Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

mTORC1 in energy expenditure: consequences for obesity

Abstract

In eukaryotic cells, the mammalian target of rapamycin complex 1 (sometimes referred to as the mechanistic target of rapamycin complex 1; mTORC1) orchestrates cellular metabolism in response to environmental energy availability. As a result, at the organismal level, mTORC1 signalling regulates the intake, storage and use of energy by acting as a hub for the actions of nutrients and hormones, such as leptin and insulin, in different cell types. It is therefore unsurprising that deregulated mTORC1 signalling is associated with obesity. Strategies that increase energy expenditure offer therapeutic promise for the treatment of obesity. Here we review current evidence illustrating the critical role of mTORC1 signalling in the regulation of energy expenditure and adaptive thermogenesis through its various effects in neuronal circuits, adipose tissue and skeletal muscle. Understanding how mTORC1 signalling in one organ and cell type affects responses in other organs and cell types could be key to developing better, safer treatments targeting this pathway in obesity.

Key points

  • Mammalian target of rapamycin complex 1 (mTORC1) plays different and complex roles in the regulation of energy expenditure.

  • mTORC1 cell-specific actions affect other cells and organs by altering cellular metabolism and the use of energy substrates while modifying inter-organ communication.

  • mTORC1 activation is required for central sympathetic nervous system (SNS) stimulation and SNS effects on white adipose tissue (WAT), brown adipose tissue (BAT) and skeletal muscle, which lead to WAT browning and increased energy expenditure.

  • mTORC1 stimulates non-shivering thermogenesis in BAT and skeletal muscle.

  • mTORC1 is a master regulator of skeletal muscle metabolism and it is crucial for skeletal muscle mass maintenance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The mTOR pathway.
Fig. 2: The role of mTORC1 activity in energy expenditure.
Fig. 3: Whole-body metabolic effects of constitutive genetic overactivity or inhibition of mTORC1 in skeletal muscle.

Similar content being viewed by others

References

  1. Brown, E. J. et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369, 756–758 (1994).

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Sabatini, D. M., Erdjument-Bromage, H., Lui, M., Tempst, P. & Snyder, S. H. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78, 35–43 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Liu, G. Y. & Sabatini, D. M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 21, 183–203 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Szwed, A., Kim, E. & Jacinto, E. Regulation and metabolic functions of mTORC1 and mTORC2. Physiol. Rev. 101, 1371–1426 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Christoffersen, B. O. et al. Beyond appetite regulation: targeting energy expenditure, fat oxidation, and lean mass preservation for sustainable weight loss. Obesity 30, 841–857 (2022).

    Article  PubMed  Google Scholar 

  6. Kim, D. H. et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163–175 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Hara, K. et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110, 177–189 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Kim, D. H. et al. GβL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol. Cell 11, 895–904 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Fonseca, B. D., Smith, E. M., Lee, V. H., MacKintosh, C. & Proud, C. G. PRAS40 is a target for mammalian target of rapamycin complex 1 and is required for signaling downstream of this complex. J. Biol. Chem. 282, 24514–24524 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Vander Haar, E., Lee, S. I., Bandhakavi, S., Griffin, T. J. & Kim, D. H. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat. Cell Biol. 9, 316–323 (2007).

    Article  Google Scholar 

  11. Peterson, T. R. et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137, 873–886 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sancak, Y. et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496–1501 (2008).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  13. Kim, E., Goraksha-Hicks, P., Li, L., Neufeld, T. P. & Guan, K. L. Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol. 10, 935–945 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sancak, Y. et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290–303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bar-Peled, L. et al. A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340, 1100–1106 (2013).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Yang, H. et al. Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40. Nature 552, 368–373 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Menon, S. et al. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 156, 771–785 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tee, A. R., Manning, B. D., Roux, P. P., Cantley, L. C. & Blenis, J. Tuberous sclerosis complex gene products, tuberin and hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr. Biol. 13, 1259–1268 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, Y. et al. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat. Cell Biol. 5, 578–581 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Hoxhaj, G. et al. The mTORC1 signaling network senses changes in cellular purine nucleotide levels. Cell Rep. 21, 1331–1346 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Emmanuel, N. et al. Purine nucleotide availability regulates mTORC1 activity through the Rheb GTPase. Cell Rep. 19, 2665–2680 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Um, S. H. et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431, 200–205 (2004).

    Article  CAS  PubMed  ADS  Google Scholar 

  23. Yu, Y. et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332, 1322–1326 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  24. Hsu, P. P. et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317–1322 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  25. Inoki, K., Zhu, T. & Guan, K. L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577–590 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Dagon, Y. et al. p70S6 kinase phosphorylates AMPK on serine 491 to mediate leptin’s effect on food intake. Cell Metab. 16, 104–112 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ling, N. X. Y. et al. mTORC1 directly inhibits AMPK to promote cell proliferation under nutrient stress. Nat. Metab. 2, 41–49 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hosokawa, N. et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 20, 1981–1991 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yu, L. et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465, 942–946 (2010).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  30. Cunningham, J. T. et al. mTOR controls mitochondrial oxidative function through a YY1-PGC-1ɑ transcriptional complex. Nature 450, 736–740 (2007).

    Article  CAS  PubMed  ADS  Google Scholar 

  31. Morita, M. et al. mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation. Cell Metab. 18, 698–711 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Duvel, K. et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 39, 171–183 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jacinto, E. et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol. 6, 1122–1128 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Sarbassov, D. D. et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 14, 1296–1302 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Sarbassov, D. D. et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell 22, 159–168 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Lamming, D. W. et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335, 1638–1643 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. Fang, Y. et al. Duration of rapamycin treatment has differential effects on metabolism in mice. Cell Metab. 17, 456–462 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ye, L., Varamini, B., Lamming, D. W., Sabatini, D. M. & Baur, J. A. Rapamycin has a biphasic effect on insulin sensitivity in C2C12 myotubes due to sequential disruption of mTORC1 and mTORC2. Front. Genet. 3, 177 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Festuccia, W. T. et al. PPARγ activation attenuates glucose intolerance induced by mTOR inhibition with rapamycin in rats. Am. J. Physiol. Endocrinol. Metab. 306, E1046–E1054 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Houde, V. P. et al. Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue. Diabetes 59, 1338–1348 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tran, L. T. et al. Hypothalamic control of energy expenditure and thermogenesis. Exp. Mol. Med. 54, 358–369 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hyun, U. & Sohn, J. W. Autonomic control of energy balance and glucose homeostasis. Exp. Mol. Med. 54, 370–376 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee, K. Y. et al. Lessons on conditional gene targeting in mouse adipose tissue. Diabetes 62, 864–874 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Meng, W. et al. Rheb inhibits beiging of white adipose tissue via PDE4D5-dependent downregulation of the cAMP-PKA signaling pathway. Diabetes 66, 1198–1213 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Meng, W. et al. Rheb promotes brown fat thermogenesis by Notch-dependent activation of the PKA signaling pathway. J. Mol. Cell. Biol. 11, 781–790 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Muller, T. D., Klingenspor, M. & Tschop, M. H. Revisiting energy expenditure: how to correct mouse metabolic rate for body mass. Nat. Metab. 3, 1134–1136 (2021).

    Article  PubMed  Google Scholar 

  47. Hu, F., Xu, Y. & Liu, F. Hypothalamic roles of mTOR complex I: integration of nutrient and hormone signals to regulate energy homeostasis. Am. J. Physiol. Endocrinol. Metab. 310, E994–E1002 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cota, D. et al. Hypothalamic mTOR signaling regulates food intake. Science 312, 927–930 (2006). The first study to demonstrate that hypothalamic mTORC1 responds to hormones and nutrients and regulates feeding behaviour.

    Article  CAS  PubMed  ADS  Google Scholar 

  49. Blouet, C., Ono, H. & Schwartz, G. J. Mediobasal hypothalamic p70 S6 kinase 1 modulates the control of energy homeostasis. Cell Metab. 8, 459–467 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yeo, G. S. H. et al. The melanocortin pathway and energy homeostasis: from discovery to obesity therapy. Mol. Metab. 48, 101206 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shi, Y. C. et al. Arcuate NPY controls sympathetic output and BAT function via a relay of tyrosine hydroxylase neurons in the PVN. Cell Metab. 17, 236–248 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Rothwell, N. J. & Stock, M. J. A role for insulin in the diet-induced thermogenesis of cafeteria-fed rats. Metabolism 30, 673–678 (1981).

    Article  CAS  PubMed  Google Scholar 

  53. Rossi, J. et al. Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis. Cell Metab. 13, 195–204 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Harlan, S. M., Guo, D. F., Morgan, D. A., Fernandes-Santos, C. & Rahmouni, K. Hypothalamic mTORC1 signaling controls sympathetic nerve activity and arterial pressure and mediates leptin effects. Cell Metab. 17, 599–606 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Muta, K., Morgan, D. A. & Rahmouni, K. The role of hypothalamic mTORC1 signaling in insulin regulation of food intake, body weight, and sympathetic nerve activity in male mice. Endocrinology 156, 1398–1407 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mapps, A. A. et al. Satellite glia modulate sympathetic neuron survival, activity, and autonomic function. Elife 11, e74295 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Esler, M. et al. Mechanisms of sympathetic activation in obesity-related hypertension. Hypertension 48, 787–796 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Mori, H. et al. Critical role for hypothalamic mTOR activity in energy balance. Cell Metab. 9, 362–374 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yang, S. B. et al. Rapamycin ameliorates age-dependent obesity associated with increased mTOR signaling in hypothalamic POMC neurons. Neuron 75, 425–436 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Smith, M. A. et al. Ribosomal S6K1 in POMC and AgRP neurons regulates glucose homeostasis but not feeding behavior in mice. Cell Rep. 11, 335–343 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Burke, L. K. et al. mTORC1 in AGRP neurons integrates exteroceptive and interoceptive food-related cues in the modulation of adaptive energy expenditure in mice. Elife 6, e22848 (2017). An elegant study showing that bidirectional modulation of mTORC1 signalling in hypothalamic AgRP neurons controls energy expenditure.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Haissaguerre, M. et al. mTORC1-dependent increase in oxidative metabolism in POMC neurons regulates food intake and action of leptin. Mol. Metab. 12, 98–106 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mazier, W. et al. mTORC1 and CB1 receptor signaling regulate excitatory glutamatergic inputs onto the hypothalamic paraventricular nucleus in response to energy availability. Mol. Metab. 28, 151–159 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Saucisse, N. et al. Functional heterogeneity of POMC neurons relies on mTORC1 signaling. Cell Rep. 37, 109800 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Ma, Y. et al. Neuronal miR-29a protects from obesity in adult mice. Mol. Metab. 61, 101507 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Carnevalli, L. S. et al. S6K1 plays a critical role in early adipocyte differentiation. Dev. Cell 18, 763–774 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Labbe, S. M. et al. mTORC1 is required for brown adipose tissue recruitment and metabolic adaptation to cold. Sci. Rep. 6, 37223 (2016). This study shows that cold activates mTORC1 in the BAT in a sympathetic nervous system-dependent fashion. This is, in turn, necessary for cold-induced BAT expansion, mitochondrial biogenesis and oxidative metabolism.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  68. Lee, P. L., Tang, Y., Li, H. & Guertin, D. A. Raptor/mTORC1 loss in adipocytes causes progressive lipodystrophy and fatty liver disease. Mol. Metab. 5, 422–432 (2016). This study describes the crucial role of mTORC1 in white adipose tissue expansion and maintenance, which is critical for systemic metabolic homeostasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chimin, P. et al. Adipocyte mTORC1 deficiency promotes adipose tissue inflammation and NLRP3 inflammasome activation via oxidative stress and de novo ceramide synthesis. J. Lipid Res. 58, 1797–1807 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lee, P. L., Jung, S. M. & Guertin, D. A. The complex roles of mechanistic target of rapamycin in adipocytes and beyond. Trends Endocrinol. Metab. 28, 319–339 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu, D. et al. Activation of mTORC1 is essential for β-adrenergic stimulation of adipose browning. J. Clin. Invest. 126, 1704–1716 (2016). This study shows that β-adrenergic receptor signalling recruits mTORC1 in adipocytes to induce adipose tissue browning.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  72. Sakers, A., De Siqueira, M. K., Seale, P. & Villanueva, C. J. Adipose-tissue plasticity in health and disease. Cell 185, 419–446 (2022).

    Article  CAS  PubMed  Google Scholar 

  73. Valdivia, L. F. G. et al. Cold acclimation and pioglitazone combined increase thermogenic capacity of brown and white adipose tissues but this does not translate into higher energy expenditure in mice. Am. J. Physiol. Endocrinol. Metab. 324, E358–E373 (2023).

    Article  CAS  PubMed  Google Scholar 

  74. von Essen, G. et al. Highly recruited brown adipose tissue does not in itself protect against obesity. Mol. Metab. 76, 101782 (2023).

    Article  Google Scholar 

  75. Tran, C. M. et al. Rapamycin blocks induction of the thermogenic program in white adipose tissue. Diabetes 65, 927–941 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Le, T. D. V. et al. Glucagon-like peptide-1 receptor activation stimulates PKA-mediated phosphorylation of raptor and this contributes to the weight loss effect of liraglutide. Elife 12, e80944 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hostrup, M. & Onslev, J. The beta2-adrenergic receptor–a re-emerging target to combat obesity and induce leanness? J. Physiol. 600, 1209–1227 (2022).

    Article  CAS  PubMed  Google Scholar 

  78. Jessen, S. et al. Beta2-adrenergic agonist clenbuterol increases energy expenditure and fat oxidation, and induces mTOR phosphorylation in skeletal muscle of young healthy men. Drug. Test. Anal. 12, 610–618 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Magdalon, J. et al. Constitutive adipocyte mTORC1 activation enhances mitochondrial activity and reduces visceral adiposity in mice. Biochim. Biophys. Acta 1861, 430–438 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Zhang, X. et al. Adipose mTORC1 suppresses prostaglandin signaling and beige adipogenesis via the CRTC2-COX-2 pathway. Cell Rep. 24, 3180–3193 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Xu, Y. et al. Asparagine reinforces mTORC1 signaling to boost thermogenesis and glycolysis in adipose tissues. EMBO J. 40, e108069 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Olsen, J. M. et al. Glucose uptake in brown fat cells is dependent on mTOR complex 2-promoted GLUT1 translocation. J. Cell Biol. 207, 365–374 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Albert, V. et al. mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue. EMBO Mol. Med. 8, 232–246 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Castro, E. et al. Adipocyte-specific mTORC2 deficiency impairs BAT and iWAT thermogenic capacity without affecting glucose uptake and energy expenditure in cold-acclimated mice. Am. J. Physiol. Endocrinol. Metab. 321, E592–E605 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. Liebscher, G. et al. The lysosomal LAMTOR/ragulator complex is essential for nutrient homeostasis in brown adipose tissue. Mol. Metab. 71, 101705 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Liu, M. et al. Grb10 promotes lipolysis and thermogenesis by phosphorylation-dependent feedback inhibition of mTORC1. Cell Metab. 19, 967–980 (2014).

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu, F. & Roth, R. A. Grb-IR: a SH2-domain-containing protein that binds to the insulin receptor and inhibits its function. Proc. Natl Acad. Sci. USA 92, 10287–10291 (1995).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  88. Liu, H. et al. Hypothalamic Grb10 enhances leptin signalling and promotes weight loss. Nat. Metab. 5, 147–164 (2023).

    Article  CAS  PubMed  Google Scholar 

  89. Holt, L. J. & Siddle, K. Grb10 and Grb14: enigmatic regulators of insulin action–and more? Biochem. J. 388, 393–406 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Li, H., Wang, C., Li, L. & Li, L. Skeletal muscle non-shivering thermogenesis as an attractive strategy to combat obesity. Life Sci. 269, 119024 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Guridi, M. et al. Activation of mTORC1 in skeletal muscle regulates whole-body metabolism through FGF21. Sci. Signal. 8, ra113 (2015).

    Article  PubMed  Google Scholar 

  92. Guridi, M. et al. Alterations to mTORC1 signaling in the skeletal muscle differentially affect whole-body metabolism. Skelet. Muscle 6, 13 (2016). This study provides a direct comparison of the metabolic effects driven by either genetic mTORC1 overactivation or inhibition in skeletal muscle.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Blondin, D. P. & Haman, F. Shivering and nonshivering thermogenesis in skeletal muscles. Handb. Clin. Neurol. 156, 153–173 (2018).

    Article  PubMed  Google Scholar 

  94. Bal, N. C. et al. Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. Nat. Med. 18, 1575–1579 (2012). A noteworthy study describing the necessary role of sarcolipin in muscle-based non-shivering thermogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pant, M., Bal, N. C. & Periasamy, M. Sarcolipin: a key thermogenic and metabolic regulator in skeletal muscle. Trends Endocrinol. Metab. 27, 881–892 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chambers, P. J., Juracic, E. S., Fajardo, V. A. & Tupling, A. R. Role of SERCA and sarcolipin in adaptive muscle remodeling. Am. J. Physiol. Cell. Physiol. 322, C382–C394 (2022).

    Article  CAS  PubMed  Google Scholar 

  97. Tao, R. et al. Hepatic follistatin increases basal metabolic rate and attenuates diet-induced obesity during hepatic insulin resistance. Mol. Metab. 71, 101703 (2023). This article illustrates the relationship between genetic mTORC1 overactivity in muscle and sarcolipin–SERCA-mediated non-shivering thermogenesis, which protects against obesity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lopez, R. J. et al. Raptor ablation in skeletal muscle decreases Cav1.1 expression and affects the function of the excitation-contraction coupling supramolecular complex. Biochem. J. 466, 123–135 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Baraldo, M. et al. Inducible deletion of raptor and mTOR from adult skeletal muscle impairs muscle contractility and relaxation. J. Physiol. 600, 5055–5075 (2022).

    Article  CAS  PubMed  Google Scholar 

  100. Bentzinger, C. F. et al. Differential response of skeletal muscles to mTORC1 signaling during atrophy and hypertrophy. Skelet. Muscle 3, 6 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Dutchak, P. A. et al. Loss of a negative regulator of mTORC1 induces aerobic glycolysis and altered fiber composition in skeletal muscle. Cell Rep. 23, 1907–1914 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Crombie, E. M. et al. Activation of eIF4E-binding-protein-1 rescues mTORC1-induced sarcopenia by expanding lysosomal degradation capacity. J. Cachexia Sarcopenia Muscle 14, 198–213 (2023).

    Article  PubMed  Google Scholar 

  103. Tang, H. et al. mTORC1 underlies age-related muscle fiber damage and loss by inducing oxidative stress and catabolism. Aging Cell 18, e12943 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Romanino, K. et al. Myopathy caused by mammalian target of rapamycin complex 1 (mTORC1) inactivation is not reversed by restoring mitochondrial function. Proc. Natl Acad. Sci. USA 108, 20808–20813 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  105. Tinline-Goodfellow, C. T., Lees, M. J. & Hodson, N. The skeletal muscle fiber periphery: a nexus of mTOR-related anabolism. Sports Med. Health Sci. 5, 10–19 (2023).

    Article  CAS  PubMed  Google Scholar 

  106. D’Hulst, G., Masschelein, E. & De Bock, K. Resistance exercise enhances long-term mTORC1 sensitivity to leucine. Mol. Metab. 66, 101615 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Yamaoka, I. et al. Insulin mediates the linkage acceleration of muscle protein synthesis, thermogenesis, and heat storage by amino acids. Biochem. Biophys. Res. Commun. 386, 252–256 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Westerterp, K. R., Wilson, S. A. & Rolland, V. Diet induced thermogenesis measured over 24 h in a respiration chamber: effect of diet composition. Int. J. Obes. Relat. Metab. Disord. 23, 287–292 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Izumiya, Y. et al. Fast/glycolytic muscle fiber growth reduces fat mass and improves metabolic parameters in obese mice. Cell Metab. 7, 159–172 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. You, J. S. et al. The role of raptor in the mechanical load-induced regulation of mTOR signaling, protein synthesis, and skeletal muscle hypertrophy. FASEB J. 33, 4021–4034 (2019).

    Article  CAS  PubMed  Google Scholar 

  111. Khan, N. A. et al. mTORC1 regulates mitochondrial integrated stress response and mitochondrial myopathy progression. Cell Metab. 26, 419–428.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  112. Yasuda, T., Ishihara, T., Ichimura, A. & Ishihara, N. Mitochondrial dynamics define muscle fiber type by modulating cellular metabolic pathways. Cell Rep. 42, 112434 (2023).

    Article  CAS  PubMed  Google Scholar 

  113. Keipert, S. et al. Skeletal muscle mitochondrial uncoupling drives endocrine cross-talk through the induction of FGF21 as a myokine. Am. J. Physiol. Endocrinol. Metab. 306, E469–E482 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Tezze, C. et al. Age-associated loss of OPA1 in muscle impacts muscle mass, metabolic homeostasis, systemic inflammation, and epithelial senescence. Cell Metab. 25, 1374–1389.e6 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  115. Ost, M. et al. Muscle-derived GDF15 drives diurnal anorexia and systemic metabolic remodeling during mitochondrial stress. EMBO Rep. 21, e48804 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Porflitt-Rodriguez, M. et al. Effects of aerobic exercise on fibroblast growth factor 21 in overweight and obesity. A systematic review. Metabolism 129, 155137 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Klein, A. B., Kleinert, M., Richter, E. A. & Clemmensen, C. GDF15 in appetite and exercise: essential player or coincidental bystander? Endocrinology 163, bqab242 (2022).

    Article  PubMed  Google Scholar 

  118. Wang, D. et al. GDF15 promotes weight loss by enhancing energy expenditure in muscle. Nature 619, 143–150 (2023). A remarkable study deciphering how GDF15 promotes energy expenditure and weight loss by enhancing adrenergic signalling in skeletal muscle.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  119. Khamzina, L., Veilleux, A., Bergeron, S. & Marette, A. Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance. Endocrinology 146, 1473–1481 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Polak, P. et al. Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration. Cell Metab. 8, 399–410 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Bodur, C. et al. TBK1-mTOR signaling attenuates obesity-linked hyperglycemia and insulin resistance. Diabetes 71, 2297–2312 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Scarpace, P. J. et al. Rapamycin normalizes serum leptin by alleviating obesity and reducing leptin synthesis in aged rats. J. Gerontol. A. Biol. Sci. Med. Sci. 71, 891–899 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Spinelli, R. et al. Increased cell senescence in human metabolic disorders. J. Clin. Invest. 133, e169922 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Mannick, J. B. & Lamming, D. W. Targeting the biology of aging with mTOR inhibitors. Nat. Aging 3, 642–660 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Mahoney, S. J. et al. A small molecule inhibitor of Rheb selectively targets mTORC1 signaling. Nat. Commun. 9, 548 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  126. Schreiber, K. H. et al. A novel rapamycin analog is highly selective for mTORC1 in vivo. Nat. Commun. 10, 3194 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  127. Zhang, Z. et al. Brain-restricted mTOR inhibition with binary pharmacology. Nature 609, 822–828 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  128. Tschop, M. H. et al. A guide to analysis of mouse energy metabolism. Nat. Methods 9, 57–63 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Martin, A., Fox, D., Murphy, C. A., Hofmann, H. & Koehler, K. Tissue losses and metabolic adaptations both contribute to the reduction in resting metabolic rate following weight loss. Int. J. Obes. 46, 1168–1175 (2022).

    Article  CAS  Google Scholar 

  130. Saito, M., Matsushita, M., Yoneshiro, T. & Okamatsu-Ogura, Y. Brown adipose tissue, diet-induced thermogenesis, and thermogenic food ingredients: from mice to men. Front. Endocrinol. 11, 222 (2020).

    Article  Google Scholar 

  131. She, Q. Y. et al. Fibroblast growth factor 21: a “rheostat” for metabolic regulation? Metabolism 130, 155166 (2022).

    Article  CAS  PubMed  Google Scholar 

  132. Klein Hazebroek, M. & Keipert, S. Adapting to the cold: a role for endogenous fibroblast growth factor 21 in thermoregulation? Front. Endocrinol. 11, 389 (2020).

    Article  Google Scholar 

  133. Potthoff, M. J. et al. FGF21 induces PGC-1ɑ and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc. Natl Acad. Sci. USA 106, 10853–10858 (2009).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  134. Breit, S. N. et al. GDF15 enhances body weight and adiposity reduction in obese mice by leveraging the leptin pathway. Cell Metab. 35, 1341–1355.e3 (2023).

    Article  CAS  PubMed  Google Scholar 

  135. Zhang, S. Y. et al. Metformin triggers a kidney GDF15-dependent area postrema axis to regulate food intake and body weight. Cell Metab. 35, 875–886.e5 (2023).

    Article  CAS  PubMed  Google Scholar 

  136. Day, E. A. et al. Metformin-induced increases in GDF15 are important for suppressing appetite and promoting weight loss. Nat. Metab. 1, 1202–1208 (2019).

    Article  CAS  PubMed  Google Scholar 

  137. Klein, A. B. et al. The GDF15-GFRAL pathway is dispensable for the effects of metformin on energy balance. Cell Rep. 40, 111258 (2022).

    Article  CAS  PubMed  Google Scholar 

  138. Benichou, O. et al. Discovery, development, and clinical proof of mechanism of LY3463251, a long-acting GDF15 receptor agonist. Cell Metab. 35, 274–286.e10 (2023).

    Article  CAS  PubMed  Google Scholar 

  139. Weichhart, T., Hengstschlager, M. & Linke, M. Regulation of innate immune cell function by mTOR. Nat. Rev. Immunol. 15, 599–614 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Matarese, G. The link between obesity and autoimmunity. Science 379, 1298–1300 (2023).

    Article  CAS  PubMed  ADS  Google Scholar 

  141. Jiang, H., Westerterp, M., Wang, C., Zhu, Y. & Ai, D. Macrophage mTORC1 disruption reduces inflammation and insulin resistance in obese mice. Diabetologia 57, 2393–2404 (2014).

    Article  CAS  PubMed  Google Scholar 

  142. Ying, L. et al. Macrophage LAMTOR1 deficiency prevents dietary obesity and insulin resistance through inflammation-induced energy expenditure. Front. Cell. Dev. Biol. 9, 672032 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Kalin, S. et al. A Stat6/Pten axis links regulatory T cells with adipose tissue function. Cell Metab. 26, 475–492.e7 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from INSERM (to D.C.), Agence Nationale de la Recherche (ANR-18-CE14-0029, ANR-21-CE14-0018 and ANR-22-CE14-0016, to D.C.), University of Bordeaux’s IdEx ‘Investments for the Future’ program/GPR BRAIN_2030 (to D.C.) and the Fondation pour la Recherche Médicale (FRM-EQU202303016291, to D.C.; FRM-ARF201809006962, to C.A.; FRM-SPF202004011774, to C.M.; and FRM-SPF202209015803, to A.J.L.-G.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Daniela Cota.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks William Festuccia and Mitsugu Shimobayashi for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allard, C., Miralpeix, C., López-Gambero, A.J. et al. mTORC1 in energy expenditure: consequences for obesity. Nat Rev Endocrinol 20, 239–251 (2024). https://doi.org/10.1038/s41574-023-00934-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-023-00934-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing