Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The molecular basis of nutrient sensing and signalling by mTORC1 in metabolism regulation and disease

An Author Correction to this article was published on 26 September 2023

This article has been updated

Abstract

The Ser/Thr kinase mechanistic target of rapamycin (mTOR) is a central regulator of cellular metabolism. As part of mTOR complex 1 (mTORC1), mTOR integrates signals such as the levels of nutrients, growth factors, energy sources and oxygen, and triggers responses that either boost anabolism or suppress catabolism. mTORC1 signalling has wide-ranging consequences for the growth and homeostasis of key tissues and organs, and its dysregulated activity promotes cancer, type 2 diabetes, neurodegeneration and other age-related disorders. How mTORC1 integrates numerous upstream cues and translates them into specific downstream responses is an outstanding question with major implications for our understanding of physiology and disease mechanisms. In this Review, we discuss recent structural and functional insights into the molecular architecture of mTORC1 and its lysosomal partners, which have greatly increased our mechanistic understanding of nutrient-dependent mTORC1 regulation. We also discuss the emerging involvement of aberrant nutrient–mTORC1 signalling in multiple diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural and domain organization of mTORC1 and mTORC2.
Fig. 2: The active and inactive states of mTORC1.
Fig. 3: Structural organization of FLCN–FNIP2 and its reorientation in response to amino acids.
Fig. 4: Dysregulation of nutrient-mediated mTORC1 signalling in human diseases.

Similar content being viewed by others

Change history

References

  1. Heitman, J., Movva, N. R. & Hall, M. N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253, 905–909 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Sabatini, D. M., Erdjument-Bromage, H., Lui, M., Tempst, P. & Snyder, S. H. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78, 35–43 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Brown, E. J. et al. A mammalian protein targeted by G1-arresting rapamycin–receptor complex. Nature 369, 756–758 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Sarbassov, D. D. et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 14, 1296–1302 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Loewith, R. et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 10, 457–468 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Liu, G. Y. & Sabatini, D. M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 21, 183–203 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shin, H. R. & Zoncu, R. The lysosome at the intersection of cellular growth and destruction. Dev. Cell 54, 226–238 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang, H. et al. Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40. Nature 552, 368–373 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang, H. et al. mTOR kinase structure, mechanism and regulation. Nature 497, 217–223 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Keith, C. T. & Schreiber, S. L. PIK-related kinases: DNA repair, recombination, and cell cycle checkpoints. Science 270, 50–51 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Choi, J., Chen, J., Schreiber, S. L. & Clardy, J. Structure of the FKBP12–rapamycin complex interacting with the binding domain of human FRAP. Science 273, 239–242 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Chen, J., Zheng, X. F., Brown, E. J. & Schreiber, S. L. Identification of an 11-kDa FKBP12–rapamycin-binding domain within the 289-kDa FKBP12–rapamycin-associated protein and characterization of a critical serine residue. Proc. Natl Acad. Sci. USA 92, 4947–4951 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu, J. et al. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP–FK506 complexes. Cell 66, 807–815 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Van Duyne, G. D., Standaert, R. F., Karplus, P. A., Schreiber, S. L. & Clardy, J. Atomic structure of FKBP–FK506, an immunophilin-immunosuppressant complex. Science 252, 839–842 (1991).

    Article  PubMed  Google Scholar 

  15. Harding, M. W., Galat, A., Uehling, D. E. & Schreiber, S. L. A receptor for the immunosuppressant FK506 is a cistrans peptidyl-prolyl isomerase. Nature 341, 758–760 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Gaubitz, C. et al. Molecular basis of the rapamycin insensitivity of target of rapamycin complex 2. Mol. Cell 58, 977–988 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Kim, D.-H. et al. GβL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol. Cell 11, 895–904 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Hara, K. et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110, 177–189 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Kim, D.-H. et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163–175 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Vander Haar, E., Lee, S.-I., Bandhakavi, S., Griffin, T. J. & Kim, D.-H. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat. Cell Biol. 9, 316–323 (2007).

    Article  Google Scholar 

  21. Sancak, Y. et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol. Cell 25, 903–915 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Pearce, L. R. et al. Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem. J. 405, 513–522 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Peterson, T. R. et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137, 873–886 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Scaiola, A. et al. The 3.2-Å resolution structure of human mTORC2. Sci. Adv. 6, eabc1251 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Aylett, C. H. S. et al. Architecture of human mTOR complex 1. Science 351, 48–52 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Baretić, D., Berndt, A., Ohashi, Y., Johnson, C. M. & Williams, R. L. Tor forms a dimer through an N-terminal helical solenoid with a complex topology. Nat. Commun. 7, 11016 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Stuttfeld, E. et al. Architecture of the human mTORC2 core complex. eLife 7, e33101 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kang, S. A. et al. mTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin. Science 341, 1236566 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nojima, H. et al. The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J. Biol. Chem. 278, 15461–15464 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Schalm, S. S., Fingar, D. C., Sabatini, D. M. & Blenis, J. TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr. Biol. 13, 797–806 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Yang, Q., Inoki, K., Ikenoue, T. & Guan, K.-L. Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity. Genes. Dev. 20, 2820–2832 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tatebe, H. et al. Substrate specificity of TOR complex 2 is determined by a ubiquitin-fold domain of the Sin1 subunit. eLife 6, e19594 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tee, A. R. & Proud, C. G. Caspase cleavage of initiation factor 4E-binding protein 1 yields a dominant inhibitor of cap-dependent translation and reveals a novel regulatory motif. Mol. Cell Biol. 22, 1674–1683 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Böhm, R. et al. The dynamic mechanism of 4E-BP1 recognition and phosphorylation by mTORC1. Mol. Cell 81, 2403–2416.e5 (2021).

    Article  PubMed  Google Scholar 

  35. Yang, H. et al. Structural insights into TSC complex assembly and GAP activity on Rheb. Nat. Commun. 12, 339 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hansmann, P. et al. Structure of the TSC2 GAP domain: mechanistic insight into catalysis and pathogenic mutations. Structure 28, 933–942.e4 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Menon, S. et al. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 156, 771–785 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Demetriades, C., Plescher, M. & Teleman, A. A. Lysosomal recruitment of TSC2 is a universal response to cellular stress. Nat. Commun. 7, 10662 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor–mTOR complex. Science 307, 1098–1101 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Potter, C. J., Pedraza, L. G. & Xu, T. Akt regulates growth by directly phosphorylating Tsc2. Nat. Cell Biol. 4, 658–665 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Inoki, K., Li, Y., Zhu, T., Wu, J. & Guan, K.-L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 4, 648–657 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Fitzian, K. et al. TSC1 binding to lysosomal PIPs is required for TSC complex translocation and mTORC1 regulation. Mol. Cell 81, 2705–2721.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Ma, L., Chen, Z., Erdjument-Bromage, H., Tempst, P. & Pandolfi, P. P. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121, 179–193 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Roux, P. P., Ballif, B. A., Anjum, R., Gygi, S. P. & Blenis, J. Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc. Natl Acad. Sci. USA 101, 13489–13494 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Inoki, K. et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126, 955–968 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Lee, D.-F. et al. IKKβ suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell 130, 440–455 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Xiao, B. et al. Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature 449, 496–500 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Xiao, B. et al. Structure of mammalian AMPK and its regulation by ADP. Nature 472, 230–233 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gwinn, D. M. et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214–226 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Inoki, K., Zhu, T. & Guan, K.-L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577–590 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Shaw, R. J. et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 6, 91–99 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. DeYoung, M. P., Horak, P., Sofer, A., Sgroi, D. & Ellisen, L. W. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev. 22, 239–251 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Brugarolas, J. et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 18, 2893–2904 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Budanov, A. V. & Karin, M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134, 451–460 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zaman, S., Lippman, S. I., Zhao, X. & Broach, J. R. How Saccharomyces responds to nutrients. Annu. Rev. Genet. 42, 27–81 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Chantranupong, L., Wolfson, R. L. & Sabatini, D. M. Nutrient-sensing mechanisms across evolution. Cell 161, 67–83 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang, X., Campbell, L. E., Miller, C. M. & Proud, C. G. Amino acid availability regulates p70 S6 kinase and multiple translation factors. Biochem. J. 334, 261–267 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sancak, Y. et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496–1501 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kim, E., Goraksha-Hicks, P., Li, L., Neufeld, T. P. & Guan, K.-L. Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol. 10, 935–945 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Binda, M. et al. The Vam6 GEF controls TORC1 by activating the EGO complex. Mol. Cell 35, 563–573 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Su, M.-Y. et al. Hybrid structure of the RagA/C–ragulator mTORC1 activation complex. Mol. Cell 68, 835–846.e3 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. de Araujo, M. E. G. et al. Crystal structure of the human lysosomal mTORC1 scaffold complex and its impact on signaling. Science 358, 377–381 (2017).

    Article  PubMed  Google Scholar 

  63. Gong, R. et al. Crystal structure of the Gtr1p–Gtr2p complex reveals new insights into the amino acid-induced TORC1 activation. Genes Dev. 25, 1668–1673 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rogala, K. B. et al. Structural basis for the docking of mTORC1 on the lysosomal surface. Science 366, 468–475 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Anandapadamanaban, M. et al. Architecture of human Rag GTPase heterodimers and their complex with mTORC1. Science 366, 203–210 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sancak, Y. et al. Ragulator–Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290–303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nada, S. et al. The novel lipid raft adaptor p18 controls endosome dynamics by anchoring the MEK–ERK pathway to late endosomes. EMBO J. 28, 477–489 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang, T., Péli-Gulli, M.-P., Yang, H., De Virgilio, C. & Ding, J. Ego3 functions as a homodimer to mediate the interaction between Gtr1–Gtr2 and Ego1 in the ego complex to activate TORC1. Structure 20, 2151–2160 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Bar-Peled, L., Schweitzer, L. D., Zoncu, R. & Sabatini, D. M. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 150, 1196–1208 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lawrence, R. E. et al. A nutrient-induced affinity switch controls mTORC1 activation by its Rag GTPase–Ragulator lysosomal scaffold. Nat. Cell Biol. 20, 1052–1063 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Napolitano, G., Di Malta, C. & Ballabio, A. Non-canonical mTORC1 signaling at the lysosome. Trends Cell Biol. 32, 920–931 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Bar-Peled, L. et al. A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340, 1100–1106 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Panchaud, N., Péli-Gulli, M.-P. & De Virgilio, C. Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1. Sci. Signal. 6, ra42 (2013).

    Article  PubMed  Google Scholar 

  74. Egri, S. B. et al. Cryo-EM structures of the human GATOR1–Rag–Ragulator complex reveal a spatial-constraint regulated GAP mechanism. Mol. Cell 82, 1836–1849.e5 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shen, K., Valenstein, M. L., Gu, X. & Sabatini, D. M. Arg-78 of Nprl2 catalyzes GATOR1-stimulated GTP hydrolysis by the Rag GTPases. J. Biol. Chem. 294, 2970–2975 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tafur, L. et al. Cryo-EM structure of the SEA complex. Nature 611, 399–404 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shen, K. et al. Architecture of the human GATOR1 and GATOR1–Rag GTPases complexes. Nature 556, 64–69 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dokudovskaya, S. et al. A conserved coatomer-related complex containing Sec13 and Seh1 dynamically associates with the vacuole in Saccharomyces cerevisiae. Mol. Cell Proteom. 10, M110.006478 (2011).

    Article  Google Scholar 

  79. Panchaud, N., Péli-Gulli, M.-P. & De Virgilio, C. SEACing the GAP that nEGOCiates TORC1 activation: evolutionary conservation of Rag GTPase regulation. Cell Cycle 12, 2948–2952 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Valenstein, M. L. et al. Structure of the nutrient-sensing hub GATOR2. Nature 607, 610–616 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Saxton, R. A., Chantranupong, L., Knockenhauer, K. E., Schwartz, T. U. & Sabatini, D. M. Mechanism of arginine sensing by CASTOR1 upstream of mTORC1. Nature 536, 229–233 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Saxton, R. A. et al. Structural basis for leucine sensing by the Sestrin2–mTORC1 pathway. Science 351, 53–58 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. Wolfson, R. L. et al. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 351, 43–48 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Chantranupong, L. et al. The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell 165, 153–164 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Peng, M., Yin, N. & Li, M. O. SZT2 dictates GATOR control of mTORC1 signalling. Nature 543, 433–437 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jiang, C. et al. Ring domains are essential for GATOR2-dependent mTORC1 activation. Mol. Cell 83, 74–89.e9 (2023).

    Article  CAS  PubMed  Google Scholar 

  87. Yan, G. et al. Genome-wide CRISPR screens identify ILF3 as a mediator of mTORC1-dependent amino acid sensing. Nat. Cell Biol. 25, 754–764 (2023).

    Article  CAS  PubMed  Google Scholar 

  88. Chen, J. et al. SAR1B senses leucine levels to regulate mTORC1 signalling. Nature 596, 281–284 (2021).

    Article  CAS  PubMed  Google Scholar 

  89. Wolfson, R. L. et al. KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1. Nature 543, 438–442 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gu, X. et al. SAMTOR is an S-adenosylmethionine sensor for the mTORC1 pathway. Science 358, 813–818 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tang, X. et al. Molecular mechanism of S-adenosylmethionine sensing by SAMTOR in mTORC1 signaling. Sci. Adv. 8, eabn3868 (2022).

    Article  CAS  PubMed  Google Scholar 

  92. Zoncu, R. et al. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H+-ATPase. Science 334, 678–683 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chung, C. Y.-S. et al. Covalent targeting of the vacuolar H+-ATPase activates autophagy via mTORC1 inhibition. Nat. Chem. Biol. 15, 776–785 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Jung, J., Genau, H. M. & Behrends, C. Amino acid-dependent mTORC1 regulation by the lysosomal membrane protein SLC38A9. Mol. Cell. Biol. 35, 2479–2494 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rebsamen, M. et al. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 519, 477–481 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang, S. et al. Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347, 188–194 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wyant, G. A. et al. mTORC1 activator SLC38A9 is required to efflux essential amino acids from lysosomes and use protein as a nutrient. Cell 171, 642–654.e12 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lei, H.-T., Mu, X., Hattne, J. & Gonen, T. A conformational change in the N terminus of SLC38A9 signals mTORC1 activation. Structure 29, 426–432.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  99. Lei, H.-T., Ma, J., Sanchez Martinez, S. & Gonen, T. Crystal structure of arginine-bound lysosomal transporter SLC38A9 in the cytosol-open state. Nat. Struct. Mol. Biol. 25, 522–527 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fromm, S. A., Lawrence, R. E. & Hurley, J. H. Structural mechanism for amino acid-dependent Rag GTPase nucleotide state switching by SLC38A9. Nat. Struct. Mol. Biol. 27, 1017–1023 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Shen, K. & Sabatini, D. M. Ragulator and SLC38A9 activate the Rag GTPases through noncanonical GEF mechanisms. Proc. Natl Acad. Sci. USA 115, 9545–9550 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bonfils, G. et al. Leucyl-tRNA synthetase controls TORC1 via the EGO complex. Mol. Cell 46, 105–110 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Tsun, Z.-Y. et al. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol. Cell 52, 495–505 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Lawrence, R. E. et al. Structural mechanism of a Rag GTPase activation checkpoint by the lysosomal folliculin complex. Science 366, 971–977 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Shen, K. et al. Cryo-EM structure of the human FLCN–FNIP2–Rag–Ragulator complex. Cell 179, 1319–1329.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jansen, R. M. et al. Structural basis for FLCN RagC GAP activation in MiT-TFE substrate-selective mTORC1 regulation. Sci. Adv. 8, eadd2926 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Péli-Gulli, M.-P., Sardu, A., Panchaud, N., Raucci, S. & De Virgilio, C. Amino acids stimulate TORC1 through Lst4–Lst7, a GTPase-activating protein complex for the Rag family GTPase Gtr2. Cell Rep. 13, 1–7 (2015).

    Article  PubMed  Google Scholar 

  108. Péli-Gulli, M.-P., Raucci, S., Hu, Z., Dengjel, J. & De Virgilio, C. Feedback inhibition of the Rag GTPase GAP complex Lst4–Lst7 safeguards TORC1 from hyperactivation by amino acid signals. Cell Rep. 20, 281–288 (2017).

    Article  PubMed  Google Scholar 

  109. Han, J. M. et al. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 149, 410–424 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Dai, X. et al. AMPK-dependent phosphorylation of the GATOR2 component WDR24 suppresses glucose-mediated mTORC1 activation. Nat. Metab. 5, 265–276 (2023).

    Article  CAS  PubMed  Google Scholar 

  111. Efeyan, A. et al. Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival. Nature 493, 679–683 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Li, M. et al. Aldolase is a sensor for both low and high glucose, linking to AMPK and mTORC1. Cell Res. 31, 478–481 (2021).

    Article  CAS  PubMed  Google Scholar 

  113. Lee, M. N. et al. Glycolytic flux signals to mTOR through glyceraldehyde-3-phosphate dehydrogenase-mediated regulation of Rheb. Mol. Cell Biol. 29, 3991–4001 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Orozco, J. M. et al. Dihydroxyacetone phosphate signals glucose availability to mTORC1. Nat. Metab. 2, 893–901 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Prouteau, M. et al. TORC1 organized in inhibited domains (TOROIDs) regulate TORC1 activity. Nature 550, 265–269 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Prouteau, M. et al. EGOC inhibits TOROID polymerization by structurally activating TORC1. Nat. Struct. Mol. Biol. 30, 273–285 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Radhakrishnan, A., Rohatgi, R. & Siebold, C. Cholesterol access in cellular membranes controls Hedgehog signaling. Nat. Chem. Biol. 16, 1303–1313 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wu, X., Yan, R., Cao, P., Qian, H. & Yan, N. Structural advances in sterol-sensing domain-containing proteins. Trends Biochem. Sci. 47, 289–300 (2022).

    Article  CAS  PubMed  Google Scholar 

  119. Brown, M. S., Radhakrishnan, A. & Goldstein, J. L. Retrospective on cholesterol homeostasis: the central role of scap. Annu. Rev. Biochem. 87, 783–807 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Calkin, A. C. & Tontonoz, P. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat. Rev. Mol. Cell Biol. 13, 213–224 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Goldstein, J. L. & Brown, M. S. A century of cholesterol and coronaries: from plaques to genes to statins. Cell 161, 161–172 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Castellano, B. M. et al. Lysosomal cholesterol activates mTORC1 via an SLC38A9–Niemann–Pick C1 signaling complex. Science 355, 1306–1311 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Shin, H. R. et al. Lysosomal GPCR-like protein LYCHOS signals cholesterol sufficiency to mTORC1. Science 377, 1290–1298 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Thelen, A. M. & Zoncu, R. Emerging roles for the lysosome in lipid metabolism. Trends Cell Biol. 27, 833–850 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Infante, R. E. & Radhakrishnan, A. Continuous transport of a small fraction of plasma membrane cholesterol to endoplasmic reticulum regulates total cellular cholesterol. eLife 6, e25466 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Wu, H., Carvalho, P. & Voeltz, G. K. Here, there, and everywhere: the importance of ER membrane contact sites. Science 361, eaan5835 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Mesmin, B. et al. A four-step cycle driven by PI4P hydrolysis directs sterol/PI4P exchange by the ER–Golgi tether OSBP. Cell 155, 830–843 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Dong, R. et al. Endosome–ER contacts control actin nucleation and retromer function through VAP-dependent regulation of PI4P. Cell 166, 408–423 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lim, C.-Y. et al. ER–lysosome contacts enable cholesterol sensing by mTORC1 and drive aberrant growth signalling in Niemann–Pick type C. Nat. Cell Biol. 21, 1206–1218 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Winkler, M. B. L. et al. Structural insight into eukaryotic sterol transport through Niemann–Pick type C proteins. Cell 179, 485–497.e18 (2019).

    Article  CAS  PubMed  Google Scholar 

  131. Saha, P. et al. Inter-domain dynamics drive cholesterol transport by NPC1 and NPC1L1 proteins. eLife 9, e57089 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Qian, H. et al. Structural basis of low-pH-dependent lysosomal cholesterol egress by NPC1 and NPC2. Cell 182, 98–111.e18 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Gong, X. et al. Structural insights into the Niemann–Pick C1 (NPC1)-mediated cholesterol transfer and ebola infection. Cell 165, 1467–1478 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Shen, K., Choe, A. & Sabatini, D. M. Intersubunit crosstalk in the Rag GTPase heterodimer enables mtorc1 to respond rapidly to amino acid availability. Mol. Cell 68, 552–565.e8 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ye, J. et al. GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2. Genes Dev. 29, 2331–2336 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hoxhaj, G. et al. The mTORC1 signaling network senses changes in cellular purine nucleotide levels. Cell Rep. 21, 1331–1346 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Emmanuel, N. et al. Purine nucleotide availability regulates mTORC1 activity through the Rheb GTPase. Cell Rep. 19, 2665–2680 (2017).

    Article  CAS  PubMed  Google Scholar 

  138. Menon, D. et al. Lipid sensing by mTOR complexes via de novo synthesis of phosphatidic acid. J. Biol. Chem. 292, 6303–6311 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Jewell, J. L. et al. Metabolism. Differential regulation of mTORC1 by leucine and glutamine. Science 347, 194–198 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Düvel, K. et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 39, 171–183 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Ben-Sahra, I. & Manning, B. D. mTORC1 signaling and the metabolic control of cell growth. Curr. Opin. Cell Biol. 45, 72–82 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Burnett, P. E., Barrow, R. K., Cohen, N. A., Snyder, S. H. & Sabatini, D. M. RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc. Natl Acad. Sci. USA 95, 1432–1437 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hara, K. et al. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J. Biol. Chem. 273, 14484–14494 (1998).

    Article  CAS  PubMed  Google Scholar 

  144. Philippe, L., van den Elzen, A. M. G., Watson, M. J. & Thoreen, C. C. Global analysis of LARP1 translation targets reveals tunable and dynamic features of 5′ TOP motifs. Proc. Natl Acad. Sci. USA 117, 5319–5328 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Thoreen, C. C. et al. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485, 109–113 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Hsieh, A. C. et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 485, 55–61 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ballabio, A. & Bonifacino, J. S. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat. Rev. Mol. Cell Biol. 21, 101–118 (2020).

    Article  CAS  PubMed  Google Scholar 

  148. Saxton, R. A. & Sabatini, D. M. mTOR signaling in growth, metabolism, and disease. Cell 168, 960–976 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Vargas, J. N. S., Hamasaki, M., Kawabata, T., Youle, R. J. & Yoshimori, T. The mechanisms and roles of selective autophagy in mammals. Nat. Rev. Mol. Cell Biol. 24, 167–185 (2023).

    Article  CAS  PubMed  Google Scholar 

  150. Ganley, I. G. et al. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem. 284, 12297–12305 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kamada, Y. et al. Tor directly controls the Atg1 kinase complex to regulate autophagy. Mol. Cell Biol. 30, 1049–1058 (2010).

    Article  CAS  PubMed  Google Scholar 

  152. Hosokawa, N. et al. Nutrient-dependent mTORC1 association with the ULK1–Atg13–FIP200 complex required for autophagy. Mol. Biol. Cell 20, 1981–1991 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Park, J.-M. et al. The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14. Autophagy 12, 547–564 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Ma, X. et al. MTORC1-mediated NRBF2 phosphorylation functions as a switch for the class III PtdIns3K and autophagy. Autophagy 13, 592–607 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Strong, L. M. et al. Structural basis for membrane recruitment of ATG16L1 by WIPI2 in autophagy. eLife 10, e70372 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Dooley, H. C. et al. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol. Cell 55, 238–252 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Sardiello, M. et al. A gene network regulating lysosomal biogenesis and function. Science 325, 473–477 (2009).

    Article  CAS  PubMed  Google Scholar 

  158. Palmieri, M. et al. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum. Mol. Genet. 20, 3852–3866 (2011).

    Article  CAS  PubMed  Google Scholar 

  159. Perera, R. M., Di Malta, C. & Ballabio, A. MiT/TFE family of transcription factors, lysosomes, and cancer. Annu. Rev. Cancer Biol. 3, 203–222 (2019).

    Article  PubMed  Google Scholar 

  160. Settembre, C. et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat. Cell Biol. 15, 647–658 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Settembre, C. et al. TFEB links autophagy to lysosomal biogenesis. Science 332, 1429–1433 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. O’Rourke, E. J. & Ruvkun, G. MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability. Nat. Cell Biol. 15, 668–676 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Evans, T. D. et al. TFEB drives PGC-1α expression in adipocytes to protect against diet-induced metabolic dysfunction. Sci. Signal. 12, eaau2281 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Puertollano, R., Ferguson, S. M., Brugarolas, J. & Ballabio, A. The complex relationship between TFEB transcription factor phosphorylation and subcellular localization. EMBO J. 37, e98804 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Settembre, C. et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31, 1095–1108 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Roczniak-Ferguson, A. et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci. Signal. 5, ra42 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Martina, J. A., Chen, Y., Gucek, M. & Puertollano, R. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8, 903–914 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Martina, J. A. et al. The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Sci. Signal. 7, ra9 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Napolitano, G. et al. A substrate-specific mTORC1 pathway underlies Birt–Hogg–Dubé syndrome. Nature 585, 597–602 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Martina, J. A. & Puertollano, R. Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes. J. Cell Biol. 200, 475–491 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Li, K. et al. Folliculin promotes substrate-selective mTORC1 activity by activating RagC to recruit TFE3. PLoS Biol. 20, e3001594 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Cui, Z. et al. Structure of the lysosomal mTORC1–TFEB–Rag–Ragulator megacomplex. Nature 614, 572–579 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Gollwitzer, P., Grützmacher, N., Wilhelm, S., Kümmel, D. & Demetriades, C. A Rag GTPase dimer code defines the regulation of mTORC1 by amino acids. Nat. Cell Biol. 24, 1394–1406 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Di Malta, C. et al. Transcriptional activation of RagD GTPase controls mTORC1 and promotes cancer growth. Science 356, 1188–1192 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Malik, N. et al. Induction of lysosomal and mitochondrial biogenesis by AMPK phosphorylation of FNIP1. Science 380, eabj5559 (2023).

    Article  CAS  PubMed  Google Scholar 

  176. Corradetti, M. N., Inoki, K., Bardeesy, N., DePinho, R. A. & Guan, K.-L. Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz–Jeghers syndrome. Genes Dev. 18, 1533–1538 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Feng, Z. et al. The regulation of AMPK β1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1–AKT–mTOR pathways. Cancer Res. 67, 3043–3053 (2007).

    Article  CAS  PubMed  Google Scholar 

  178. Tibarewal, P. et al. Long-term treatment of cancer-prone germline PTEN mutant mice with low-dose rapamycin extends lifespan and delays tumour development. J. Pathol. 258, 382–394 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Lin, F. et al. PI3K–mTOR pathway inhibition exhibits efficacy against high-grade glioma in clinically relevant mouse models. Clin. Cancer Res. 23, 1286–1298 (2017).

    Article  CAS  PubMed  Google Scholar 

  180. Thiepold, A.-L. et al. Mammalian target of rapamycin complex 1 activation sensitizes human glioma cells to hypoxia-induced cell death. Brain 140, 2623–2638 (2017).

    Article  PubMed  Google Scholar 

  181. Chang, L. et al. Acquisition of epithelial–mesenchymal transition and cancer stem cell phenotypes is associated with activation of the PI3K/Akt/mTOR pathway in prostate cancer radioresistance. Cell Death Dis. 4, e875 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Majumder, P. K. et al. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat. Med. 10, 594–601 (2004).

    Article  CAS  PubMed  Google Scholar 

  183. Shackelford, D. B. & Shaw, R. J. The LKB1–AMPK pathway: metabolism and growth control in tumour suppression. Nat. Rev. Cancer 9, 563–575 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Skoulidis, F. et al. Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities. Cancer Discov. 5, 860–877 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Krencz, I., Sebestyen, A. & Khoor, A. mTOR in lung neoplasms. Pathol. Oncol. Res. 26, 35–48 (2020).

    Article  PubMed  Google Scholar 

  186. Guertin, D. A. & Sabatini, D. M. Defining the role of mTOR in cancer. Cancer Cell 12, 9–22 (2007).

    Article  CAS  PubMed  Google Scholar 

  187. Dankort, D. et al. BrafV600E cooperates with Pten loss to induce metastatic melanoma. Nat. Genet. 41, 544–552 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Silva, J. M., Bulman, C. & McMahon, M. BRAFV600E cooperates with PI3K signaling, independent of AKT, to regulate melanoma cell proliferation. Mol. Cancer Res. 12, 447–463 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Henske, E. P., Jóźwiak, S., Kingswood, J. C., Sampson, J. R. & Thiele, E. A. Tuberous sclerosis complex. Nat. Rev. Dis. Prim. 2, 16035 (2016).

    Article  PubMed  Google Scholar 

  190. Almobarak, S. et al. Tuberous sclerosis complex: clinical spectrum and epilepsy: a retrospective chart review study. Transl. Neurosci. 9, 154–160 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Møller, R. S. et al. Germline and somatic mutations in the MTOR gene in focal cortical dysplasia and epilepsy. Neurol. Genet. 2, e118 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Zhao, S. et al. A brain somatic RHEB doublet mutation causes focal cortical dysplasia type II. Exp. Mol. Med. 51, 1–11 (2019).

    PubMed  PubMed Central  Google Scholar 

  194. Li, J. et al. Functional characterization of the candidate tumor suppressor gene NPRL2/G21 located in 3p21.3C. Cancer Res. 64, 6438–6443 (2004).

    Article  CAS  PubMed  Google Scholar 

  195. Seng, T. J. et al. Complex chromosome 22 rearrangements in astrocytic tumors identified using microsatellite and chromosome 22 tile path array analysis. Genes. Chromosom. Cancer 43, 181–193 (2005).

    Article  CAS  PubMed  Google Scholar 

  196. Scarpa, A. et al. Whole-genome landscape of pancreatic neuroendocrine tumours. Nature 543, 65–71 (2017).

    Article  CAS  PubMed  Google Scholar 

  197. Mizuno, Y. et al. DEPDC5 deficiency contributes to resistance to leucine starvation via p62 accumulation in hepatocellular carcinoma. Sci. Rep. 8, 106 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Ricos, M. G. et al. Mutations in the mammalian target of rapamycin pathway regulators NPRL2 and NPRL3 cause focal epilepsy. Ann. Neurol. 79, 120–131 (2016).

    Article  CAS  PubMed  Google Scholar 

  199. Baldassari, S. et al. The landscape of epilepsy-related GATOR1 variants. Genet. Med. 21, 398–408 (2019).

    Article  CAS  PubMed  Google Scholar 

  200. Iffland, P. H., Carson, V., Bordey, A. & Crino, P. B. GATORopathies: the role of amino acid regulatory gene mutations in epilepsy and cortical malformations. Epilepsia 60, 2163–2173 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Yuskaitis, C. J. et al. A mouse model of DEPDC5-related epilepsy: neuronal loss of Depdc5 causes dysplastic and ectopic neurons, increased mTOR signaling, and seizure susceptibility. Neurobiol. Dis. 111, 91–101 (2018).

    Article  CAS  PubMed  Google Scholar 

  202. Marsan, E. et al. Depdc5 knockout rat: a novel model of mTORopathy. Neurobiol. Dis. 89, 180–189 (2016).

    Article  CAS  PubMed  Google Scholar 

  203. Sim, J. C. et al. Familial cortical dysplasia caused by mutation in the mammalian target of rapamycin regulator NPRL3. Ann. Neurol. 79, 132–137 (2016).

    Article  CAS  PubMed  Google Scholar 

  204. Pajusalu, S., Reimand, T. & Õunap, K. Novel homozygous mutation in KPTN gene causing a familial intellectual disability-macrocephaly syndrome. Am. J. Med. Genet. A 167A, 1913–1915 (2015).

    Article  PubMed  Google Scholar 

  205. Figlia, G. et al. Brain-enriched RagB isoforms regulate the dynamics of mTORC1 activity through GATOR1 inhibition. Nat. Cell Biol. 24, 1407–1421 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Okosun, J. et al. Recurrent mTORC1-activating RRAGC mutations in follicular lymphoma. Nat. Genet. 48, 183–188 (2016).

    Article  CAS  PubMed  Google Scholar 

  207. ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).

  208. Kauffman, E. C. et al. Molecular genetics and cellular features of TFE3 and TFEB fusion kidney cancers. Nat. Rev. Urol. 11, 465–475 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Nickerson, M. L. et al. Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt–Hogg–Dubé syndrome. Cancer Cell 2, 157–164 (2002).

    Article  CAS  PubMed  Google Scholar 

  210. Clausen, L. et al. Folliculin variants linked to Birt–Hogg–Dubé syndrome are targeted for proteasomal degradation. PLoS Genet. 16, e1009187 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Hasumi, Y. et al. Homozygous loss of BHD causes early embryonic lethality and kidney tumor development with activation of mTORC1 and mTORC2. Proc. Natl Acad. Sci. USA 106, 18722–18727 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Hong, S.-B. et al. Inactivation of the FLCN tumor suppressor gene induces TFE3 transcriptional activity by increasing its nuclear localization. PLoS ONE 5, e15793 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  213. van de Beek, I. et al. Familial multiple discoid fibromas is linked to a locus on chromosome 5 including the FNIP1 gene. J. Hum. Genet. 68, 273–279 (2023).

    Article  PubMed  Google Scholar 

  214. Alesi, N. et al. TSC2 regulates lysosome biogenesis via a non-canonical RAGC and TFEB-dependent mechanism. Nat. Commun. 12, 4245 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Cangelosi, A. L. et al. Zonated leucine sensing by Sestrin–mTORC1 in the liver controls the response to dietary leucine. Science 377, 47–56 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Gu, X. et al. Sestrin mediates detection of and adaptation to low-leucine diets in Drosophila. Nature 608, 209–216 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Rodrik-Outmezguine, V. S. et al. Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Nature 534, 272–276 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Kato, T. et al. Sestrin modulator NV-5138 produces rapid antidepressant effects via direct mTORC1 activation. J. Clin. Invest. 129, 2542–2554 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Sengupta, S. et al. Discovery of NV-5138, the first selective brain mTORC1 activator. Sci. Rep. 9, 4107 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Kovacina, K. S. et al. Identification of a proline-rich Akt substrate as a 14-3-3 binding partner. J. Biol. Chem. 278, 10189–10194 (2003).

    Article  CAS  PubMed  Google Scholar 

  221. Tafur, L., Kefauver, J. & Loewith, R. Structural insights into TOR signaling. Genes 11, 885 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Lamming, D. W. et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335, 1638–1643 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Hagiwara, A. et al. Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab. 15, 725–738 (2012).

    Article  CAS  PubMed  Google Scholar 

  224. Yuan, M., Pino, E., Wu, L., Kacergis, M. & Soukas, A. A. Identification of Akt-independent regulation of hepatic lipogenesis by mammalian target of rapamycin (mTOR) complex 2. J. Biol. Chem. 287, 29579–29588 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Gosis, B. S. et al. Inhibition of nonalcoholic fatty liver disease in mice by selective inhibition of mTORC1. Science 376, eabf8271 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Schreiber, K. H. et al. A novel rapamycin analog is highly selective for mTORC1 in vivo. Nat. Commun. 10, 3194 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Zhang, Z. et al. Brain-restricted mTOR inhibition with binary pharmacology. Nature 609, 822–828 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health (NIH) R01CA260205 and the Edward Mallinckrodt, Jr Foundation Scholar Award to R.Z., and by an Italian Association for Cancer Research (AIRC) fellowship to R.P.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Roberto Zoncu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Ken Inoki, Roger Williams and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

β-Meander

A frequent protein motif characterized by a particular type of antiparallel β-sheet structure, in which two or more β-strands are consecutive in sequence and adjacent to one another in the three-dimensional structure.

C 2 symmetry

C2 is a crystallography point group symbol of a dimeric protein composed of two identical chains, implying the presence of ‘cyclic’ symmetry with a single twofold axis.

Coatomer

A protein complex that coats membrane-bound transport vesicles, characterized by the combination of β-propeller and α-solenoid domains as building blocks of large multiprotein assemblies.

Lysosomal limiting membrane

A membrane that distinguishes the acidic lumen of the lysosome from the cytosol.

Mitochondrial poisoning

Refers to the use of different drugs (for example, electron transport inhibitors) that reduce mitochondrial function by altering the mitochondrial membrane potential and decreasing mitochondrial ATP production.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goul, C., Peruzzo, R. & Zoncu, R. The molecular basis of nutrient sensing and signalling by mTORC1 in metabolism regulation and disease. Nat Rev Mol Cell Biol 24, 857–875 (2023). https://doi.org/10.1038/s41580-023-00641-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-023-00641-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing