Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Adaptive immune cells shape obesity-associated type 2 diabetes mellitus and less prominent comorbidities

Abstract

Obesity and type 2 diabetes mellitus (T2DM) are increasing in prevalence owing to decreases in physical activity levels and a shift to diets that include addictive and/or high-calorie foods. These changes are associated with the adoption of modern lifestyles and the presence of an obesogenic environment, which have resulted in alterations to metabolism, adaptive immunity and endocrine regulation. The size and quality of adipose tissue depots in obesity, including the adipose tissue immune compartment, are critical determinants of overall health. In obesity, chronic low-grade inflammation can occur in adipose tissue that can progress to systemic inflammation; this inflammation contributes to the development of insulin resistance, T2DM and other comorbidities. An improved understanding of adaptive immune cell dysregulation that occurs during obesity and its associated metabolic comorbidities, with an appreciation of sex differences, will be critical for repurposing or developing immunomodulatory therapies to treat obesity and/or T2DM-associated inflammation. This Review critically discusses how activation and metabolic reprogramming of lymphocytes, that is, T cells and B cells, triggers the onset, development and progression of obesity and T2DM. We also consider the role of immunity in under-appreciated comorbidities of obesity and/or T2DM, such as oral cavity inflammation, neuroinflammation in Alzheimer disease and gut microbiome dysbiosis. Finally, we discuss previous clinical trials of anti-inflammatory medications in T2DM and consider the path forward.

Key points

  • Although obesity and/or T2DM are widely known as metabolic diseases, the development of the field of meta-inflammation has demonstrated the strong immune component of both conditions.

  • An appropriate balance between T helper 17 cells and regulatory T cells, and effector and regulatory B cells, is essential to maintain local immunity during systemic inflammation, especially in obesity and in its associated comorbidities.

  • Clinical trials targeting inflammatory mediators of obesity and T2DM (such as IL-1β and tumour necrosis factor) to improve glycaemic control in T2DM have shown only moderate effects, suggesting that alternative sources of inflammation are important.

  • Consideration of sex-driven differences in adaptive immunity and adipose tissue function during obesity and/or T2DM-associated diseases will be critical to optimize treatment on an individualized basis.

  • Identification of shared activation markers between insulin-sensitive cells and tissue-resident or infiltrating pro-inflammatory immune cells will be important for a more complete understanding of obesity, T2DM and associated comorbidities.

  • T2DM-associated changes in adaptive immunity should be investigated for future clinical trials in T2DM; such knowledge will redirect the current focus on plasma cytokines to target development of new therapeutic approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Insulin signalling in activated T cells favours the expansion of effector T cells over Treg cells.
Fig. 2: Adipocyte leptin promotes lymphocyte activation and TH17 cell differentiation.
Fig. 3: Calcium signalling upon T cell receptor or B cell receptor activation.
Fig. 4: Insulin resistance in the brain during neuroinflammation.
Fig. 5: Taste perception in taste bud cells is subject to immunoregulation.

Similar content being viewed by others

References

  1. World Health Organization. Obesity and overweight. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (2021).

  2. World Health Organization. Diabetes. https://www.who.int/news-room/fact-sheets/detail/diabetes (2021).

  3. Singh-Manoux, A. et al. Obesity trajectories and risk of dementia: 28 years of follow-up in the Whitehall II Study. Alzheimers Dement. 14, 178–186 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kearns, C. E. & Bero, L. A. Conflicts of interest between the sugary food and beverage industry and dental research organisations: time for reform. Lancet 394, 194–196 (2019).

    Article  PubMed  Google Scholar 

  5. Mclaughlin, T., Ackerman, S. E., Shen, L. & Engleman, E. Role of innate and adaptive immunity in obesity-associated metabolic disease. J. Clin. Invest. 127, 5–13 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wernstedt Asterholm, I. et al. Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling. Cell Metab. 20, 103–118 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Stenvinkel, P. et al. Inflammation modifies the paradoxical association between body mass index and mortality in hemodialysis patients. J. Am. Soc. Nephrol. 27, 1479–1486 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Nishimoto, S. et al. Obesity-induced DNA released from adipocytes stimulates chronic adipose tissue inflammation and insulin resistance. Sci. Adv. 2, e1501332 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hotamisligil, G. S. et al. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-α- and obesity-induced insulin resistance. Science 271, 665–668 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, F. et al. Crystal structure of the obese protein leptin-E100. Nature 387, 206–209 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Fazel, Y., Koenig, A. B., Sayiner, M., Goodman, Z. D. & Younossi, Z. M. Epidemiology and natural history of non-alcoholic fatty liver disease. Metabolism 65, 1017–1025 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Liu, R. & Nikolajczyk, B. S. Tissue immune cells fuel obesity-associated inflammation in adipose tissue and beyond. Front. Immunol. 10, 1587 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zeyda, M. et al. Human adipose tissue macrophages are of an anti-inflammatory phenotype but capable of excessive pro-inflammatory mediator production. Int. J. Obes. 31, 1420–1428 (2007).

    Article  CAS  Google Scholar 

  14. Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15, 930–939 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Harmon, D. B. et al. Protective role for B-1b B cells and IgM in obesity-associated inflammation, glucose intolerance, and insulin resistance. Arterioscler. Thromb. Vasc. Biol. 36, 682–691 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cipolletta, D., Cohen, P., Spiegelman, B. M., Benoist, C. & Mathis, D. Appearance and disappearance of the mRNA signature characteristic of Treg cells in visceral adipose tissue: age, diet, and PPARγ effects. Proc. Natl Acad. Sci. USA 112, 482–487 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Nishimura, S. et al. CD8+effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat. Med. 15, 914–920 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Winer, D. A. et al. B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat. Med. 17, 610–617 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McLaughlin, T. et al. T-cell profile in adipose tissue is associated with insulin resistance and systemic inflammation in humans. Arterioscler. Thromb. Vasc. Biol. 34, 2632–2636 (2014).

    Article  Google Scholar 

  20. Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007). In this study, adipose tissue macrophages undergo a phenotypic switch from an anti-inflammatory M2 polarization state to a proinflammatory M1 polarization state upon high-fat feeding, in the process losing their protective capacity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dror, E. et al. Postprandial macrophage-derived IL-1β stimulates insulin, and both synergistically promote glucose disposal and inflammation. Nat. Immunol. 18, 283–292 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Ying, W. et al. Expansion of islet-resident macrophages leads to inflammation affecting β cell proliferation and function in obesity. Cell Metab. 29, 457–474.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Fink, L. N. et al. Pro-inflammatory macrophages increase in skeletal muscle of high fat-fed mice and correlate with metabolic risk markers in humans. Obesity 22, 747–757 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Morinaga, H. et al. Characterization of distinct subpopulations of hepatic macrophages in HFD/obese mice. Diabetes 64, 1120–1130 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Winer, S. et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nat. Med. 15, 921–929 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Khan, I. M. et al. Intermuscular and perimuscular fat expansion in obesity correlates with skeletal muscle T cell and macrophage infiltration and insulin resistance. Int. J. Obes. 39, 1607–1618 (2015).

    Article  CAS  Google Scholar 

  27. Rau, M. et al. Progression from nonalcoholic fatty liver to nonalcoholic steatohepatitis is marked by a higher frequency of Th17 cells in the liver and an increased Th17/resting regulatory T cell ratio in peripheral blood and in the liver. J. Immunol. 196, 97–105 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Gomes, A. L. et al. Metabolic inflammation-associated IL-17A causes non-alcoholic steatohepatitis and hepatocellular carcinoma. Cancer Cell 30, 161–175 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Böni-Schnetzler, M. & Meier, D. T. Islet inflammation in type 2 diabetes. Semin. Immunopathol. 41, 501–513 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Duffaut, C., Galitzky, J., Lafontan, M. & Bouloumié, A. Unexpected trafficking of immune cells within the adipose tissue during the onset of obesity. Biochem. Biophys. Res. Commun. 384, 482–485 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. DeFuria, J. et al. B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an inflammatory cytokine profile. Proc. Natl Acad. Sci. USA 110, 5133–5138 (2013). This article shows that B cells are critical regulators of inflammation in T2DM due to their direct ability to promote pro-inflammatory T cell function and secrete a pro-inflammatory cytokine profile.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shen, L. et al. B-1a lymphocytes attenuate insulin resistance. Diabetes 64, 593–603 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Novobrantseva, T. I. et al. Attenuated liver fibrosis in the absence of B cells. J. Clin. Invest. 115, 3072–3082 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nakamura, Y. et al. Depletion of B cell-activating factor attenuates hepatic fat accumulation in a murine model of nonalcoholic fatty liver disease. Sci. Rep. 9, 977 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kim, C.-S. et al. Deficiency for costimulatory receptor 4-1BB protects against obesity-induced inflammation and metabolic disorders. Diabetes 60, 3159–3168 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Steven, S. et al. CD40L controls obesity-associated vascular inflammation, oxidative stress, and endothelial dysfunction in high fat diet-treated and db/db mice. Cardiovasc. Res. 114, 312–323 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Barbé-Tuana, F. M. et al. CD40-CD40 ligand interaction activates proinflammatory pathways in pancreatic islets. Diabetes 55, 2437–2445 (2006).

    Article  PubMed  Google Scholar 

  38. Schmitz, V. et al. Induction of murine liver damage by overexpression of CD40 ligand provides an experimental model to study fulminant hepatic failure. Hepatology 44, 430–439 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Ip, B. et al. Th17 cytokines differentiate obesity from obesity-associated type 2 diabetes and promote TNFα production. Obesity 24, 102–112 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Fabbrini, E. et al. Association between specific adipose tissue CD4+ T-cell populations and insulin resistance in obese individuals. Gastroenterology 145, e3 (2013).

    Article  Google Scholar 

  41. Dalmas, E. et al. T cell-derived IL-22 amplifies IL-1β-driven inflammation in human adipose tissue: relevance to obesity and type 2 diabetes. Diabetes 63, 1966–1977 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Yuan, N., Zhang, H. F., Wei, Q., Wang, P. & Guo, W. Y. Expression of CD4+CD25+Foxp3+regulatory T cells, interleukin 10 and transforming growth factor β in newly diagnosed type 2 diabetic patients. Exp. Clin. Endocrinol. Diabetes 126, 96–101 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Jagannathan-Bogdan, M. et al. Elevated proinflammatory cytokine production by a skewed T cell compartment requires monocytes and promotes inflammation in type 2 diabetes. J. Immunol. 186, 1162–1172 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Cortez-Espinosa, N. et al. CD39 expression on Treg and Th17 cells is associated with metabolic factors in patients with type 2 diabetes. Hum. Immunol. 76, 622–630 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Zhou, J. et al. Non-obese type 2 diabetes patients present intestinal B cell dysregulations associated with hyperactive intestinal Tfh cells. Mol. Immunol. 97, 27–32 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Zhan, J. et al. Reduced inflammatory responses of follicular helper T cell promote the development of regulatory B cells after Roux-en-Y gastric bypass. Clin. Exp. Pharmacol. Physiol. 44, 556–565 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Chashmniam, S., Madani, N. H., Ghoochani, B. B. F. N. M., Safari-Alighiarloo, N. & Khamseh, M. E. The metabolome profiling of obese and non-obese individuals: metabolically healthy obese and unhealthy non-obese paradox. Iran. J. Basic. Med. Sci. 23, 186–194 (2020).

    PubMed  PubMed Central  Google Scholar 

  48. SantaCruz-Calvo, S. et al. Commentary on Camell et al., aging induces Nlrp3 inflammasome-dependent adipose B cell expansion to impair metabolic homeostasis. Immunometabolism 2, e200011 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhai, X. et al. Elevated B cell activation is associated with type 2 diabetes development in obese subjects. Cell. Physiol. Biochem. 38, 1257–1266 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Jagannathan, M. et al. Toll-like receptors regulate B cell cytokine production in patients with diabetes. Diabetologia 53, 1461–1471 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Deng, C. et al. The imbalance of B-lymphocyte subsets in subjects with different glucose tolerance: relationship with metabolic parameter and disease status. J. Diabetes Res. 2017, 5052812 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Center for Disease Control. Prevalence of obesity and severe obesity among adults: United States, 2017–2018. https://www.cdc.gov/nchs/products/databriefs/db360.htm (2020).

  53. Jackson, A. S. et al. The effect of sex, age and race on estimating percentage body fat from body mass index: the Heritage Family Study. Int. J. Obes. 26, 789–796 (2002).

    Article  CAS  Google Scholar 

  54. Jensen, M. D. Gender differences in regional fatty acid metabolism before and after meal ingestion. J. Clin. Invest. 96, 2297–2303 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tchkonia, T. et al. Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab. 17, 644–656 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Saad, M. F. et al. Sexual dimorphism in plasma leptin concentration. J. Clin. Endocrinol. Metab. 82, 579–584 (1997).

    CAS  PubMed  Google Scholar 

  57. Tramunt, B. et al. Sex differences in metabolic regulation and diabetes susceptibility. Diabetologia 63, 453–461 (2020).

    Article  PubMed  Google Scholar 

  58. Nordström, A., Hadrévi, J., Olsson, T., Franks, P. W. & Nordström, P. Higher prevalence of type 2 diabetes in men than in women is associated with differences in visceral fat mass. J. Clin. Endocrinol. Metab. 101, 3740–3746 (2016).

    Article  PubMed  Google Scholar 

  59. Margolis, K. L. et al. Effect of oestrogen plus progestin on the incidence of diabetes in postmenopausal women: results from the Women’s Health Initiative Hormone Trial. Diabetologia 47, 1175–1187 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Bitoska, I. et al. Effects of hormone replacement therapy on insulin resistance in postmenopausal diabetic women. Open Access Maced. J. Med. Sci. 4, 83–88 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chen, R.-Y. et al. Estradiol inhibits Th17 cell differentiation through inhibition of RORγT transcription by recruiting the ERα/REA complex to estrogen response elements of the RORγT promoter. J. Immunol. 194, 4019–4028 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Vasanthakumar, A. et al. Sex-specific adipose tissue imprinting of regulatory T cells. Nature 579, 581–585 (2020). This paper provides evidence that sex-specific differences in Treg cells from VAT are determined by the tissue niche in a sex-hormone-dependent manner to limit adipose tissue inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pettersson, U. S., Waldén, T. B., Carlsson, P. O., Jansson, L. & Phillipson, M. Female mice are protected against high-fat diet induced metabolic syndrome and increase the regulatory T cell population in adipose tissue. PLoS ONE 7, e46057 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ishikawa, A. et al. Estrogen regulates sex-specific localization of regulatory T cells in adipose tissue of obese female mice. PLoS ONE 15, e0230885 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. De Rosa, V. et al. A key role of leptin in the control of regulatory T cell proliferation. Immunity 26, 241–255 (2007).

    Article  PubMed  Google Scholar 

  67. Fungfuang, W., Terada, M., Komatsu, N., Moon, C. & Saito, T. R. Effects of estrogen on food intake, serum leptin levels and leptin mRNA expression in adipose tissue of female rats. Lab. Anim. Res. 29, 168–173 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Helderman, J. H. & Strom, T. B. Emergence of insulin receptors upon alloimmune T cells in the rat. J. Clin. Invest. 59, 338–344 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Helderman, J. H. & Strom, T. B. Specific insulin binding site on T and B lymphocytes as a marker of cell activation. Nature 274, 62–63 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Viardot, A., Grey, S. T., Mackay, F. & Chisholm, D. Potential antiinflammatory role of insulin via the preferential polarization of effector T cells toward a T helper 2 phenotype. Endocrinology 148, 346–353 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Helderman, J. H., Ayuso, R., Rosenstock, J. & Raskin, P. Monocyte-T lymphocyte interaction for regulation of insulin receptors on the activated T lymphocyte. J. Clin. Invest. 79, 566–571 (1987). This research demonstrated that insulin receptor in monocytes perceives the concentration of insulin and transmits this information to T lymphocytes by regulating the number of activation-induced insulin receptors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Stentz, F. B. & Kitabchi, A. E. Hyperglycemia-induced activation of human T-lymphocytes with de novo emergence of insulin receptors and generation of reactive oxygen species. Biochem. Biophys. Res. Commun. 335, 491–495 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Helderman, J. H. & Raskin, P. The T lymphocyte insulin receptor in diabetes and obesity. Intrinsic Binding Defect. Diabetes 29, 551–557 (1980).

    CAS  PubMed  Google Scholar 

  74. Stentz, F. B. & Kitabchi, A. E. Transcriptome and proteome expressions involved in insulin resistance in muscle and activated T-lymphocytes of patients with type 2 diabetes. genomics. Proteom. Bioinforma. 5, 216–235 (2007).

    CAS  Google Scholar 

  75. Tsai, S. et al. Insulin receptor-mediated stimulation boosts T cell immunity during inflammation and infection. Cell Metab. 28, 922–934.e4 (2018). This study shows that insulin receptor signalling has an important role in the immune response and has an effect on T cell glucose metabolism and amino acid handling.

    Article  CAS  PubMed  Google Scholar 

  76. Fischer, H. J. et al. The insulin receptor plays a critical role in T cell function and adaptive immunity. J. Immunol. 198, 1910–1920 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Fairfax, K. C. et al. IL-4–secreting secondary T follicular helper (Tfh) cells arise from memory T cells, not persisting Tfh cells, through a B cell-dependent mechanism. J. Immunol. 194, 2999–3010 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Vijayanand, P. et al. Interleukin-4 production by follicular helper T cells requires the conserved Il4 enhancer hypersensitivity site V. Immunity 36, 175–187 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Han, J. M., Patterson, S. J., Speck, M., Ehses, J. A. & Levings, M. K. Insulin inhibits IL-10-mediated regulatory T cell function: implications for obesity. J. Immunol. 192, 623–629 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Wu, D. et al. T reg–specific insulin receptor deletion prevents diet-induced and age-associated metabolic syndrome. J. Exp. Med. 217, e20191542 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Heymsfield, S. B. et al. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. J. Am. Med. Assoc. 282, 1568–1575 (1999).

    Article  CAS  Google Scholar 

  82. Palmer, G. et al. Indirect effects of leptin receptor deficiency on lymphocyte populations and immune response in db/db mice. J. Immunol. 177, 2899–2907 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Dib, L. H., Ortega, M. T., Fleming, S. D., Chapes, S. K. & Melgarejo, T. Bone marrow leptin signaling mediates obesity-associated adipose tissue inflammation in male mice. Endocrinology 155, 40–46 (2014).

    Article  PubMed  Google Scholar 

  84. Lord, G. M. et al. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 394, 897–901 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Saucillo, D. C., Gerriets, V. A., Sheng, J., Rathmell, J. C. & MacIver, N. J. Leptin metabolically licenses T cells for activation to link nutrition and immunity. J. Immunol. 192, 136–144 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Reis, B. S. et al. Leptin receptor signaling in T cells is required for Th17 differentiation. J. Immunol. 194, 5253–5260 (2015). This paper proposes that leptin receptor has major implications for the understanding of direct regulation of immune effector function under leptin-modulating conditions.

    Article  CAS  PubMed  Google Scholar 

  87. Wagner, N. M. et al. Circulating regulatory T cells are reduced in obesity and may identify subjects at increased metabolic and cardiovascular risk. Obesity 21, 461–468 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Gupta, S., Agrawal, S. & Gollapudi, S. Increased activation and cytokine secretion in B cells stimulated with leptin in aged humans. Immun. Ageing 10, 3 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Frasca, D., Diaz, A., Romero, M. & Blomberg, B. B. Leptin induces immunosenescence in human B cells. Cell. Immunol. 348, 103994 (2020).

    Article  CAS  PubMed  Google Scholar 

  90. Maurya, R., Bhattacharya, P., Dey, R. & Nakhasi, H. L. Leptin functions in infectious diseases. Front. Immunol. 9, 2741 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Procaccini, C. et al. The proteomic landscape of human ex vivo regulatory and conventional T cells reveals specific metabolic requirements. Immunity 44, 406–421 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tanimine, N. et al. Differential effects of 2-deoxy-D-glucose on in vitro expanded human regulatory T cell subsets. PLoS ONE 14, e0217761 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shin, B. et al. Mitochondrial oxidative phosphorylation regulates the fate decision between pathogenic Th17 and regulatory T cells. Cell Rep. 30, 1898–1909.e4 (2020).

    Article  CAS  PubMed  Google Scholar 

  94. Berod, L. et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat. Med. 20, 1327–1333 (2014). This study provides evidence that de novo fatty acid synthesis should be exploited as a new strategy for metabolic immune modulation of TH17 cell-mediated inflammatory disease.

    Article  CAS  PubMed  Google Scholar 

  95. Endo, Y. et al. Obesity drives Th17 cell differentiation by inducing the lipid metabolic kinase, ACC1. Cell Rep. 12, 1042–1055 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Katsurada, A. et al. Effects of nutrients and hormones on transcriptional and post-transcriptional regulation of acetyl-CoA carboxylase in rat liver. Eur. J. Biochem. 190, 435–441 (1990).

    Article  CAS  PubMed  Google Scholar 

  97. Zhao, L. F. et al. Hormonal regulation of acetyl-CoA carboxylase isoenzyme gene transcription. Endocr. J. 57, 317–324 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Nicholas, D. A. et al. Fatty acid metabolites combine with reduced β oxidation to activate Th17 inflammation in human type 2 diabetes. Cell Metab. 30, 447–461.e5 (2019). This article shows that mitochondrial alterations combine with increases in fatty acid metabolites to drive chronic T2DM-like inflammation in human peripheral mononuclear cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. O’Sullivan, D. et al. Memory CD8+ T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity 41, 75–88 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Zhang, C. et al. STAT3 activation-induced fatty acid oxidation in CD8+ T effector cells is critical for obesity-promoted breast tumor growth. Cell Metab. 31, 148–161.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  101. Goodman, J. H. & Ferrante, A. W. Fighting for fat: gluttonous tumors and starved T cells. Cell 183, 1739–1741 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. Frasca, D., Diaz, A., Romero, M., Thaller, S. & Blomberg, B. B. Metabolic requirements of human pro-inflammatory B cells in aging and obesity. PLoS ONE 14, e0219545 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Rao, A., Luo, C. & Hogan, P. G. Transcription factors of the Nfat family: regulation and function. Annu. Rev. Immunol. 15, 707–747 (1997).

    Article  CAS  PubMed  Google Scholar 

  104. Shaw, J. P. et al. Identification of a putative regulator of early T cell activation genes. J. Immunol. 185, 4972–4975 (2010).

    CAS  PubMed  Google Scholar 

  105. Kaufmann, U. et al. Calcium signaling controls pathogenic Th17 cell-mediated inflammation by regulating mitochondrial function. Cell Metab. 29, 1104–1118.e6 (2019). This paper provides evidence that calcium influx is a critical regulator of mitochondrial function and oxidative stress in pathogenic TH17-mediated multiorgan inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Vaeth, M. et al. Tissue resident and follicular Treg cell differentiation is regulated by CRAC channels. Nat. Commun. 10, 1183 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Berry, C. T. et al. BCR-induced Ca2+ signals dynamically tune survival, metabolic reprogramming, and proliferation of naive B cells. Cell Rep. 31, 107474 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Quintana, A. et al. T cell activation requires mitochondrial translocation to the immunological synapse. Proc. Natl Acad. Sci. USA 104, 14418–14423 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Rusiñol, A. E., Cui, Z., Chen, M. H. & Vance, J. E. A unique mitochondria-associated membrane fraction from rat liver has a high capacity for lipid synthesis and contains pre-Golgi secretory proteins including nascent lipoproteins. J. Biol. Chem. 269, 27494–27502 (1994).

    Article  PubMed  Google Scholar 

  110. Szabadkai, G. et al. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J. Cell Biol. 175, 901–911 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tang, H. et al. Loss of IP3 receptor–mediated Ca2+ release in mouse B cells results in abnormal B cell development and function. J. Immunol. 199, 570–580 (2017).

    Article  CAS  PubMed  Google Scholar 

  112. Bantug, G. R. et al. Mitochondria-endoplasmic reticulum contact sites function as immunometabolic hubs that orchestrate the rapid recall response of memory CD8+ T cells. Immunity 48, 542–555.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Arruda, A. P. et al. Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity. Nat. Med. 20, 1427–1435 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Han, J. M. & Periwal, V. A mathematical model of calcium dynamics: obesity and mitochondria-associated ER membranes. PLoS Comput. Biol. 15, e1006661 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Tubbs, E. et al. Disruption of mitochondria-associated endoplasmic reticulum membrane (MAM) integrity contributes to muscle insulin resistance in mice and humans. Diabetes 67, 636–650 (2018).

    Article  CAS  PubMed  Google Scholar 

  116. Tubbs, E. et al. Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance. Diabetes 63, 3279–3294 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Riaz, H. et al. Association between obesity and cardiovascular outcomes: a systematic review and meta-analysis of Mendelian randomization studies. JAMA Netw. Open 1, e183788 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Tublin, J. M., Adelstein, J. M., Monte, F., del, Combs, C. K. & Wold, L. E. Getting to the heart of Alzheimer disease. Circ. Res. 124, 142–149 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Biessels, G. J. & Despa, F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat. Rev. Endocrinol. 14, 591–604 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Yoshitake, T. et al. Incidence and risk factors of vascular dementia and Alzheimer’s disease in a defined elderly Japanese population: the Hisayama Study. Neurology 45, 1161–1168 (1995).

    Article  CAS  PubMed  Google Scholar 

  121. Ott, A. et al. Diabetes mellitus and the risk of dementia: the Rotterdam Study. Neurology 53, 1937–1942 (1999).

    Article  CAS  PubMed  Google Scholar 

  122. Gorospe, E. C. & Dave, J. K. The risk of dementia with increased body mass index. Age Ageing 36, 23–29 (2007).

    Article  PubMed  Google Scholar 

  123. Ma, Y., Ajnakina, O., Steptoe, A. & Cadar, D. Higher risk of dementia in English older individuals who are overweight or obese. Int. J. Epidemiol. 49, 1353–1365 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Qizilbash, N. et al. BMI and risk of dementia in two million people over two decades: a retrospective cohort study. Lancet Diabetes Endocrinol. 3, 431–436 (2015).

    Article  PubMed  Google Scholar 

  125. Haroutunian, V. et al. Role of the neuropathology of Alzheimer disease in dementia in the oldest-old. Arch. Neurol. 65, 1211–1217 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Sun, Z. et al. Late-life obesity is a protective factor for prodromal Alzheimer’s disease: a longitudinal study. Aging 12, 2005–2017 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bapat, S. P. et al. Depletion of fat-resident Treg cells prevents age-associated insulin resistance. Nature 528, 137–141 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Crane, P. K. et al. Glucose levels and risk of dementia. Forsch. Komplementarmed. 20, 386–387 (2013).

    Google Scholar 

  129. Frölich, L. et al. Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J. Neural Transm. 105, 423–438 (1998).

    Article  PubMed  Google Scholar 

  130. Bomfim, T. R. et al. An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease-associated Aβ oligomers. J. Clin. Invest. 122, 1339–1353 (2012). In a mouse model of Alzheimer disease, the anti-T2DM drug exendin-4 decreased levels of hippocampal IRS-1pSer and activated JNK and improved behavioural measures of cognition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Talbot, K. et al. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J. Clin. Invest. 122, 1316–1338 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Okereke, O., Hankinson, S. E., Hu, F. B. & Grodstein, F. Plasma C peptide level and cognitive function among older women without diabetes mellitus. Arch. Intern. Med. 165, 1651–1656 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Okereke, O. et al. Plasma C-peptide and cognitive performance in older men without diabetes. Am. J. Geriatr. Psychiatry 14, 1041–1050 (2006).

    Article  PubMed  Google Scholar 

  134. van Duinkerken, E. & Ryan, C. M. Diabetes mellitus in the young and the old: effects on cognitive functioning across the life span. Neurobiol. Dis. 134, 104608 (2020).

    Article  PubMed  Google Scholar 

  135. Blázquez, E., Velázquez, E., Hurtado-Carneiro, V. & Ruiz-Albusac, J. M. Insulin in the brain: its pathophysiological implications for states related with central insulin resistance, type 2 diabetes and Alzheimer’s disease. Front. Endocrinol. 5, 161 (2014).

    Article  Google Scholar 

  136. Lu, J. & Xu, Z. Efficacy of intranasal insulin in improving cognition in mild cognitive impairment and Alzheimer disease: a systematic review and meta-analysis. Am. J. Ther. 26, e756–e762 (2018).

    Article  Google Scholar 

  137. Watson, G. S. et al. Insulin increases CSF Aβ42 levels in normal older adults. Neurology 60, 1899–1903 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Yamamoto, N. et al. Brain insulin resistance accelerates Aβ fibrillogenesis by inducing GM1 ganglioside clustering in the presynaptic membranes. J. Neurochem. 121, 619–628 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Batista, A. F. et al. The diabetes drug liraglutide reverses cognitive impairment in mice and attenuates insulin receptor and synaptic pathology in a non-human primate model of Alzheimer’s disease. J. Pathol. 245, 85–100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Sommer, A., Winner, B. & Prots, I. The Trojan horse – neuroinflammatory impact of T cells in neurodegenerative diseases. Mol. Neurodegener. 12, 78 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Saresella, M. et al. Increased activity of Th-17 and Th-9 lymphocytes and a skewing of the post-thymic differentiation pathway are seen in Alzheimer’s disease. Brain. Behav. Immun. 25, 539–547 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Oberstein, T. J. et al. Imbalance of circulating Th17 and regulatory T cells in Alzheimer’s disease: a case control study. Front. Immunol. 9, 1213 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Banks, W. A. The blood–brain barrier as an endocrine tissue. Nat. Rev. Endocrinol. 15, 444–455 (2019).

    Article  CAS  PubMed  Google Scholar 

  144. Hartz, A. M. S. et al. Amyloid-β contributes to blood-brain barrier leakage in transgenic human amyloid precursor protein mice and in humans with cerebral amyloid angiopathy. Stroke 43, 514–523 (2012).

    Article  CAS  PubMed  Google Scholar 

  145. Zhang, J., Ke, K. F., Liu, Z., Qiu, Y. H. & Peng, Y. P. Th17 cell-mediated neuroinflammation is involved in neurodegeneration of Aβ1-42-induced Alzheimer’s disease model rats. PLoS ONE 8, e75786 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. St-Amour, I. et al. Peripheral adaptive immunity of the triple transgenic mouse model of Alzheimer’s disease. J. Neuroinflammation 16, 3 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Bharath, L. P. et al. Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation. Cell Metab. 32, 44–55.e6 (2020). In this study in humans, an oral metformin intervention improved T cell autophagy, indicating potential use for age-associated inflammation.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Cristiano, C. et al. Neutralization of IL-17 rescues amyloid-β-induced neuroinflammation and memory impairment. Br. J. Pharmacol. 176, 3544–3557 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Baulch, J. E. et al. Immune and inflammatory determinants underlying Alzheimer’s disease pathology. J. Neuroimmune Pharmacol. 15, 852–862 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Söllvander, S. et al. Increased number of plasma B cells producing autoantibodies against Aβ 42 protofibrils in Alzheimer’s disease. J. Alzheimers Dis. 48, 63–72 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Kim, K. et al. Therapeutic B-cell depletion reverses progression of Alzheimer’s disease. Nat. Commun. 12, 2185 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Holodick, N. E. & Rothstein, T. L. B cells in the aging immune system: time to consider B-1 cells. Ann. N. Y. Acad. Sci. 1362, 176–187 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Calvo, S. S. C. & Egan, J. M. The endocrinology of taste receptors. Nat. Rev. Endocrinol. 11, 213–227 (2015). This review provides an improved comprehension of the relationships between taste, palatability and taste receptors, which might lead to increased understanding of the development of obesity.

    Article  CAS  PubMed  Google Scholar 

  154. Steinbach, S. et al. Taste in mild cognitive impairment and Alzheimer’s disease. J. Neurol. 257, 238–246 (2010).

    Article  PubMed  Google Scholar 

  155. Wood, R. M. et al. Selective peripheral taste dysfunction in APP/PS1 mutant transgenic mice. J. Alzheimers Dis. 76, 613–621 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Beidler, L. M. & Smallman, R. L. Renewal of cells within taste buds. J. Cell Biol. 27, 263–272 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Khera, S. & Saigal, A. Assessment and evaluation of gustatory functions in patients with diabetes mellitus type II: a study. Indian J. Endocrinol. Metab. 22, 204–207 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Gondivkar, S. M., Indurkar, A., Degwekar, S. & Bhowate, R. Evaluation of gustatory function in patients with diabetes mellitus type 2. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod. 108, 876–880 (2009).

    Article  PubMed  Google Scholar 

  159. Archer, N. et al. Obesity is associated with altered gene expression in human tastebuds. Int. J. Obes. 43, 1475–1484 (2019).

    Article  Google Scholar 

  160. Kaufman, A., Kim, J., Noel, C. & Dando, R. Taste loss with obesity in mice and men. Int. J. Obes. 44, 739–743 (2020).

    Article  CAS  Google Scholar 

  161. Remla, N., Hadjidj, Z., Ghezzaz, K., Moulessehoul, S. & Aribi, M. Increased gustatory response score in obesity and association levels with IL-6 and leptin. J. Nutr. Metab. 2016, 7924052 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Camandola, S. & Mattson, M. P. Toll-like receptor 4 mediates fat, sugar, and umami taste preference and food intake and body weight regulation. Obesity 25, 1237–1245 (2017). In this paper, TLR4 signalling promoted ingestion of dietary sugar and fat by a mechanism involving increased preference for such obesogenic foods.

    Article  CAS  PubMed  Google Scholar 

  163. Feng, P., Zhao, H., Chai, J., Huang, L. & Wang, H. Expression and secretion of TNF-α in mouse taste buds: a novel function of a specific subset of type II taste cells. PLoS ONE 7, e43140 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Kaufman, A., Choo, E., Koh, A. & Dando, R. Inflammation arising from obesity reduces taste bud abundance and inhibits renewal. PLoS Biol. 16, e2001959 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Feng, P. et al. Regulation of bitter taste responses by tumor necrosis factor. Brain Behav. Immun. 49, 32–42 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Feng, P. et al. Immune cells of the human peripheral taste system: dominant dendritic cells and CD4 T cells. Brain. Behav. Immun. 23, 760–766 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Pu Feng, H., Wang, R. S., Feldman, E. A. & Pribitkin, A. S. B. The T cells in peripheral taste tissue of healthy human adults: predominant memory T cells and Th-1 cells. Chem. Senses 35, 501–509 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Wang, H., Zhou, M., Brand, J. & Huang, L. Inflammation activates the interferon signaling pathways in taste bud cells. J. Neurosci. 27, 10703–10713 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Feng, P. et al. Interleukin-10 is produced by a specific subset of taste receptor cells and critical for maintaining structural integrity of mouse taste buds. J. Neurosci. 34, 2689–2701 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Polak, D., Sanui, T., Nishimura, F. & Shapira, L. Diabetes as a risk factor for periodontal disease – plausible mechanisms. Periodontology 83, 46–58 (2020).

    Article  Google Scholar 

  171. Nikolajczyk, B. S. & Dawson, D. R. Origin of Th17 cells in type 2 diabetes-potentiated periodontal disease. Adv. Exp. Med. Biol. 1197, 45–54 (2019).

    Article  CAS  PubMed  Google Scholar 

  172. Zheng, X. et al. Gingival solitary chemosensory cells are immune sentinels for periodontitis. Nat. Commun. 10, 4496 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Dutzan, N. et al. A dysbiotic microbiome triggers TH17 cells to mediate oral mucosal immunopathology in mice and humans. Sci. Transl. Med. 10, eaat0797 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Alvarez, C. et al. Regulatory T cell phenotype and anti-osteoclastogenic function in experimental periodontitis. Sci. Rep. 10, 19018 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Dutzan, N. & Abusleme, L. T Helper 17 cells as pathogenic drivers of periodontitis. Adv. Exp. Med. Biol. 1197, 107–117 (2019).

    Article  CAS  PubMed  Google Scholar 

  176. Zhu, M. et al. B cells promote obesity-associated periodontitis and oral pathogen-associated inflammation. J. Leukoc. Biol. 96, 349–357 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Shulzhenko, N. et al. Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut. Nat. Med. 17, 1585–1593 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Braniste, V. et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci. Transl. Med. 6, 263ra158 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Lira-Junior, R. & Boström, E. A. Oral-gut connection: one step closer to an integrated view of the gastrointestinal tract? Mucosal Immunol. 11, 316–318 (2018).

    Article  CAS  PubMed  Google Scholar 

  180. Teichman, E. M., O’Riordan, K. J., Gahan, C. G. M., Dinan, T. G. & Cryan, J. F. When rhythms meet the blues: circadian interactions with the microbiota-gut-brain axis. Cell Metab. 31, 448–471 (2020).

    Article  CAS  PubMed  Google Scholar 

  181. Postler, T. S. & Ghosh, S. Understanding the holobiont: how microbial metabolites affect human health and shape the immune system. Cell Metab. 26, 110–130 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Vrieze, A. et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143, 913–916.e7 (2012).

    Article  CAS  PubMed  Google Scholar 

  183. Garidou, L. et al. The gut microbiota regulates intestinal CD4 T cells expressing RORγt and controls metabolic disease. Cell Metab. 22, 100–112 (2015). In this study, high-fat diet feeding induced gut microbiota dysbiosis which impaired the intestinal immune defence, including reduced intestinal IL-17-expressing T cells.

    Article  CAS  PubMed  Google Scholar 

  184. Bachem, A. et al. Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8+ T cells. Immunity 51, 285–297.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  185. Xie, Y. et al. Gut epithelial TSC1/mTOR controls RIPK3-dependent necroptosis in intestinal inflammation and cancer. J. Clin. Invest. 130, 2111–2128 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Saad, M. J. A., Santos, A. & Prada, P. O. Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology 31, 283–293 (2016).

    Article  CAS  PubMed  Google Scholar 

  187. Hong, C. P. et al. Gut-specific delivery of T-helper 17 cells reduces obesity and insulin resistance in mice. Gastroenterology 152, 1998–2010 (2017).

    Article  CAS  PubMed  Google Scholar 

  188. Luck, H. et al. Gut-associated IgA+ immune cells regulate obesity-related insulin resistance. Nat. Commun. 10, 3650 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  189. He, L. et al. Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding. Protein Cell 137, 635–646 (2009).

    CAS  Google Scholar 

  190. Sola, D. et al. Sulfonylureas and their use in clinical practice. Arch. Med. Sci. 11, 840–848 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Ahrén, B. DPP-4 inhibition and the path to clinical proof. Front. Endocrinol. 10, 376 (2019).

    Article  Google Scholar 

  192. Food and Drug Administration. Highlights of prescribing information: BYETTA (exenatide) Injection. https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/021773s9s11s18s22s25lbl.pdf (2009).

  193. Sumarac-Dumanovic, M. et al. Therapeutic improvement of glucoregulation in newly diagnosed type 2 diabetes patients is associated with a reduction of IL-17 levels. Immunobiology 218, 1113–1118 (2013).

    Article  CAS  PubMed  Google Scholar 

  194. Kim, E. K. et al. Metformin prevents fatty liver and improves balance of white/brown adipose in an obesity mouse model by inducing FGF21. Med. Inflamm. 2016, 5813030 (2016).

    Article  Google Scholar 

  195. Jojima, T. et al. Empagliflozin (an SGLT2 inhibitor), alone or in combination with linagliptin (a DPP-4 inhibitor), prevents steatohepatitis in a novel mouse model of non-alcoholic steatohepatitis and diabetes. Diabetol. Metab. Syndr. 8, 45 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Savchenko, L. G. et al. Liraglutide exerts an anti-inflammatory action in obese patients with type 2 diabetes. Rom. J. Intern. Med. 57, 233–240 (2019).

    PubMed  Google Scholar 

  197. Kushner, R. F. et al. Semaglutide 2.4 mg for the treatment of obesity: key elements of the STEP trials 1 to 5. Obesity 28, 1050–1061 (2020).

    Article  CAS  PubMed  Google Scholar 

  198. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03552757 (2021).

  199. Newsome, P. et al. Effect of semaglutide on liver enzymes and markers of inflammation in subjects with type 2 diabetes and/or obesity. Aliment. Pharmacol. Ther. 50, 193–203 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Newsome, P. N. et al. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. N. Engl. J. Med. 384, 1113–1124 (2021).

    Article  CAS  PubMed  Google Scholar 

  201. S, H. et al. Intensive lifestyle intervention or metformin on inflammation and coagulation in participants with impaired glucose tolerance. Diabetes 54, 1566–1572 (2005).

    Article  Google Scholar 

  202. Boyer, J. et al. Tumor necrosis factor alpha and adalimumab differentially regulate CD36 expression in human monocytes. Arthritis Res. Ther. 9, R22 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Kalincik, T. et al. Treatment effectiveness of alemtuzumab compared with natalizumab, fingolimod, and interferon beta in relapsing-remitting multiple sclerosis: a cohort study. Lancet Neurol. 16, 271–281 (2017).

    Article  CAS  PubMed  Google Scholar 

  204. Ogura, M. et al. Oral treatment with foralumab, a fully human anti-CD3 monoclonal antibody, prevents skin xenograft rejection in humanized mice. Clin. Immunol. 183, 240–246 (2017).

    Article  CAS  PubMed  Google Scholar 

  205. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT03291249 (2019).

  206. Larsen, C. M. et al. Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes. Diabetes Care 32, 1663–1668 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Van Asseldonk, E. J. P. et al. Treatment with anakinra improves disposition index but not insulin sensitivity in nondiabetic subjects with the metabolic syndrome: a randomized, double-blind, placebo-controlled study. J. Clin. Endocrinol. Metab. 96, 2119–2126 (2011).

    Article  PubMed  Google Scholar 

  208. Ruscitti, P. et al. Anti-interleukin-1 treatment in patients with rheumatoid arthritis and type 2 diabetes (TRACK): a multicentre, open-label, randomised controlled trial. PLoS Med. 16, e1002901 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Sloan-Lancaster, J. et al. Double-blind, randomized study evaluating the glycemic and antiinflammatory effects of subcutaneous LY2189102, a neutralizing IL-1β antibody, in patients with type 2 diabetes. Diabetes Care 36, 2239–2246 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Everett, B. M. et al. Anti-inflammatory therapy with canakinumab for the prevention and management of diabetes. J. Am. Coll. Cardiol. 71, 2392–2401 (2018).

    Article  CAS  PubMed  Google Scholar 

  211. Choudhury, R. P. et al. Arterial effects of canakinumab in patients with atherosclerosis and type 2 diabetes or glucose intolerance. J. Am. Coll. Cardiol. 68, 1769–1780 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Noe, A., Howard, C., Thuren, T., Taylor, A. & Skerjanec, A. Pharmacokinetic and pharmacodynamic characteristics of single-dose canakinumab in patients with type 2 diabetes mellitus. Clin. Ther. 36, 1625–1637 (2014).

    Article  CAS  PubMed  Google Scholar 

  213. Cavelti-Weder, C. et al. Development of an interleukin-1β vaccine in patients with type 2 diabetes. Mol. Ther. 24, 1003–1012 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Cardoso, C. R. L. et al. Efficacy and safety of diacerein in patients with inadequately controlled type 2 diabetes: a randomized controlled trial. Diabetes Care 40, 1356–1363 (2017).

    Article  CAS  PubMed  Google Scholar 

  215. Tres, G. S. et al. Effect of diacerein on metabolic control and inflammatory markers in patients with type 2 diabetes using antidiabetic agents: a randomized controlled trial. J. Diabetes Res. 2018, 4246521 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Dominguez, H. et al. Metabolic and vascular effects of tumor necrosis factor-α blockade with etanercept in obese patients with type 2 diabetes. J. Vasc. Res. 42, 517–525 (2005).

    Article  CAS  PubMed  Google Scholar 

  217. Bernstein, L. E., Berry, J., Kim, S., Canavan, B. & Grinspoon, S. K. Effects of etanercept in patients with the metabolic syndrome. Arch. Intern. Med. 166, 902–908 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Koska, J. et al. The effect of salsalate on insulin action and glucose tolerance in obese non-diabetic patients: results of a randomised double-blind placebo-controlled study. Diabetologia 52, 385–393 (2009).

    Article  CAS  PubMed  Google Scholar 

  219. Goldfine, A. B. et al. Salicylate (salsalate) in patients with type 2 diabetes: a randomized trial. Ann. Intern. Med. 159, 1–12 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  220. de Zeeuw, D. et al. The effect of CCR2 inhibitor CCX140-B on residual albuminuria in patients with type 2 diabetes and nephropathy: a randomised trial. Lancet Diabetes Endocrinol. 3, 687–696 (2015).

    Article  PubMed  Google Scholar 

  221. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02217475 (2019).

  222. Olsen, I. & Yamazaki, K. Can oral bacteria affect the microbiome of the gut? J. Oral. Microbiol. 11, 1586422 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Jiang, C., Li, G., Huang, P., Liu, Z. & Zhao, B. The gut microbiota and Alzheimer’s disease. J. Alzheimers Dis. 58, 1–15 (2017).

    Article  PubMed  Google Scholar 

  224. Centers for Disease Control and Prevention. Leading causes of death: data for the U.S. www.cdc.govhttps://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm (2021).

  225. Eke, P. I., Thornton-Evans, G., Dye, B. & Genco, R. Advances in surveillance of periodontitis: the Centers for Disease Control and Prevention Periodontal Disease Surveillance Project. J. Periodontol. 83, 1337–1342 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Pantalone, K. M., Patel, H., Yu, M. & Fernández Landó, L. Dulaglutide 1.5 mg as an add-on option for patients uncontrolled on insulin: subgroup analysis by age, duration of diabetes and baseline glycated haemoglobin concentration. Diabetes Obes. Metab. 20, 1461–1469 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Romanov, R. A. et al. Chemical synapses without synaptic vesicles: purinergic neurotransmission through a CALHM1 channel-mitochondrial signaling complex. Sci. Signal. 11, eaao1815 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of R01DK108056 (B.S.N.), U01DE025383 (B.S.N.), R56AG069685 (B.S.N.), R01NS103785 (A.D.B.) and the TRIAD 5T32AG057461 (J.L.).

Review criteria

Full text articles were chosen using PubMed and Google scholar searches both using general terms such as ‘diabetes’, ‘obesity’, ‘adaptive immunity’, ‘T and B cells’, ‘comorbidities’, ‘inflammation’ and ‘metabolic reprograming’. We focused the research on articles from 2010–2020 but always including earlier publications historically relevant for the topic. Articles were full-text, English-language papers.

Author information

Authors and Affiliations

Authors

Contributions

B.S.N. and S.SC.C. contributed to all aspects of the preparation of the article. L.B. researched data for the article, contributed to discussion of the content and wrote the article. G.P., R.L. and A.D.B. researched data for the article and wrote the article. L.SC.C. researched data for the article and contributed to discussion of the content. R.R.L., J.L. and B.Z. researched data for the article.

Corresponding authors

Correspondence to Sara SantaCruz-Calvo or Barbara S. Nikolajczyk.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Hormesis

An adaptive response of cells and organisms to a moderate stress.

Acetyl-CoA carboxylase

(ACC1). A rate-limiting enzyme in the synthesis of long-chain fatty acids.

Store-operated Ca2+ entry

(SOCE). A cellular mechanism enabling calcium shuttling from the extracellular space to the cytoplasm through the CRAC channels in the plasma membrane and STIM and STIM2 in the endoplasmic reticulum.

Blood–brain barrier

(BBB). A complex network of cells (endothelial cells, pericytes, astrocytes, microglial cells and neurons) that keep circulating blood cells, toxins or pathogens from entering the brain.

Toll-like receptor 4

(TLR4). Triggers tumour necrosis factor production in response to fatty acids and complexes with CD36 to recognize lipopolysaccharides.

Periodontal disease

Osteoclast-mediated destruction of the soft (gingival) and hard (bone) tooth-supporting structures, triggered by a combination of chronic inflammation and bacterial dysbiosis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SantaCruz-Calvo, S., Bharath, L., Pugh, G. et al. Adaptive immune cells shape obesity-associated type 2 diabetes mellitus and less prominent comorbidities. Nat Rev Endocrinol 18, 23–42 (2022). https://doi.org/10.1038/s41574-021-00575-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-021-00575-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing