Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging mechanisms of obesity-associated immune dysfunction

Abstract

Obesity is associated with a wide range of complications, including type 2 diabetes mellitus, cardiovascular disease, hypertension and nonalcoholic fatty liver disease. Obesity also increases the incidence and progression of cancers, autoimmunity and infections, as well as lowering vaccine responsiveness. A unifying concept across these differing diseases is dysregulated immunity, particularly inflammation, in response to metabolic overload. Herein, we review emerging mechanisms by which obesity drives inflammation and autoimmunity, as well as impairing tumour immunosurveillance and the response to infections. Among these mechanisms are obesity-associated changes in the hormones that regulate immune cell metabolism and function and drive inflammation. The cargo of extracellular vesicles derived from adipose tissue, which controls cytokine secretion from immune cells, is also dysregulated in obesity, in addition to impairments in fatty acid metabolism related to inflammation. Furthermore, an imbalance exists in obesity in the biosynthesis and levels of polyunsaturated fatty acid-derived oxylipins, which control a range of outcomes related to inflammation, such as immune cell chemotaxis and cytokine production. Finally, there is a need to investigate how obesity influences immunity using innovative model systems that account for the heterogeneous nature of obesity in the human population.

Key points

  • Obesity dysregulates immunity through differing mechanisms, which contribute to a range of secondary complications.

  • Obesity influences the level and function of nutritionally regulated hormones that regulate signalling pathways that mediate immune cell metabolism and function and drive inflammation.

  • Expansion of adipose tissue dysregulates the abundance and composition of extracellular vesicles, which carry a wide range of cargo that can affect the activity of immune cells and lipid metabolism.

  • Increased adiposity dysregulates polyunsaturated fatty acid metabolism; notably, the concentration of oxylipins synthesized from polyunsaturated fatty acids, which control a range of outcomes related to inflammation, is imbalanced in obesity.

  • Investigating immunity in obesity requires translation from inbred rodents to humans; one approach is to use Diverse Outbred and Collaborative Cross mouse populations that can model the heterogeneous nature of human obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Summary of obesity-associated hormone signalling and the regulation of immunometabolism and immune function.
Fig. 2: Extracellular vesicles and their effect on immune functions.
Fig. 3: Molecular pathways by which select monohydroxy oxylipins synthesized from polyunsaturated fatty acids control immunological responses in obesity.
Fig. 4: Proposed mechanisms leading to obesity-associated immune dysfunction.

Similar content being viewed by others

References

  1. Ogden, C. L., Carroll, M. D., Kit, B. K. & Flegal, K. M. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA 311, 806–814 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gordon-Larsen, P. & Heymsfield, S. B. Obesity as a disease, not a behavior. Circulation 137, 1543–1545 (2018).

    PubMed  Google Scholar 

  3. Lee, A., Cardel, M. & Donahoo, W. T. Social and environmental factors influencing obesity (eds Feingold, K. R. et al.) Endotext [Internet] https://www.ncbi.nlm.nih.gov/books/NBK278977/ (MDText.com, 2019).

  4. Gordon-Larsen, P. et al. Synergizing mouse and human studies to understand the heterogeneity of obesity. Adv. Nutr. 12, 2023–2034 (2021).

    PubMed  PubMed Central  Google Scholar 

  5. Saltiel, A. R. & Olefsky, J. M. Inflammatory mechanisms linking obesity and metabolic disease. J. Clin. Invest. 127, 1–4 (2017).

    PubMed  PubMed Central  Google Scholar 

  6. Popkin, B. M. et al. Individuals with obesity and COVID-19: a global perspective on the epidemiology and biological relationships. Obes. Rev. 21, e13128 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Petrilli, C. M. et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ 369, m1966 (2020).

    PubMed  PubMed Central  Google Scholar 

  8. Lighter, J. et al. Obesity in patients younger than 60 years is a risk factor for COVID-19 hospital admission. Clin. Infect. Dis. 71, 896–897 (2020).

    CAS  PubMed  Google Scholar 

  9. Kalligeros, M. et al. Association of obesity with disease severity among patients with coronavirus disease 2019. Obesity 28, 1200–1204 (2020).

    CAS  PubMed  Google Scholar 

  10. Simonnet, A. et al. High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity 28, 1195–1199 (2020).

    CAS  PubMed  Google Scholar 

  11. Czernichow, S. et al. Obesity doubles mortality in patients hospitalized for severe acute respiratory syndrome coronavirus 2 in Paris hospitals, france: a cohort study on 5,795 patients. Obesity 28, 2282–2289 (2020).

    CAS  PubMed  Google Scholar 

  12. Green, W. D. & Beck, M. A. Obesity impairs the adaptive immune response to influenza virus. Ann. Am. Thorac. Soc. 14, S406–S409 (2017).

    PubMed  PubMed Central  Google Scholar 

  13. Dhakal, S. & Klein, S. L. Host factors impact vaccine efficacy: implications for seasonal and universal influenza vaccine programs. J. Virol. 93, e00797–e00819 (2019).

    PubMed  PubMed Central  Google Scholar 

  14. Neidich, S. D. et al. Increased risk of influenza among vaccinated adults who are obese. Int. J. Obes. 41, 1324–1330 (2017).

    CAS  Google Scholar 

  15. Bustamante-Marin, X. M. et al. Mechanistic targets and nutritionally relevant intervention strategies to break obesity-breast cancer links. Front. Endocrinol. 12, 632284 (2021).

    Google Scholar 

  16. Shyer, J. A., Flavell, R. A. & Bailis, W. Metabolic signaling in T cells. Cell Res. 30, 649–659 (2020).

    PubMed  PubMed Central  Google Scholar 

  17. Soriano-Baguet, L. & Brenner, D. Metabolism and epigenetics at the heart of T cell function. Trends Immunol. 44, 231–244 (2023).

    CAS  PubMed  Google Scholar 

  18. Chapman, N. M. & Chi, H. Metabolic adaptation of lymphocytes in immunity and disease. Immunity 55, 14–30 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Boothby, M. & Rickert, R. C. Metabolic regulation of the immune humoral response. Immunity 46, 743–755 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Boothby, M. R., Brookens, S. K., Raybuck, A. L. & Cho, S. H. Supplying the trip to antibody production — nutrients, signaling, and the programming of cellular metabolism in the mature B lineage. Cell Mol. Immunol. 19, 352–369 (2022).

    CAS  PubMed  Google Scholar 

  21. Wculek, S. K., Dunphy, G., Heras-Murillo, I., Mastrangelo, A. & Sancho, D. Metabolism of tissue macrophages in homeostasis and pathology. Cell Mol. Immunol. 19, 384–408 (2022).

    CAS  PubMed  Google Scholar 

  22. Sun, J. X., Xu, X. H. & Jin, L. Effects of metabolism on macrophage polarization under different disease backgrounds. Front. Immunol. 13, 880286 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Moller, S. H., Wang, L. & Ho, P. C. Metabolic programming in dendritic cells tailors immune responses and homeostasis. Cell Mol. Immunol. 19, 370–383 (2022).

    PubMed  Google Scholar 

  24. MacIver, N. J., Michalek, R. D. & Rathmell, J. C. Metabolic regulation of T lymphocytes. Annu. Rev. Immunol. 31, 259–283 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kawai, T., Autieri, M. V. & Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Cell Physiol. 320, C375–C391 (2021).

    CAS  PubMed  Google Scholar 

  26. Alwarawrah, Y. et al. Targeting T-cell oxidative metabolism to improve influenza survival in a mouse model of obesity. Int. J. Obes. 44, 2419–2429 (2020).

    CAS  Google Scholar 

  27. Rebeles, J. et al. Obesity-induced changes in T-cell metabolism are associated with impaired memory T-cell response to influenza and are not reversed with weight loss. J. Infect. Dis. 219, 1652–1661 (2019).

    CAS  PubMed  Google Scholar 

  28. Green, W. D. et al. Metabolic and functional impairment of CD8+ T cells from the lungs of influenza-infected obese mice. J. Leukoc. Biol. 111, 147–159 (2022).

    CAS  PubMed  Google Scholar 

  29. Endo, Y. et al. Obesity drives Th17 cell differentiation by inducing the lipid metabolic kinase, ACC1. Cell Rep. 12, 1042–1055 (2015).

    CAS  PubMed  Google Scholar 

  30. Pugh, G. H. et al. T cells dominate peripheral inflammation in a cross-sectional analysis of obesity-associated diabetes. Obesity 30, 1983–1994 (2022).

    CAS  PubMed  Google Scholar 

  31. Batty, M. J., Chabrier, G., Sheridan, A. & Gage, M. C. Metabolic hormones modulate macrophage inflammatory responses. Cancers 13, 4661 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. de Candia, P. et al. The pleiotropic roles of leptin in metabolism, immunity, and cancer. J. Exp. Med. 218, e20191593 (2021).

    PubMed  PubMed Central  Google Scholar 

  33. Kiernan, K. & MacIver, N. J. The role of the adipokine leptin in immune cell function in health and disease. Front. Immunol. 11, 622468 (2020).

    CAS  PubMed  Google Scholar 

  34. Montague, C. T. et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387, 903–908 (1997).

    CAS  PubMed  Google Scholar 

  35. Ozata, M., Ozdemir, I. C. & Licinio, J. Human leptin deficiency caused by a missense mutation: multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction indicate new targets for leptin action, greater central than peripheral resistance to the effects of leptin, and spontaneous correction of leptin-mediated defects. J. Clin. Endocrinol. Metab. 84, 3686–3695 (1999).

    CAS  PubMed  Google Scholar 

  36. Martin-Romero, C., Santos-Alvarez, J., Goberna, R. & Sanchez-Margalet, V. Human leptin enhances activation and proliferation of human circulating T lymphocytes. Cell Immunol. 199, 15–24 (2000).

    CAS  PubMed  Google Scholar 

  37. Farooqi, I. S. et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J. Clin. Invest. 110, 1093–1103 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Chandra, R. K. Cell-mediated immunity in genetically obese (C57BL/6J ob/ob) mice. Am. J. Clin. Nutr. 33, 13–16 (1980).

    CAS  PubMed  Google Scholar 

  39. Mandel, M. A. & Mahmoud, A. A. Impairment of cell-mediated immunity in mutation diabetic mice (db/db). J. Immunol. 120, 1375–1377 (1978).

    CAS  PubMed  Google Scholar 

  40. Lam, Q. L., Wang, S., Ko, O. K., Kincade, P. W. & Lu, L. Leptin signaling maintains B-cell homeostasis via induction of Bcl-2 and cyclin D1. Proc. Natl Acad. Sci. USA 107, 13812–13817 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Frasca, D. & Blomberg, B. B. Adipose tissue inflammation induces B cell inflammation and decreases B cell function in aging. Front. Immunol. 8, 1003 (2017).

    PubMed  PubMed Central  Google Scholar 

  42. Deng, J. et al. The metabolic hormone leptin promotes the function of TFH cells and supports vaccine responses. Nat. Commun. 12, 3073 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Dudzinski, S. O. et al. Leptin augments antitumor immunity in obesity by repolarizing tumor-associated macrophages. J. Immunol. 207, 3122–3130 (2021).

    CAS  PubMed  Google Scholar 

  44. Saucillo, D. C., Gerriets, V. A., Sheng, J., Rathmell, J. C. & Maciver, N. J. Leptin metabolically licenses T cells for activation to link nutrition and immunity. J. Immunol. 192, 136–144 (2014).

    CAS  PubMed  Google Scholar 

  45. Gerriets, V. A. et al. Leptin directly promotes T-cell glycolytic metabolism to drive effector T-cell differentiation in a mouse model of autoimmunity. Eur. J. Immunol. 46, 1970–1983 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Petersen, M. C. & Shulman, G. I. Mechanisms of insulin action and insulin resistance. Physiol. Rev. 98, 2133–2223 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Makhijani, P. et al. Regulation of the immune system by the insulin receptor in health and disease. Front. Endocrinol. 14, 1128622 (2023).

    Google Scholar 

  48. van Niekerk, G., Christowitz, C., Conradie, D. & Engelbrecht, A. M. Insulin as an immunomodulatory hormone. Cytokine Growth Factor. Rev. 52, 34–44 (2020).

    PubMed  Google Scholar 

  49. Sun, Q., Li, J. & Gao, F. New insights into insulin: the anti-inflammatory effect and its clinical relevance. World J. Diabetes 5, 89–96, (2014).

    PubMed  PubMed Central  Google Scholar 

  50. Fischer, H. J. et al. The insulin receptor plays a critical role in T cell function and adaptive immunity. J. Immunol. 198, 1910–1920 (2017).

    CAS  PubMed  Google Scholar 

  51. Tsai, S. et al. Insulin receptor-mediated stimulation boosts T cell immunity during inflammation and infection. Cell Metab. 28, 922–934.e924 (2018).

    CAS  PubMed  Google Scholar 

  52. Kiernan, K., Alwarawrah, Y., Nichols, A., Danzaki, K. & MacIver, N. J. Insulin and IGF-1 have both overlapping and distinct effects on CD4+ T cell mitochondria, metabolism, and function. Preprint at Res. Sq. https://doi.org/10.21203/rs.3.rs-3133824/v1 (2023).

  53. Smith, W. J., Underwood, L. E. & Clemmons, D. R. Effects of caloric or protein restriction on insulin-like growth factor-I (IGF-I) and IGF-binding proteins in children and adults. J. Clin. Endocrinol. Metab. 80, 443–449 (1995).

    CAS  PubMed  Google Scholar 

  54. Hawkes, C. P. & Grimberg, A. Insulin-like growth factor-I is a marker for the nutritional state. Pediatr. Endocrinol. Rev. 13, 499–511 (2015).

    PubMed  PubMed Central  Google Scholar 

  55. Clemmons, D. R. & Underwood, L. E. Nutritional regulation of IGF-I and IGF binding proteins. Annu. Rev. Nutr. 11, 393–412 (1991).

    CAS  PubMed  Google Scholar 

  56. Lewitt, M. S., Dent, M. S. & Hall, K. The insulin-like growth factor system in obesity, insulin resistance and type 2 diabetes mellitus. J. Clin. Med. 3, 1561–1574 (2014).

    PubMed  PubMed Central  Google Scholar 

  57. DiToro, D. et al. Insulin-like growth factors are key regulators of T helper 17 regulatory T cell balance in autoimmunity. Immunity 52, 650–667. e610 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Spadaro, O. et al. IGF1 shapes macrophage activation in response to immunometabolic challenge. Cell Rep. 19, 225–234 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Garcia-Estevez, L., Gonzalez-Martinez, S. & Moreno-Bueno, G. The leptin axis and its association with the adaptive immune system in breast cancer. Front. Immunol. 12, 784823 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Jimenez-Cortegana, C. et al. Leptin, both bad and good actor in cancer. Biomolecules 11, 913 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Harvey, A. E. et al. Calorie restriction decreases murine and human pancreatic tumor cell growth, nuclear factor-kappaB activation, and inflammation-related gene expression in an insulin-like growth factor-1-dependent manner. PLoS ONE 9, e94151 (2014).

    PubMed  PubMed Central  Google Scholar 

  62. de Gruil, N., Pijl, H., van der Burg, S. H. & Kroep, J. R. Short-term fasting synergizes with solid cancer therapy by boosting antitumor immunity. Cancers 14, 1390 (2022).

    PubMed  PubMed Central  Google Scholar 

  63. Lu, C. et al. Glucagon-like peptide-1 receptor agonist exendin-4 mitigates lipopolysaccharide-induced inflammatory responses in RAW264.7 macrophages. Int. Immunopharmacol. 77, 105969 (2019).

    CAS  PubMed  Google Scholar 

  64. Helmstadter, J. et al. GLP-1 analog liraglutide improves vascular function in polymicrobial sepsis by reduction of oxidative stress and inflammation. Antioxidants 10, 1175 (2021).

    PubMed  PubMed Central  Google Scholar 

  65. Shah, F. A. et al. Therapeutic effects of endogenous incretin hormones and exogenous incretin-based medications in sepsis. J. Clin. Endocrinol. Metab. 104, 5274–5284 (2019).

    PubMed  PubMed Central  Google Scholar 

  66. Insuela, D. B. R. & Carvalho, V. F. Glucagon and glucagon-like peptide-1 as novel anti-inflammatory and immunomodulatory compounds. Eur. J. Pharmacol. 812, 64–72 (2017).

    CAS  PubMed  Google Scholar 

  67. Steven, S. et al. Gliptin and GLP-1 analog treatment improves survival and vascular inflammation/dysfunction in animals with lipopolysaccharide-induced endotoxemia. Basic Res. Cardiol. 110, 6 (2015).

    PubMed  Google Scholar 

  68. Moschovaki Filippidou, F. et al. Glucagon-like peptide-1 receptor agonism improves nephrotoxic serum nephritis by inhibiting T-cell proliferation. Am. J. Pathol. 190, 400–411 (2020).

    CAS  PubMed  Google Scholar 

  69. Xue, S. et al. Exendin-4 therapy in NOD mice with new-onset diabetes increases regulatory T cell frequency. Ann. N. Y. Acad. Sci. 1150, 152–156 (2008).

    PubMed  Google Scholar 

  70. Itoh, A. et al. GLP-1 receptor agonist, liraglutide, ameliorates hepatosteatosis induced by anti-CD3 antibody in female mice. J. Diabetes Complications 31, 1370–1375 (2017).

    PubMed  Google Scholar 

  71. Chiou, H. C. et al. Dulaglutide modulates the development of tissue-infiltrating Th1/Th17 cells and the pathogenicity of encephalitogenic Th1 cells in the central nervous system. Int. J. Mol. Sci. 20, 1584 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Xu, Q., Zhang, X., Li, T. & Shao, S. Exenatide regulates Th17/Treg balance via PI3K/Akt/FoxO1 pathway in db/db mice. Mol. Med. 28, 144 (2022).

    PubMed  PubMed Central  Google Scholar 

  73. Pegtel, D. M. & Gould, S. J. Exosomes. Annu. Rev. Biochem. 88, 487–514 (2019).

    CAS  PubMed  Google Scholar 

  74. Abels, E. R. & Breakefield, X. O. Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol. Neurobiol. 36, 301–312 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Eguchi, A. et al. Microparticles release by adipocytes act as “find-me” signals to promote macrophage migration. PLoS ONE 10, e0123110 (2015).

    PubMed  PubMed Central  Google Scholar 

  76. Eguchi, A. et al. Circulating adipocyte-derived extracellular vesicles are novel markers of metabolic stress. J. Mol. Med. 94, 1241–1253 (2016).

    CAS  PubMed  Google Scholar 

  77. Engin, A. Dark-side of exosomes. Adv. Exp. Med. Biol. 1275, 101–131 (2021).

    CAS  PubMed  Google Scholar 

  78. Nakao, Y. et al. Circulating extracellular vesicles are a biomarker for NAFLD resolution and response to weight loss surgery. Nanomedicine 36, 102430 (2021).

    CAS  PubMed  Google Scholar 

  79. Deng, Z. B. et al. Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance. Diabetes 58, 2498–2505 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Kwan, H. Y., Chen, M., Xu, K. & Chen, B. The impact of obesity on adipocyte-derived extracellular vesicles. Cell Mol. Life Sci. 78, 7275–7288 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kumar, V., Kiran, S., Kumar, S. & Singh, U. P. Extracellular vesicles in obesity and its associated inflammation. Int. Rev. Immunol. 41, 30–44 (2022).

    CAS  PubMed  Google Scholar 

  82. Castano, C., Kalko, S., Novials, A. & Parrizas, M. Obesity-associated exosomal miRNAs modulate glucose and lipid metabolism in mice. Proc. Natl Acad. Sci. USA 115, 12158–12163 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Song, M. et al. Adipocyte-derived exosomes carrying sonic hedgehog mediate M1 macrophage polarization-induced insulin resistance via Ptch and PI3K pathways. Cell Physiol. Biochem. 48, 1416–1432 (2018).

    CAS  PubMed  Google Scholar 

  84. Lei, L. M. et al. Exosomes and obesity-related insulin resistance. Front. Cell Dev. Biol. 9, 651996 (2021).

    PubMed  PubMed Central  Google Scholar 

  85. Raposo, G. et al. B lymphocytes secrete antigen-presenting vesicles. J. Exp. Med. 183, 1161–1172 (1996).

    CAS  PubMed  Google Scholar 

  86. Lindenbergh, M. F. S. & Stoorvogel, W. Antigen presentation by extracellular vesicles from professional antigen-presenting cells. Annu. Rev. Immunol. 36, 435–459 (2018).

    CAS  PubMed  Google Scholar 

  87. Anel, A., Gallego-Lleyda, A., de Miguel, D., Naval, J. & Martinez-Lostao, L. Role of exosomes in the regulation of t-cell mediated immune responses and in autoimmune disease. Cells 8, 154 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Burrello, J. et al. Stem cell-derived extracellular vesicles and immune-modulation. Front. Cell Dev. Biol. 4, 83 (2016).

    PubMed  PubMed Central  Google Scholar 

  89. Qian, X. et al. Immunosuppressive effects of mesenchymal stem cells-derived exosomes. Stem Cell Rev. Rep. 17, 411–427 (2021).

    CAS  PubMed  Google Scholar 

  90. Hade, M. D., Suire, C. N., Mossell, J. & Suo, Z. Extracellular vesicles: emerging frontiers in wound healing. Med. Res. Rev. 42, 2102–2125 (2022).

    CAS  PubMed  Google Scholar 

  91. Sagini, K., Costanzi, E., Emiliani, C., Buratta, S. & Urbanelli, L. Extracellular vesicles as conveyors of membrane-derived bioactive lipids in immune system. Int. J. Mol. Sci. 19, 1227 (2018).

    PubMed  PubMed Central  Google Scholar 

  92. Pan, Y. et al. Adipocyte-secreted exosomal microRNA-34a inhibits M2 macrophage polarization to promote obesity-induced adipose inflammation. J. Clin. Invest. 129, 834–849 (2019).

    PubMed  PubMed Central  Google Scholar 

  93. Ying, W. et al. Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity. Cell 171, 372–384.e312 (2017).

    CAS  PubMed  Google Scholar 

  94. Ying, W. et al. MiR-690, an exosomal-derived miRNA from M2-polarized macrophages, improves insulin sensitivity in obese mice. Cell Metab. 33, 781–790.e785 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Purvinsh, L., Gorshkov, A., Brodskaia, A. & Vasin, A. Extracellular vesicles in viral pathogenesis: a case of Dr. Jekyll and Mr. Hyde. Life 11, 45 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Hulme, K. D., Noye, E. C., Short, K. R. & Labzin, L. I. Dysregulated inflammation during obesity: driving disease severity in influenza virus and SARS-CoV-2 infections. Front. Immunol. 12, 770066 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Wu, Q. et al. Cancer-associated adipocytes: key players in breast cancer progression. J. Hematol. Oncol. 12, 95 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Clement, E. et al. Adipocyte extracellular vesicles carry enzymes and fatty acids that stimulate mitochondrial metabolism and remodeling in tumor cells. EMBO J. 39, e102525 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Dionisi, M. et al. Tumor-derived microvesicles enhance cross-processing ability of clinical grade dendritic cells. Front. Immunol. 9, 2481 (2018).

    PubMed  PubMed Central  Google Scholar 

  100. Marar, C., Starich, B. & Wirtz, D. Extracellular vesicles in immunomodulation and tumor progression. Nat. Immunol. 22, 560–570 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Zakeri, Z. et al. MicroRNA and exosome: key players in rheumatoid arthritis. J. Cell Biochem. 120, 10930–10944 (2019).

    CAS  PubMed  Google Scholar 

  102. SantaCruz-Calvo, S. et al. Adaptive immune cells shape obesity-associated type 2 diabetes mellitus and less prominent comorbidities. Nat. Rev. Endocrinol. 18, 23–42 (2022).

    CAS  PubMed  Google Scholar 

  103. Li, P. et al. LTB4 promotes insulin resistance in obese mice by acting on macrophages, hepatocytes and myocytes. Nat. Med. 21, 239–247 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Frasca, D., Romero, M., Garcia, D., Diaz, A. & Blomberg, B. B. Obesity accelerates age-associated defects in human B cells through a metabolic reprogramming induced by the fatty acid palmitate. Front. Aging 2, 828697 (2021).

    PubMed  Google Scholar 

  105. Niraula, A. et al. Prostaglandin PGE2 receptor EP4 regulates microglial phagocytosis and increases susceptibility to diet-induced obesity. Diabetes 72, 233–244 (2023).

    CAS  PubMed  Google Scholar 

  106. Schwarz, B. et al. Contribution of lipid mediators in divergent outcomes following acute bacterial and viral lung infections in the obese host. J. Immunol. 209, 1323–1334 (2022).

    CAS  PubMed  Google Scholar 

  107. Virk, R. et al. Obesity reprograms the pulmonary polyunsaturated fatty acid-derived lipidome, transcriptome, and gene-oxylipin networks. J. Lipid Res. 63, 100267 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Mathews, J. A. et al. IL-33 drives augmented responses to ozone in obese mice. Environ. Health Perspect. 125, 246–253 (2017).

    CAS  PubMed  Google Scholar 

  109. Neuhofer, A. et al. Impaired local production of proresolving lipid mediators in obesity and 17-HDHA as a potential treatment for obesity-associated inflammation. Diabetes 62, 1945–1956 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Crouch, M. J. et al. Frontline science: a reduction in DHA-derived mediators in male obesity contributes toward defects in select B cell subsets and circulating antibody. J. Leukoc. Biol. 106, 241–257 (2019).

    CAS  PubMed  Google Scholar 

  111. Lopez-Vicario, C. et al. Leukocytes from obese individuals exhibit an impaired SPM signature. FASEB J. 33, 7072–7083 (2019).

    CAS  PubMed  Google Scholar 

  112. Green, W. D. et al. Inflammation and metabolism of influenza-stimulated peripheral blood mononuclear cells from adults with obesity following bariatric surgery. J. Infect. Dis. 227, 92–102 (2022).

    PubMed  PubMed Central  Google Scholar 

  113. Fisk, H. L. et al. Modification of subcutaneous white adipose tissue inflammation by omega-3 fatty acids is limited in human obesity-a double blind, randomised clinical trial. EBioMedicine 77, 103909 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Ramon, S. et al. The specialized proresolving mediator 17-HDHA enhances the antibody-mediated immune response against influenza virus: a new class of adjuvant? J. Immunol. 193, 6031–6040 (2014).

    CAS  PubMed  Google Scholar 

  115. Kahnt, A. S., Schebb, N. H. & Steinhilber, D. Formation of lipoxins and resolvins in human leukocytes. Prostaglandins Other Lipid Mediat. 166, 106726 (2023).

    CAS  PubMed  Google Scholar 

  116. Shu, T. et al. Eosinophils protect against pulmonary hypertension through 14-HDHA and 17-HDHA. Eur. Respir. J. 61, 2200582 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Serhan, C. N. & Levy, B. D. Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators. J. Clin. Invest. 128, 2657–2669 (2018).

    PubMed  PubMed Central  Google Scholar 

  118. Miao, T. et al. Decreased plasma maresin 1 concentration is associated with diabetic foot ulcer. Mediators Inflamm. 2020, 4539035 (2020).

    PubMed  PubMed Central  Google Scholar 

  119. Sugimoto, S. et al. Brown adipose tissue-derived MaR2 contributes to cold-induced resolution of inflammation. Nat. Metab. 4, 775–790 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Schebb, N. H. et al. Formation, signaling and occurrence of specialized pro-resolving lipid mediators-what is the evidence so far? Front. Pharmacol. 13, 838782 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Al-Shaer, A. E. et al. Enriched marine oil supplement increases specific plasma specialized pro-resolving mediators in adults with obesity. J. Nutr. 152, 1783–1791 (2022).

    PubMed  PubMed Central  Google Scholar 

  122. Leiria, L. O. et al. 12-Lipoxygenase regulates cold adaptation and glucose metabolism by producing the omega-3 lipid 12-HEPE from brown fat. Cell Metab. 30, 768–783.e767 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Pal, A. et al. Resolvin E1 derived from eicosapentaenoic acid prevents hyperinsulinemia and hyperglycemia in a host genetic manner. FASEB J. 34, 10640–10656 (2020).

    CAS  PubMed  Google Scholar 

  124. Zhang, N. et al. FFAR4 regulates cardiac oxylipin balance to promote inflammation resolution in HFpEF secondary to metabolic syndrome. J. Lipid Res. 64, 100374 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Endo, J. et al. 18-HEPE, an n-3 fatty acid metabolite released by macrophages, prevents pressure overload-induced maladaptive cardiac remodeling. J. Exp. Med. 211, 1673–1687 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Shaikh, S. R., Virk, R. & Van Dyke, T. E. Potential mechanisms by which hydroxyeicosapentaenoic acids regulate glucose homeostasis in obesity. Adv. Nutr. 13, 2316–2328 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Onodera, T. et al. Eicosapentaenoic acid and 5-HEPE enhance macrophage-mediated Treg induction in mice. Sci. Rep. 7, 4560 (2017).

    PubMed  PubMed Central  Google Scholar 

  128. Yamada, H. et al. 8-Hydroxyeicosapentaenoic acid decreases plasma and hepatic triglycerides via activation of peroxisome proliferator-activated receptor alpha in high-fat diet-induced obese mice. J. Lipids 2016, 7498508 (2016).

    PubMed  PubMed Central  Google Scholar 

  129. Liu, J. et al. The omega-3 hydroxy fatty acid 7(S)-HDHA is a high-affinity PPARalpha ligand that regulates brain neuronal morphology. Sci. Signal. 15, eabo1857 (2022).

    CAS  PubMed  Google Scholar 

  130. de Bus, I., Witkamp, R., Zuilhof, H., Albada, B. & Balvers, M. The role of n-3 PUFA-derived fatty acid derivatives and their oxygenated metabolites in the modulation of inflammation. Prostaglandins Other Lipid Mediat. 144, 106351 (2019).

    PubMed  Google Scholar 

  131. Fisk, H. L. et al. Dysregulation of endocannabinoid concentrations in human subcutaneous adipose tissue in obesity and modulation by omega-3 polyunsaturated fatty acids. Clin. Sci. 135, 185–200 (2021).

    Google Scholar 

  132. Monk, J. M. et al. Dietary n-3 polyunsaturated fatty acids (PUFA) decrease obesity-associated Th17 cell-mediated inflammation during colitis. PLoS ONE 7, e49739 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Borja-Magno, A. I. et al. Supplementation with EPA and DHA omega-3 fatty acids improves peripheral immune cell mitochondrial dysfunction and inflammation in subjects with obesity. J. Nutr. Biochem. 120, 109415 (2023).

    CAS  PubMed  Google Scholar 

  134. Zeyda, M. et al. Polyunsaturated fatty acids block dendritic cell activation and function independently of NF-kappaB activation. J. Biol. Chem. 280, 14293–14301 (2005).

    CAS  PubMed  Google Scholar 

  135. Rockett, B. D. et al. Fish oil increases raft size and membrane order of B cells accompanied by differential effects on function. J. Lipid Res. 53, 674–685 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Hou, T. Y. et al. n-3 polyunsaturated fatty acids suppress CD4+ T cell proliferation by altering phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] organization. Biochim. Biophys. Acta 1858, 85–96 (2016).

    CAS  PubMed  Google Scholar 

  137. Wang, X., Ilarraza, R., Tancowny, B. P., Alam, S. B. & Kulka, M. Disrupted lipid raft shuttling of FcepsilonRI by n-3 polyunsaturated fatty acid is associated with ligation of g protein-coupled receptor 120 (GPR120) in human mast cell line LAD2. Front. Nutr. 7, 597809 (2020).

    PubMed  PubMed Central  Google Scholar 

  138. Pettersson, U. S., Walden, T. B., Carlsson, P. O., Jansson, L. & Phillipson, M. Female mice are protected against high-fat diet induced metabolic syndrome and increase the regulatory T cell population in adipose tissue. PLoS ONE 7, e46057 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Pauls, S. D. et al. Impact of age, menopause, and obesity on oxylipins linked to vascular health. Arterioscler. Thromb. Vasc. Biol. 41, 883–897 (2021).

    CAS  PubMed  Google Scholar 

  140. Yaeger, M. J. et al. Sex differences in pulmonary eicosanoids and specialized pro-resolving mediators in response to ozone exposure. Toxicol. Sci. 183, 170–183 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Rabiee, M., Marjani, A., Khajeniazi, S. & Mojerloo, M. Genetic polymorphisms of cytochrome p450 (2C9) enzyme in patients with type 2 diabetes mellitus in Turkmen and Fars ethnic groups. Endocr. Metab. Immune Disord. Drug. Targets 18, 653–661 (2018).

    CAS  PubMed  Google Scholar 

  142. Churchill, G. A., Gatti, D. M., Munger, S. C. & Svenson, K. L. The diversity outbred mouse population. Mamm. Genome 23, 713–718 (2012).

    PubMed  PubMed Central  Google Scholar 

  143. Lee, B. Y. et al. Research gaps and opportunities in precision nutrition: an NIH workshop report. Am. J. Clin. Nutr. 116, 1877–1900 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of NIH grant P30DK056350 (S.R.S.); NIH grant R01ES031378 (S.R.S.); and NIH grant R21CA253163 (N.J.M.).

Author information

Authors and Affiliations

Authors

Contributions

M.A.B., S.R.S. and N.J.M. researched data for the article, contributed substantially to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission. Y.A. contributed substantially to discussion of the content and wrote the article.

Corresponding authors

Correspondence to Saame Raza Shaikh, Melinda A. Beck or Nancie J. MacIver.

Ethics declarations

Competing interests

S.R.S. has received industry support from Wiley Companies and Metagenics for studies on n-3 and n-7 fatty acids and from Sanofi, Solutex and Wiley Companies for organizing conferences. N.J.M., Y.A. and M.A.B. declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaikh, S.R., Beck, M.A., Alwarawrah, Y. et al. Emerging mechanisms of obesity-associated immune dysfunction. Nat Rev Endocrinol 20, 136–148 (2024). https://doi.org/10.1038/s41574-023-00932-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-023-00932-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing