Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The intersection between ghrelin, metabolism and circadian rhythms

Abstract

Despite the growing popular interest in sleep and diet, many gaps exist in our scientific understanding of the interaction between circadian rhythms and metabolism. In this Review, we explore a promising, bidirectional role for ghrelin in mediating this interaction. Ghrelin both influences and is influenced by central and peripheral circadian systems. Specifically, we focus on how ghrelin impacts outputs of circadian rhythm, including neuronal activity, circulating growth hormone levels, locomotor activity and eating behaviour. We also consider the effects of circadian rhythms on ghrelin expression and the consequences of disrupted circadian patterns, such as shift work and jet lag, on ghrelin secretion. Our Review is aimed at both the casual reader interested in gaining more insight into the scientific context surrounding the trending topics of sleep and metabolism, as well as experienced scientists in the fields of ghrelin and circadian biology seeking inspiration and a comprehensive overview of how these fields are related.

Key points

  • Disrupted circadian and metabolic systems are a growing cause of societal health burden.

  • The ghrelin system regulates many key metabolic functions including food intake, body weight, blood glucose, food anticipatory activity, growth hormone secretion and body temperature.

  • Ghrelin and GHSR (growth hormone secretagogue receptor, which serves as the receptor for ghrelin) mRNA and protein expression are regulated by the circadian system.

  • Ghrelin affects neuronal firing, food anticipatory activity and thermoregulation in a circadian-dependent manner.

  • Given the expansion in scientific technology in the past 25 years, many more tools now exist to better understand the role of the ghrelin system in metabolism and circadian biology.

  • Future studies are needed to elucidate further the connections between the ghrelin system, metabolism and circadian systems, and to provide novel avenues for therapeutic approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Major sites of expression of the hormones ghrelin and LEAP2 and their receptor, GHSR.
Fig. 2: Overview of the ghrelin system and its physiological functions.
Fig. 3: GHSR-expressing neurons in SCN of GHSR-IRES-Cre mice.
Fig. 4: Representative traces of human and rat plasma ghrelin secretion patterns.
Fig. 5: Intersections of ghrelin, metabolism and circadian rhythms.

Similar content being viewed by others

References

  1. Kojima, M. et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402, 656–660 (1999).

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Müller, T. D. et al. Ghrelin. Mol. Metab. 4, 437–460 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sánchez, J., Oliver, P., Picó, C. & Palou, A. Diurnal rhythms of leptin and ghrelin in the systemic circulation and in the gastric mucosa are related to food intake in rats. Pflügers Arch. 448, 500–506 (2004).

    Article  PubMed  Google Scholar 

  4. Cummings, D. E. et al. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50, 1714–1719 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Frecka, J. M. & Mattes, R. D. Possible entrainment of ghrelin to habitual meal patterns in humans. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G699–G707 (2008). Plasma ghrelin measurements in humans indicate that ghrelin fluctuates across 24-h both as a function of mealtime as well as in a diurnal rhythm.

    Article  CAS  PubMed  Google Scholar 

  6. Inui, A. Ghrelin: An orexigenic and somatotrophic signal from the stomach. Nat. Rev. Neurosci. 2, 551–560 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Mani, B. K., Shankar, K. & Zigman, J. M. Ghrelin’s relationship to blood glucose. Endocrinology 160, 1247–1261 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sakata, I. et al. Glucose-mediated control of ghrelin release from primary cultures of gastric mucosal cells. Am. J. Physiol. Endocrinol. Metab. 302, E1300–E1310 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shankar, K. et al. Acyl-ghrelin is permissive for the normal counterregulatory response to insulin-induced hypoglycemia. Diabetes 69, 228–237 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Decarie-Spain, L. & Kanoski, S. E. Ghrelin and glucagon-like peptide-1: a gut-brain axis battle for food reward. Nutrients 13, 977 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Farokhnia, M., Faulkner, M. L., Piacentino, D., Lee, M. R. & Leggio, L. Ghrelin: from a gut hormone to a potential therapeutic target for alcohol use disorder. Physiol. Behav. 204, 49–57 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Tian, J., Wang, T. & Du, H. Ghrelin system in Alzheimer’s disease. Curr. Opin. Neurobiol. 78, 102655 (2023).

    Article  CAS  PubMed  Google Scholar 

  13. Diano, S. et al. Ghrelin controls hippocampal spine synapse density and memory performance. Nat. Neurosci. 9, 381–388 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Bahinipati, J., Sarangi, R., Pathak, M. & Mohapatra, S. Effect of night shift on development of metabolic syndrome among health care workers. J. Fam. Med. Prim. Care 11, 1710–1715 (2022).

    Article  Google Scholar 

  15. Wang, Y., Guo, H. & He, F. Circadian disruption: from mouse models to molecular mechanisms and cancer therapeutic targets. Cancer Metastasis Rev. 42, 297–322 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Hibi, M. et al. Nighttime snacking reduces whole body fat oxidation and increases LDL cholesterol in healthy young women. Am. J. Physiol. Regul. Integr. Comp. Physiol. 304, R94–R101 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Vujović, N. et al. Late isocaloric eating increases hunger, decreases energy expenditure, and modifies metabolic pathways in adults with overweight and obesity. Cell Metab. 34, 1486–1498.e7 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Birketvedt, G. S. et al. Behavioral and neuroendocrine characteristics of the night-eating syndrome. JAMA 282, 657–663 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Goel, N. et al. Circadian rhythm profiles in women with night eating syndrome. J. Biol. Rhythm. 24, 85–94 (2009).

    Article  CAS  Google Scholar 

  20. Chaput, J. P. et al. The role of insufficient sleep and circadian misalignment in obesity. Nat. Rev. Endocrinol. 19, 82–97 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Reinke, H. & Asher, G. Crosstalk between metabolism and circadian clocks. Nat. Rev. Mol. Cell Biol. 20, 227–241 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Marcheva, B. et al. in Circadian Clocks (eds Kramer, A. & Merrow, M.) 127–155 [Series ed. Michel, M. C. Handbook of Experimental Pharmacology Vol. 217] (Springer, 2013).

  23. Turek, F. W. et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308, 1043–1045 (2005).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  24. Oishi, K. et al. Disrupted fat absorption attenuates obesity induced by a high-fat diet in Clock mutant mice. FEBS Lett. 580, 127–130 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Marcheva, B., Ramsey, K. M., Affinati, A. & Bass, J. Clock genes and disease. J. Appl. Physiol. 107, 1638–1646 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Coomans, C. P. et al. The suprachiasmatic nucleus controls circadian energy metabolism and hepatic insulin sensitivity. Diabetes 62, 1102–1108 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kolbe, I., Leinweber, B., Brandenburger, M. & Oster, H. Circadian clock network desynchrony promotes weight gain and alters glucose homeostasis in mice. Mol. Metab. 30, 140–151 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cedernaes, J. et al. Transcriptional basis for rhythmic control of hunger and metabolism within the AgRP neuron. Cell Metab. 29, 1078–1091.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yi, C.-X. et al. Ventromedial arcuate nucleus communicates peripheral metabolic information to the suprachiasmatic nucleus. Endocrinology 147, 283–294 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Gupta, D. et al. “A LEAP 2 conclusions? Targeting the ghrelin system to treat obesity and diabetes”. Mol. Metab. 46, 101128 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Ariyasu, H. et al. Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans. J. Clin. Endocrinol. Metab. 86, 4753–4758 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Mani, B. K., Osborne-Lawrence, S., Vijayaraghavan, P., Hepler, C. & Zigman, J. M. β1-Adrenergic receptor deficiency in ghrelin-expressing cells causes hypoglycemia in susceptible individuals. J. Clin. Invest. 126, 3467–3478 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tschöp, M., Smiley, D. L. & Heiman, M. L. Ghrelin induces adiposity in rodents. Nature 407, 908–913 (2000).

    Article  PubMed  ADS  Google Scholar 

  34. Liu, J. et al. Novel ghrelin assays provide evidence for independent regulation of ghrelin acylation and secretion in healthy young men. J. Clin. Endocrinol. Metab. 93, 1980–1987 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gupta, D. et al. β1-adrenergic receptors mediate plasma acyl-ghrelin elevation and depressive-like behavior induced by chronic psychosocial stress. Neuropsychopharmacology 44, 1319–1327 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gong, Z. et al. G protein-coupled receptor 120 signaling regulates ghrelin secretion in vivo and in vitro. Am. J. Physiol. Endocrinol. Metab. 306, E28–E35 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Koyama, H. et al. Comprehensive profiling of GPCR expression in ghrelin-producing cells. Endocrinology 157, 692–704 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Uchida, A. et al. Altered ghrelin secretion in mice in response to diet-induced obesity and Roux-en-Y gastric bypass. Mol. Metab. 3, 717–730 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shankar, K. et al. Ghrelin cell-expressed insulin receptors mediate meal- and obesity-induced declines in plasma ghrelin. JCI Insight 6, e146983 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Engelstoft, M. S. et al. Seven transmembrane G protein-coupled receptor repertoire of gastric ghrelin cells. Mol. Metab. 2, 376–392 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mani, B. K. et al. The role of ghrelin-responsive mediobasal hypothalamic neurons in mediating feeding responses to fasting. Mol. Metab. 6, 882–896 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Davies, J. S. et al. Ghrelin induces abdominal obesity via GHS-R-dependent lipid retention. Mol. Endocrinol. 23, 914–924 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dallak, M. A. Acylated ghrelin induces but deacylated ghrelin prevents hepatic steatosis and insulin resistance in lean rats: effects on DAG/PKC/JNK pathway. Biomed. Pharmacother. 105, 299–311 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Li, Z. et al. Ghrelin promotes hepatic lipogenesis by activation of mTOR-PPARγ signaling pathway. Proc. Natl Acad. Sci. USA 111, 13163–13168 (2014).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  45. Asakawa, A. et al. A role of ghrelin in neuroendocrine and behavioral responses to stress in mice. Neuroendocrinology 74, 143–147 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Theander-Carrillo, C. et al. Ghrelin action in the brain controls adipocyte metabolism. J. Clin. Invest. 116, 1983–1993 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Perello, M. et al. Ghrelin increases the rewarding value of high-fat diet in an orexin-dependent manner. Biol. Psychiatry 67, 880–886 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Perello, M. & Zigman, J. M. The role of ghrelin in reward-based eating. Biol. Psychiatry 72, 347–353 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Skibicka, K. P., Hansson, C., Egecioglu, E. & Dickson, S. L. Role of ghrelin in food reward: impact of ghrelin on sucrose self-administration and mesolimbic dopamine and acetylcholine receptor gene expression. Addict. Biol. 17, 95–107 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kanoski, S. E., Fortin, S. M., Ricks, K. M. & Grill, H. J. Ghrelin signaling in the ventral hippocampus stimulates learned and motivational aspects of feeding via PI3K-Akt signaling. Biol. Psychiatry 73, 915–923 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Barnett, B. P. et al. Glucose and weight control in mice with a designed ghrelin O-acyltransferase inhibitor. Science 330, 1689–1692 (2010).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  52. Esler, W. P. et al. Small-molecule ghrelin receptor antagonists improve glucose tolerance, suppress appetite, and promote weight loss. Endocrinology 148, 5175–5185 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Shearman, L. P. et al. Ghrelin neutralization by a ribonucleic acid-SPM ameliorates obesity in diet-induced obese mice. Endocrinology 147, 1517–1526 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Zorrilla, E. P. et al. Vaccination against weight gain. Proc. Natl Acad. Sci. USA 103, 13226–13231 (2006).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  55. Abegg, K. et al. Ghrelin receptor inverse agonists as a novel therapeutic approach against obesity-related metabolic disease. Diabetes Obes. Metab. 19, 1740–1750 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Sun, Y., Wang, P., Zheng, H. & Smith, R. G. Ghrelin stimulation of growth hormone release and appetite is mediated through the growth hormone secretagogue receptor. Proc. Natl Acad. Sci. USA 101, 4679–4684 (2004).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  57. Zigman, J. M. et al. Mice lacking ghrelin receptors resist the development of diet-induced obesity. J. Clin. Invest. 115, 3564–3572 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ge, X. et al. LEAP2 is an endogenous antagonist of the ghrelin receptor. Cell Metab. 27, 461–469.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  59. Yi, C.-X. et al. The GOAT-ghrelin system is not essential for hypoglycemia prevention during prolonged calorie restriction. PLoS ONE 7, e32100 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  60. Mani, B. K. et al. Ghrelin mediates exercise endurance and the feeding response post-exercise. Mol. Metab. 9, 114–130 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chuang, J. C. et al. Ghrelin mediates stress-induced food-reward behavior in mice. J. Clin. Invest. 121, 2684–2692 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Perello, M. & Dickson, S. L. Ghrelin signalling on food reward: a salient link between the gut and the mesolimbic system. J. Neuroendocrinol. 27, 424–434 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cornejo, M. P. et al. Growth hormone secretagogue receptor signalling affects high-fat intake independently of plasma levels of ghrelin and LEAP2, in a 4-day binge eating model. J. Neuroendocrinol. 31, e12785 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Mani, B. K. et al. LEAP2 changes with body mass and food intake in humans and mice. J. Clin. Invest. 129, 3909 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Shankar, K. et al. LEAP2 deletion in mice enhances ghrelin’s actions as an orexigen and growth hormone secretagogue. Mol. Metab. 53, 101327 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Islam, M. N. et al. Liver-expressed antimicrobial peptide 2 antagonizes the effect of ghrelin in rodents. J. Endocrinol. 244, 13–23 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Wald, H. S., Ghidewon, M. Y., Hayes, M. R. & Grill, H. J. Hindbrain ghrelin and liver-expressed antimicrobial peptide 2, ligands for growth hormone secretagogue receptor, bidirectionally control food intake. Am. J. Physiol. Regul. Integr. Comp. Physiol. 324, R547–R555 (2023).

    Article  CAS  PubMed  Google Scholar 

  68. Hagemann, C. A. et al. LEAP2 reduces postprandial glucose excursions and ad libitum food intake in healthy men. Cell Rep. Med. 3, 100582 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bhargava, R. et al. Postprandial increases in liver-gut hormone LEAP2 correlate with attenuated eating behavior in adults without obesity. J. Endocr. Soc. 7, bvad061 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Guan, X.-M. et al. Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Mol. Brain Res. 48, 23–29 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Zigman, J. M., Jones, J. E., Lee, C. E., Saper, C. B. & Elmquist, J. K. Expression of ghrelin receptor mRNA in the rat and the mouse brain. J. Comp. Neurol. 494, 528–548 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ferrini, F., Salio, C., Lossi, L. & Merighi, A. Ghrelin in central neurons. Curr. Neuropharmacol. 7, 37–49 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kanoski, S. E. & Grill, H. J. Hippocampus contributions to food intake control: mnemonic, neuroanatomical, and endocrine mechanisms. Biol. Psychiatry 81, 748–756 (2017).

    Article  PubMed  Google Scholar 

  74. Faulconbridge, L. F., Cummings, D. E., Kaplan, J. M. & Grill, H. J. Hyperphagic effects of brainstem ghrelin administration. Diabetes 52, 2260–2265 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Andrews, Z. B. The extra-hypothalamic actions of ghrelin on neuronal function. Trends Neurosci. 34, 31–40 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Zhou, L. et al. Activation of growth hormone secretagogue receptor induces time-dependent clock phase delay in mice. Am. J. Physiol. Endocrinol. Metab. 307, E515–E526 (2014). Bolus injection of ghrelin mimetic at CT12 produces phase delay under DD; this effect is abolished by pretreatment with a GHSR agonist.

    Article  CAS  PubMed  Google Scholar 

  77. Tokizawa, K., Onoue, Y., Uchida, Y. & Nagashima, K. Ghrelin induces time-dependent modulation of thermoregulation in the cold. Chronobiol. Int. 29, 736–746 (2012). Wild-type animals exposed to ghrelin during the early light phase display diminished ability to protect their body temperature following cold exposure; this effect is abolished when ghrelin is instead administered during the early dark phase.

    Article  CAS  PubMed  Google Scholar 

  78. Yi, C. X. et al. A circulating ghrelin mimetic attenuates light-induced phase delay of mice and light-induced Fos expression in the suprachiasmatic nucleus of rats. Eur. J. Neurosci. 27, 1965–1972 (2008).

    Article  PubMed  Google Scholar 

  79. Yannielli, P. C., Molyneux, P. C., Harrington, M. E. & Golombek, D. A. Ghrelin effects on the circadian system of mice. J. Neurosci. 27, 2890–2895 (2007). Slice physiology of the SCN shows a 3-h advance in the rhythm of spontaneous neuronal firing when sections are treated with ghrelin at ZT6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lamont, E. W., Bruton, J., Blum, I. D. & Abizaid, A. Ghrelin receptor-knockout mice display alterations in circadian rhythms of activity and feeding under constant lighting conditions. Eur. J. Neurosci. 39, 207–217 (2014).

    Article  PubMed  Google Scholar 

  81. Merkestein, M. et al. GHS-R1a signaling in the DMH and VMH contributes to food anticipatory activity. Int. J. Obes. 38, 610–618 (2014).

    Article  CAS  Google Scholar 

  82. Mistlberger, R. E. Neurobiology of food anticipatory circadian rhythms. Physiol. Behav. 104, 535–545 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. LeSauter, J., Hoque, N., Weintraub, M., Pfaff, D. W. & Silver, R. Stomach ghrelin-secreting cells as food-entrainable circadian clocks. Proc. Natl Acad. Sci. USA 106, 13582–13587 (2009). Food anticipatory activity is diminished in GHSR-knockout mice, and in ghrelin-containing oxyntic cells, ghrelin express is rhythmic, anti-phase to clock proteins, Per1 and Per2, and does not require light input.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  84. Blum, I. D. et al. Reduced anticipatory locomotor responses to scheduled meals in ghrelin receptor deficient mice. Neuroscience 164, 351–359 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Nisembaum, L. G., de Pedro, N., Delgado, M. J. & Isorna, E. Crosstalking between the “gut-brain” hormone ghrelin and the circadian system in the goldfish. Effects on clock gene expression and food anticipatory activity. Gen. Comp. Endocrinol. 205, 287–295 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Gunapala, K. M., Gallardo, C. M., Hsu, C. T. & Steele, A. D. Single gene deletions of orexin, leptin, neuropeptide Y, and ghrelin do not appreciably alter food anticipatory activity in mice. PLoS ONE 6, e18377 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  87. Gooley, J. J., Schomer, A. & Saper, C. B. The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms. Nat. Neurosci. 9, 398–407 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Kanamoto, N. et al. Genomic structure and characterization of the 5′-flanking region of the human ghrelin gene. Endocrinology 145, 4144–4153 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Herzog, E. D. Neurons and networks in daily rhythms. Nat. Rev. Neurosci. 8, 790–802 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Foster-Schubert, K. E. et al. Acyl and total ghrelin are suppressed strongly by ingested proteins, weakly by lipids, and biphasically by carbohydrates. J. Clin. Endocrinol. Metab. 93, 1971–1979 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bodosi, B. et al. Rhythms of ghrelin, leptin, and sleep in rats: effects of the normal diurnal cycle, restricted feeding, and sleep deprivation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R1071–R1079 (2004). Time-restricted feeding of rats to just the light phase shifts ghrelin peak from the light phase to the end of the dark phase.

    Article  CAS  PubMed  Google Scholar 

  92. Kumar, J. et al. Differential effects of chronic social stress and fluoxetine on meal patterns in mice. Appetite 64, 81–88 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Cabral, A., López Soto, E. J., Epelbaum, J. & Perelló, M. Is ghrelin synthesized in the central nervous system? Int. J. Mol. Sci. 18, 638 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Manoogian, E. N. C. & Panda, S. Circadian rhythms, time-restricted feeding, and healthy aging. Ageing Res. Rev. 39, 59–67 (2017).

    Article  PubMed  Google Scholar 

  95. Verbaeys, I. et al. Scheduled feeding results in adipogenesis and increased acylated ghrelin. Am. J. Physiol. Endocrinol. Metab. 300, E1103–E1111 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Oishi, K. & Hashimoto, C. Short-term time-restricted feeding during the resting phase is sufficient to induce leptin resistance that contributes to development of obesity and metabolic disorders in mice. Chronobiol. Int. 35, 1576–1594 (2018).

    Article  CAS  PubMed  Google Scholar 

  97. Sorrell, J. et al. The central melanocortin system mediates the benefits of time-restricted feeding on energy balance. Physiol. Behav. 227, 113132 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Drazen, D. L., Vahl, T. P., D’Alessio, D. A., Seeley, R. J. & Woods, S. C. Effects of a fixed meal pattern on ghrelin secretion: evidence for a learned response independent of nutrient status. Endocrinology 147, 23–30 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Merkestein, M. et al. Ghrelin mediates anticipation to a palatable meal in rats. Obesity 20, 963–971 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Saper, C. B. in Hypothalamic Integration of Energy Metabolism (eds Kalsbeek et al.) 243–252 (Elsevier, 2006). [Series Progress in Brain Research Vol. 153].

  101. Palyha, O. C. et al. Ligand activation domain of human orphan growth hormone (GH) secretagogue receptor (GHS-R) conserved from pufferfish to humans. Mol. Endocrinol. 14, 160–169 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Kojima, M. & Kangawa, K. Ghrelin: structure and function. Physiol. Rev. 85, 495–522 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Denney, W. S., Sonnenberg, G. E., Carvajal-Gonzalez, S., Tuthill, T. & Jackson, V. M. Pharmacokinetics and pharmacodynamics of PF-05190457: the first oral ghrelin receptor inverse agonist to be profiled in healthy subjects. Br. J. Clin. Pharmacol. 83, 326–338 (2017).

    Article  CAS  PubMed  Google Scholar 

  104. Wierup, N., Sundler, F. & Heller, R. S. The islet ghrelin cell. J. Mol. Endocrinol. 52, R35–R49 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Garaulet, M. et al. Ghrelin, sleep reduction and evening preference: relationships to CLOCK 3111 T/C SNP and weight loss. PLoS ONE 6, e17435 (2011). Individuals with overweight and obesity and a specific CLOCK single nucleotide polymorphism had higher plasma ghrelin concentrations.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  106. Spiegel, K., Tasali, E., Penev, P. & Van Cauter, E. Brief communication: sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann. Intern. Med. 141, 846–850 (2004).

    Article  PubMed  Google Scholar 

  107. Desmet, L., Thijs, T., Segers, A., Verbeke, K. & Depoortere, I. Chronodisruption by chronic jetlag impacts metabolic and gastrointestinal homeostasis in male mice. Acta Physiol. 233, e13703 (2021). Mouse model of chronic jetlag displays disturbed circadian rhythmicity of ghrelin mRNA expression in stomach mucosa.

    Article  CAS  Google Scholar 

  108. Luo, S. et al. Experimental dopaminergic neuron lesion at the area of the biological clock pacemaker, suprachiasmatic nuclei (SCN) induces metabolic syndrome in rats. Diabetol. Metab. Syndr. 13, 11 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bookout, A. L. et al. FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat. Med. 19, 1147–1152 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gupta, D. et al. Disrupting the ghrelin-growth hormone axis limits ghrelin’s orexigenic but not glucoregulatory actions. Mol. Metab. 53, 101258 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Nass, R. et al. Evidence for acyl-ghrelin modulation of growth hormone release in the fed state. J. Clin. Endocrinol. Metab. 93, 1988–1994 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zizzari, P., Hassouna, R., Grouselle, D., Epelbaum, J. & Tolle, V. Physiological roles of preproghrelin-derived peptides in GH secretion and feeding. Peptides 32, 2274–2282 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Serin, Y. & Acar Tek, N. Effect of circadian rhythm on metabolic processes and the regulation of energy balance. Ann. Nutr. Metab. 74, 322–330 (2019).

    Article  CAS  PubMed  Google Scholar 

  114. Wang, W. et al. Rotating day and night disturb growth hormone secretion profiles, body energy metabolism, and insulin levels in mice. Neuroendocrinology 112, 481–492 (2022).

    Article  CAS  PubMed  Google Scholar 

  115. Richards, J. & Gumz, M. L. Advances in understanding the peripheral circadian clocks. FASEB J. 26, 3602–3613 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Vitaterna, M. H., Takahashi, J. S. & Turek, F. W. Overview of circadian rhythms. Alcohol. Res. Health 25, 85–93 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Bass, J. & Takahashi, J. S. Circadian integration of metabolism and energetics. Science 330, 1349–1354 (2010).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  118. Heyde, I. & Oster, H. Induction of internal circadian desynchrony by misaligning zeitgebers. Sci. Rep. 12, 1601 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Acknowledgements

The authors’ works is supported through research grants from the NIH (R01 DK103884, P01DK119130 and 5T32GM008014).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. S.S.K. and J.M.Z. contributed to the discussion of content, wrote the article and reviewed/edited it before submission.

Corresponding author

Correspondence to Jeffrey M. Zigman.

Ethics declarations

Competing interests

J.M.Z. owns stock in Medtronic, Eli Lilly and Novo Nordisk, and received research funding from Novo Nordisk for another project during the writing of this Review. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Yu Zhou and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulkarni, S.S., Singh, O. & Zigman, J.M. The intersection between ghrelin, metabolism and circadian rhythms. Nat Rev Endocrinol 20, 228–238 (2024). https://doi.org/10.1038/s41574-023-00927-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-023-00927-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing