalaj, A., Mansournia, M. A., Rajabian Tabesh, M. & Alizadeh, Z. The effect of aerobic or aerobic-strength exercise on body composition and functional capacity in patients with BMI ≥35 after bariatric surgery: a randomized control trial. Obes. Surg. 27, 2792–2801 (2017).

    Article  PubMed  Google Scholar 

  198. Huck, C. J. Effects of supervised resistance training on fitness and functional strength in patients succeeding bariatric surgery. J. Strength. Cond. Res. 29, 589–595 (2015).

    Article  PubMed  Google Scholar 

  199. Oliveira, G. S. et al. Resistance training improves muscle strength and function, regardless of protein supplementation, in the mid- to long-term period after gastric bypass. Nutrients 14, 14 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Aroda, V. R. et al. Efficacy and safety of once-daily oral semaglutide 25 mg and 50 mg compared with 14 mg in adults with type 2 diabetes (PIONEER PLUS): a multicentre, randomised, phase 3b trial. Lancet 402, 693–704 (2023).

    Article  CAS  PubMed  Google Scholar 

  201. Davies, M. et al. Semaglutide 2.4 mg once a week in adults with overweight or obesity, and type 2 diabetes (STEP 2): a randomised, double-blind, double-dummy, placebo-controlled, phase 3 trial. Lancet 397, 971–984 (2021).

    Article  CAS  PubMed  Google Scholar 

  202. Jastreboff, A. M. et al. Tirzepatide once weekly for the treatment of obesity. N. Engl. J. Med. 387, 205–216 (2022).

    Article  CAS  PubMed  Google Scholar 

  203. Knop, F. K. et al. Oral semaglutide 50 mg taken once per day in adults with overweight or obesity (OASIS 1): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 402, 705–719 (2023). This study finds that pharmacological intervention with semaglutide to treat adults with overweight or obesity without type 2 diabetes mellitus results in considerable weight reduction compared with placebo.

    Article  CAS  PubMed  Google Scholar 

  204. Wilding, J. P. H. et al. Once-weekly semaglutide in adults with overweight or obesity. N. Engl. J. Med. 384, 989–1002 (2021).

    Article  CAS  PubMed  Google Scholar 

  205. Yabe, D., Kawamori, D., Seino, Y., Oura, T. & Takeuchi, M. Change in pharmacodynamic variables following once-weekly tirzepatide treatment versus dulaglutide in Japanese patients with type 2 diabetes (SURPASS J-mono substudy). Diabetes Obes. Metab. 25, 398–406 (2023).

    Article  CAS  PubMed  Google Scholar 

  206. Ida, S. et al. Effects of antidiabetic drugs on muscle mass in type 2 diabetes mellitus. Curr. Diabetes Rev. 17, 293–303 (2021).

    Article  CAS  PubMed  Google Scholar 

  207. Andreozzi, F. et al. The GLP-1 receptor agonists exenatide and liraglutide activate glucose transport by an AMPK-dependent mechanism. J. Transl. Med. 14, 229 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Li, Z., Ni, C. L., Yao, Z., Chen, L. M. & Niu, W. Y. Liraglutide enhances glucose transporter 4 translocation via regulation of AMP-activated protein kinase signaling pathways in mouse skeletal muscle cells. Metabolism 63, 1022–1030 (2014).

    Article  CAS  PubMed  Google Scholar 

  209. Gurjar, A. A. et al. Long acting GLP-1 analog liraglutide ameliorates skeletal muscle atrophy in rodents. Metabolism 103, 154044 (2020).

    Article  CAS  PubMed  Google Scholar 

  210. Rosenstock, J. et al. Efficacy and safety of a novel dual GIP and GLP-1 receptor agonist tirzepatide in patients with type 2 diabetes (SURPASS-1): a double-blind, randomised, phase 3 trial. Lancet 398, 143–155 (2021).

    Article  CAS  PubMed  Google Scholar 

  211. Kiyosue, A. et al. Safety and efficacy analyses across age and body mass index subgroups in East Asian participants with type 2 diabetes in the phase 3 tirzepatide studies (SURPASS programme). Diabetes Obes. Metab. 25, 1056–1067 (2023).

    Article  CAS  PubMed  Google Scholar 

  212. Harris, E. Semaglutide improves heart failure and cardiovascular disease. JAMA 330, 1127–1127 (2023).

    PubMed  Google Scholar 

  213. Pataky, M. W., Young, W. F. & Nair, K. S. Hormonal and metabolic changes of aging and the influence of lifestyle modifications. Mayo Clin. Proc. 96, 788–814 (2021).

    Article  CAS  PubMed  Google Scholar 

  214. Snyder, P. J. et al. Effects of testosterone treatment in older men. N. Engl. J. Med. 374, 611–624 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Storer, T. W. et al. Effects of testosterone supplementation for 3 years on muscle performance and physical function in older men. J. Clin. Endocrinol. Metab. 102, 583–593 (2017).

    PubMed  Google Scholar 

  216. Bhasin, S., Krishnan, V., Storer, T. W., Steiner, M. & Dobs, A. S. Androgens and selective androgen receptor modulators to treat functional limitations associated with aging and chronic disease. J. Gerontol. A Biol. Sci. Med. Sci. 78, 25–31 (2023).

    Article  PubMed  Google Scholar 

  217. Currow, D. C., Maddocks, M., Cella, D. & Muscaritoli, M. Efficacy of anamorelin, a novel non-peptide ghrelin analogue, in patients with advanced non-small cell lung cancer (NSCLC) and cachexia – review and expert opinion. Int. J. Mol. Sci. 19, 3471 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Fonseca, G. W. P. D. & von Haehling, S. An overview of anamorelin as a treatment option for cancer-associated anorexia and cachexia. Expert. Opin. Pharmacother. 22, 889–895 (2021).

    Article  PubMed  Google Scholar 

  219. Wakabayashi, H., Arai, H. & Inui, A. Anamorelin in Japanese patients with cancer cachexia: an update. Curr. Opin. Support. Palliat. Care 17, 162–167 (2023).

    Article  PubMed  Google Scholar 

  220. Consitt, L. A. & Clark, B. C. The vicious cycle of myostatin signaling in sarcopenic obesity: myostatin role in skeletal muscle growth, insulin signaling and implications for clinical trials. J. Frailty Aging 7, 21–27 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Perry, C. A., Van Guilder, G. P. & Butterick, T. A. Decreased myostatin in response to a controlled DASH diet is associated with improved body composition and cardiometabolic biomarkers in older adults: results from a controlled-feeding diet intervention study. BMC Nutr. 8, 24 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Rooks, D. et al. Bimagrumab vs optimized standard of care for treatment of sarcopenia in community-dwelling older adults: a randomized clinical trial. JAMA Netw. Open. 3, e2020836 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Deb, A. How stem cells turn into bone and fat. N. Engl. J. Med. 380, 2268–2270 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Kono, Y. et al. Mesenchymal stem cells promote IL-6 secretion and suppress the gene expression of proinflammatory cytokines in contractile C2C12 myotubes. Biol. Pharm. Bull. 45, 962–967 (2022).

    Article  CAS  PubMed  Google Scholar 

  225. Song, J. et al. Mesenchymal stromal cells ameliorate diabetes-induced muscle atrophy through exosomes by enhancing AMPK/ULK1-mediated autophagy. J. Cachexia Sarcopenia Muscle 14, 915–929 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Pi-Sunyer, X. The Look AHEAD trial: a review and discussion of its outcomes. Curr. Nutr. Rep. 3, 387–391 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Martínez-González, M. et al. Cohort profile: design and methods of the PREDIMED study. Int. J. Epidemiol. 41, 377–385 (2012).

    Article  PubMed  Google Scholar 

  228. McEwen, B. S. Protective and damaging effects of stress mediators. N. Engl. J. Med. 338, 171–179 (1998). This review highlights the importance of stress as a damaging factor and conceptualizes the allostatic load model as a key determinant in the pathogenesis of chronic diseases.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.A.B. acknowledges the support of grant R01-AG077163 from the National Institute on Aging of the National Institutes of Health. The authors thank F. Teixeira Vieira and M. Montes-Ibarra of the University of Alberta for their substantial contributions in conceptualizing and developing Fig. 6. The authors thank their librarian, J. Thorlakson of the University of Alberta for her invaluable assistance with the literature search. L.M.D. acknowledges the support of grant PE00000003 (decree 1550, 11.10.2022) (“ON Foods – Research and innovation network on food and nutrition Sustainability, Safety and Security – Working ON Foods”) from the Italian Ministry of University and Research (CUP D93C22000890001) under the National Recovery and Resilience Plan (NRRP), funded by the European Union – NextGenerationEU.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to discussion of the content, wrote the article, and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Carla M. Prado.

Ethics declarations

Competing interests

C.M.P. has received honoraria and/or paid consultancy from Abbott Nutrition, Nutricia, Nestlé Health Science, Fresenius Kabi and Pfizer; and investigator-initiated funding from Almased Wellness GmbH for research and/or work not directly related to this Review. C.M.P. has current trainees supported through MITACS scholarship/fellowships in collaboration with industry partner My Viva Plan. J.A.B. has equity in a remote monitoring startup, SynchroHealth LLC, with associated patents related to this technology. M.C.G. has received honoraria and/or paid consultancy from Abbott Nutrition, Nutricia and Nestlé Health Science Brazil. M.S. has received honoraria and/or paid consultancy from Life2good. L.M.D. declares no competing interest.

Peer review

Peer review information

Nature Reviews Endocrinology thanks M. El Ghoch, C. Haywood and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prado, C.M., Batsis, J.A., Donini, L.M. et al. Sarcopenic obesity in older adults: a clinical overview. Nat Rev Endocrinol 20, 261–277 (2024). https://doi.org/10.1038/s41574-023-00943-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-023-00943-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing