Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optoacoustic imaging in endocrinology and metabolism

An Author Correction to this article was published on 27 May 2021

This article has been updated

Abstract

Imaging is an essential tool in research, diagnostics and the management of endocrine disorders. Ultrasonography, nuclear medicine techniques, MRI, CT and optical methods are already used for applications in endocrinology. Optoacoustic imaging, also termed photoacoustic imaging, is emerging as a method for visualizing endocrine physiology and disease at different scales of detail: microscopic, mesoscopic and macroscopic. Optoacoustic contrast arises from endogenous light absorbers, such as oxygenated and deoxygenated haemoglobin, lipids and water, or exogenous contrast agents, and reveals tissue vasculature, perfusion, oxygenation, metabolic activity and inflammation. The development of high-performance optoacoustic scanners for use in humans has given rise to a variety of clinical investigations, which complement the use of the technology in preclinical research. Here, we review key progress with optoacoustic imaging technology as it relates to applications in endocrinology; for example, to visualize thyroid morphology and function, and the microvasculature in diabetes mellitus or adipose tissue metabolism, with particular focus on multispectral optoacoustic tomography and raster-scan optoacoustic mesoscopy. We explain the merits of optoacoustic microscopy and focus on mid-infrared optoacoustic microscopy, which enables label-free imaging of metabolites in cells and tissues. We showcase current optoacoustic applications within endocrinology and discuss the potential of these technologies to advance research and clinical practice.

Key points

  • Optoacoustic technology includes a range of non-invasive, label-free and portable imaging modalities, which provide molecular visualizations at the macroscopic, mesoscopic and microscopic scale.

  • Multi-spectral optoacoustic tomography produces real-time tomographic views of tissue with a resolution of 200–300 μm (macroscopy) at depths of 2–4 cm.

  • Raster-scan optoacoustic mesoscopy provides volumetric images of tissue microvasculature and perfusion with a resolution of <10 μm (mesoscopy) at depths of 1–2 mm.

  • Mid-infrared optoacoustic microscopy provides label-free visualizations of the spatiotemporal dynamics of biomolecules in cellular metabolism.

  • Optoacoustic imaging offers a complete framework for investigating anatomic, functional and molecular aspects of common endocrine disorders.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Optoacoustic technology.
Fig. 2: Clinical optoacoustics in endocrinology: thyroid and microvascular imaging.
Fig. 3: Clinical optoacoustics in endocrinology: imaging metabolism.
Fig. 4: Preclinical optoacoustics in endocrinology: imaging BAT.
Fig. 5: Imaging of cellular metabolites using MiROM.

Change history

References

  1. Chrousos, G. P. Organization and integration of the endocrine system. Sleep. Med. Clin. 2, 125–145 (2007).

    PubMed  PubMed Central  Google Scholar 

  2. Shaw, A. S. & Cheow, H. K. Imaging in endocrinology. Medicine 45, 456–463 (2017).

    Google Scholar 

  3. Golden, S. H., Robinson, K. A., Saldanha, I., Anton, B. & Ladenson, P. W. Clinical review: prevalence and incidence of endocrine and metabolic disorders in the United States: a comprehensive review. J. Clin. Endocrinol. Metab. 94, 1853–1878 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kahramangil, B. & Berber, E. The use of near-infrared fluorescence imaging in endocrine surgical procedures. J. Surg. Oncol. 115, 848–855 (2017).

    PubMed  Google Scholar 

  5. Liu, J. et al. Near-infrared auto-fluorescence spectroscopy combining with Fisher’s linear discriminant analysis improves intraoperative real-time identification of normal parathyroid in thyroidectomy. BMC Surg. 20, 4 (2020).

    PubMed  PubMed Central  Google Scholar 

  6. Barberio, M. et al. Hyperspectral based discrimination of thyroid and parathyroid during surgery. Curr. Dir. Biomed. Eng. 4, 399–402 (2018).

    Google Scholar 

  7. Halicek, M., Fabelo, H., Ortega, S., Callico, G. M. & Fei, B. In-vivo and ex-vivo tissue analysis through hyperspectral imaging techniques: revealing the invisible features of cancer. Cancers 11, 756 (2019).

    CAS  PubMed Central  Google Scholar 

  8. Kho, E. et al. Imaging depth variations in hyperspectral imaging: development of a method to detect tumor up to the required tumor-free margin width. J. Biophotonics 12, e201900086 (2019).

    PubMed  Google Scholar 

  9. Fujii, H., Yamada, Y., Kobayashi, K., Watanabe, M. & Hoshi, Y. Modeling of light propagation in the human neck for diagnoses of thyroid cancers by diffuse optical tomography. Int. J. Numer. Method Biomed. Eng. 33, e2826 (2017).

    Google Scholar 

  10. Busse, G. & Rosencwaig, A. Subsurface imaging with photoacoustics. Appl. Phys. Lett. 36, 815–816 (1980).

    CAS  Google Scholar 

  11. Rosencwaig, A. Potential clinical applications of photoacoustics. Clin. Chem. 28, 1878–1881 (1982).

    CAS  PubMed  Google Scholar 

  12. Taruttis, A. & Ntziachristos, V. Advances in real-time multispectral optoacoustic imaging and its applications. Nat. Photonics 9, 219–227 (2015). This paper provides a comprehensive overview of the MSOT technology and its applications.

    CAS  Google Scholar 

  13. Oraevsky, A., Jacques, S., Esenaliev, R. & Tittel, F. Laser-based optoacoustic imagin gin biological tissues. Proc. SPIE 2134. Laser-Tissue Interaction V; and Ultraviolet Radiation Hazards (eds. Jacques S. L., Sliney D. H. & Belkin M.) 122–128 (SPIE, 1994).

  14. Oraevsky, A. A. et al. Laser optoacoustic imaging of the breast: detection of cancer angiogenesis. Proc. SPIE 3597. Optical Tomography and Spectroscopy of Tissue III (eds. Chance B., Alfano R. R. & Tromberg B. J.) 352–363 (SPIE, 1999).

  15. Esenaliev, R. O. et al. Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study. Appl. Opt. 41, 4722–4731 (2002).

    PubMed  Google Scholar 

  16. Esenaliev, R. O., Petrov, Y. Y., Hartrumpf, O., Deyo, D. J. & Prough, D. S. Continuous, noninvasive monitoring of total hemoglobin concentration by an optoacoustic technique. Appl. Opt. 43, 3401–3407 (2004).

    CAS  PubMed  Google Scholar 

  17. Knieling, F. et al. Multispectral optoacoustic tomography for assessment of Crohn’s disease activity. N. Engl. J. Med. 376, 1292–1294 (2017). An original research paper on MSOT imaging of inflammatory bowel disease.

    PubMed  Google Scholar 

  18. Regensburger, A. P. et al. Detection of collagens by multispectral optoacoustic tomography as an imaging biomarker for Duchenne muscular dystrophy. Nat. Med. 25, 1905–1915 (2019). An original research paper on MSOT imaging of collagen in Duchenne muscular dystrophy.

    CAS  PubMed  Google Scholar 

  19. Stoffels, I. et al. Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging. Sci. Transl Med. 7, 317ra199 (2015).

    PubMed  Google Scholar 

  20. Menezes, G. L. G. et al. Downgrading of breast masses suspicious for cancer by using optoacoustic breast imaging. Radiology 288, 355–365 (2018).

    PubMed  Google Scholar 

  21. Reber, J. et al. Non-invasive measurement of brown fat metabolism based on optoacoustic imaging of hemoglobin gradients. Cell Metab. 27, 689–701 (2018). An original research paper on MSOT imaging of brown adipose tissue activation based on haemoglobin contrast.

    CAS  PubMed  Google Scholar 

  22. Ntziachristos, V., Pleitez, M. A., Aime, S. & Brindle, K. M. Emerging technologies to image tissue metabolism. Cell Metab. 29, 518–538 (2019). This review provides a comprehensive overview of the novel technologies used in imaging metabolism.

    CAS  PubMed  Google Scholar 

  23. Tzoumas, S. et al. Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues. Nat. Commun. 7, 12121 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Karlas, A. et al. Multispectral optoacoustic tomography of muscle perfusion and oxygenation under arterial and venous occlusion–a human pilot study. J. Biophotonics 13, e201960169 (2020).

    CAS  PubMed  Google Scholar 

  25. Karlas, A. et al. Multispectral optoacoustic tomography of peripheral arterial disease based on muscle hemoglobin gradients–a pilot clinical study. Ann. Transl Med. 9, 36 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Taruttis, A. et al. Optoacoustic imaging of human vasculature: feasibility by using a handheld probe. Radiology 281, 256–263 (2016).

    PubMed  Google Scholar 

  27. Masthoff, M. et al. Use of multispectral optoacoustic tomography to diagnose vascular malformations. JAMA Dermatol. 154, 1457–1462 (2018).

    PubMed  PubMed Central  Google Scholar 

  28. Yang, H. et al. Soft ultrasound priors in optoacoustic reconstruction: improving clinical vascular imaging. Photoacoustics 19, 100172 (2020).

    PubMed  PubMed Central  Google Scholar 

  29. Karlas, A. et al. Cardiovascular optoacoustics: from mice to men – a review. Photoacoustics 14, 19–30 (2019).

    PubMed  PubMed Central  Google Scholar 

  30. Diot, G. et al. Multispectral optoacoustic tomography (MSOT) of human breast cancer. Clin. Cancer Res. 23, 6912–6922 (2017). An original research paper on MSOT imaging of human breast cancer.

    CAS  PubMed  Google Scholar 

  31. Karlas, A. et al. Flow-mediated dilatation test using optoacoustic imaging: a proof-of-concept. Biomed. Opt. Express 8, 3395–3403 (2017).

    PubMed  PubMed Central  Google Scholar 

  32. Omar, M., Aguirre, J. & Ntziachristos, V. Optoacoustic mesoscopy for biomedicine. Nat. Biomed. Eng. 3, 354–370 (2019). This paper provides a comprehensive overview of the RSOM technology and its biomedical applications.

    CAS  PubMed  Google Scholar 

  33. Pleitez, M. A. et al. Label-free metabolic imaging by mid-infrared optoacoustic microscopy in living cells. Nat. Biotechnol. 38, 293–296 (2020). An original research paper on MiROM technology and its use in imaging of cellular metabolites.

    CAS  PubMed  Google Scholar 

  34. Steinberg, I. et al. Photoacoustic clinical imaging. Photoacoustics 14, 77–98 (2019).

    PubMed  PubMed Central  Google Scholar 

  35. Beard, P. Biomedical photoacoustic imaging. Interface Focus. 1, 602–631 (2011).

    PubMed  PubMed Central  Google Scholar 

  36. Yao, J. & Wang, L. V. Photoacoustic microscopy. Laser Photon. Rev. 7, 758–778 (2013).

    Google Scholar 

  37. Oraevsky, A. A. et al. Clinical optoacoustic imaging combined with ultrasound for coregistered functional and anatomical mapping of breast tumors. Photoacoustics 12, 30–45 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Jo, J. et al. A functional study of human inflammatory arthritis using photoacoustic imaging. Sci. Rep. 7, 15026 (2017).

    PubMed  PubMed Central  Google Scholar 

  39. Zhang, H. F., Maslov, K., Stoica, G. & Wang, L. V. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 24, 848–851 (2006).

    CAS  PubMed  Google Scholar 

  40. Cox, B., Laufer, J. G., Arridge, S. R. & Beard, P. C. Quantitative spectroscopic photoacoustic imaging: a review. J. Biomed. Opt. 17, 061202 (2012).

    PubMed  Google Scholar 

  41. Wang, L. V. & Yao, J. A practical guide to photoacoustic tomography in the life sciences. Nat. Methods 13, 627–638 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lutzweiler, C. & Razansky, D. Optoacoustic imaging and tomography: reconstruction approaches and outstanding challenges in image performance and quantification. Sensors 13, 7345–7384 (2013).

    PubMed  PubMed Central  Google Scholar 

  43. Ntziachristos, V. & Razansky, D. Molecular imaging by means of multispectral optoacoustic tomography (MSOT). Chem. Rev. 110, 2783–2794 (2010).

    CAS  PubMed  Google Scholar 

  44. Olefir, I., Tzoumas, S., Yang, H. & Ntziachristos, V. A Bayesian approach to eigenspectra optoacoustic tomography. IEEE Trans. Med. Imaging 37, 2070–2079 (2018).

    PubMed  Google Scholar 

  45. Aguirre, J. et al. Precision assessment of label-free psoriasis biomarkers with ultra-broadband optoacoustic mesoscopy. Nat. Biomed. Eng. 1, 0068 (2017). An original research paper on RSOM technology and its use in imaging of skin inflammation in psoriasis.

    Google Scholar 

  46. Shaw, A. & Mantsch, H. in Encyclopedia of Analytical Chemistry (eds. Meyers R. A. & Meyers R. A.) https://doi.org/10.1002/9780470027318.a0106.pub2 (Wiley, 2008).

  47. Lindahl, K., Langdahl, B., Ljunggren, O. & Kindmark, A. Treatment of osteogenesis imperfecta in adults. Eur. J. Endocrinol. 171, R79–R90 (2014).

    CAS  PubMed  Google Scholar 

  48. Veilleux, L. N., Trejo, P. & Rauch, F. Muscle abnormalities in osteogenesis imperfecta. J. Musculoskelet. Neuronal Interact. 17, 1–7 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gujrati, V., Mishra, A. & Ntziachristos, V. Molecular imaging probes for multi-spectral optoacoustic tomography. Chem. Commun. 53, 4653–4672 (2017).

    CAS  Google Scholar 

  50. Weber, J., Beard, P. C. & Bohndiek, S. E. Contrast agents for molecular photoacoustic imaging. Nat. Methods 13, 639–650 (2016).

    CAS  PubMed  Google Scholar 

  51. Beziere, N. et al. Dynamic imaging of PEGylated indocyanine green (ICG) liposomes within the tumor microenvironment using multi-spectral optoacoustic tomography (MSOT). Biomaterials 37, 415–424 (2015).

    CAS  PubMed  Google Scholar 

  52. Li, W. & Chen, X. Gold nanoparticles for photoacoustic imaging. Nanomedicine 10, 299–320 (2015).

    CAS  PubMed  Google Scholar 

  53. Gujrati, V. et al. Bioengineered bacterial vesicles as biological nano-heaters for optoacoustic imaging. Nat. Commun. 10, 1114 (2019).

    PubMed  PubMed Central  Google Scholar 

  54. Ntziachristos, V. Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods 7, 603–614 (2010).

    CAS  PubMed  Google Scholar 

  55. Buehler, A., Kacprowicz, M., Taruttis, A. & Ntziachristos, V. Real-time handheld multispectral optoacoustic imaging. Opt. Lett. 38, 1404–1406 (2013).

    CAS  PubMed  Google Scholar 

  56. Li, Y. et al. Secretin-activated brown fat mediates prandial thermogenesis to induce satiation. Cell 175, 1561–1574 (2018).

    CAS  PubMed  Google Scholar 

  57. Park, S. J. et al. Visualizing Alzheimer’s disease mouse brain with multispectral optoacoustic tomography using a fluorescent probe, CDnir7. Sci. Rep. 9, 12052 (2019).

    PubMed  PubMed Central  Google Scholar 

  58. Ermilov, S. et al. 3D laser optoacoustic ultrasonic imaging system for research in mice (LOUIS-3DM). Proc. SPIE 8943. Photons Plus Ultrasound: Imaging and Sensing (eds. Oraevsky A. A. & Wang L. V.) 89430J (SPIE, 2014).

  59. Schwarz, M., Omar, M., Buehler, A., Aguirre, J. & Ntziachristos, V. Implications of ultrasound frequency in optoacoustic mesoscopy of the skin. IEEE Trans. Med. Imaging 34, 672–677 (2015).

    PubMed  Google Scholar 

  60. Aguirre, J. et al. Broadband mesoscopic optoacoustic tomography reveals skin layers. Opt. Lett. 39, 6297–6300 (2014).

    PubMed  Google Scholar 

  61. Chekkoury, A. et al. High-resolution multispectral optoacoustic tomography of the vascularization and constitutive hypoxemia of cancerous tumors. Neoplasia 18, 459–467 (2016).

    PubMed  PubMed Central  Google Scholar 

  62. Omar, M., Soliman, D., Gateau, J. & Ntziachristos, V. Ultrawideband reflection-mode optoacoustic mesoscopy. Opt. Lett. 39, 3911–3914 (2014).

    PubMed  Google Scholar 

  63. Omar, M., Gateau, J. & Ntziachristos, V. Raster-scan optoacoustic mesoscopy in the 25-125 MHz range. Opt. Lett. 38, 2472–2474 (2013).

    PubMed  Google Scholar 

  64. Schwarz, M. et al. Optoacoustic dermoscopy of the human skin: tuning excitation energy for optimal detection bandwidth with fast and deep imaging in vivo. IEEE Trans. Med. Imaging 36, 1287–1296 (2017).

    PubMed  Google Scholar 

  65. Berezhnoi, A. et al. Optical features of human skin revealed by optoacoustic mesoscopy in the visible and short-wave infrared regions. Opt. Lett. 44, 4119–4122 (2019).

    CAS  PubMed  Google Scholar 

  66. Schwarz, M., Buehler, A., Aguirre, J. & Ntziachristos, V. Three-dimensional multispectral optoacoustic mesoscopy reveals melanin and blood oxygenation in human skin in vivo. J. Biophotonics 9, 55–60 (2016).

    CAS  PubMed  Google Scholar 

  67. Berezhnoi, A. et al. Assessing hyperthermia-induced vasodilation in human skin in vivo using optoacoustic mesoscopy. J. Biophotonics 11, e201700359 (2018).

    PubMed  Google Scholar 

  68. Subochev, P. et al. Raster-scan optoacoustic angiography reveals 3D microcirculatory changes during cuffed occlusion. Laser Phys. Lett. 15, 045602 (2018).

    Google Scholar 

  69. Cracowski, J. L., Minson, C. T., Salvat-Melis, M. & Halliwill, J. R. Methodological issues in the assessment of skin microvascular endothelial function in humans. Trends Pharmacol. Sci. 27, 503–508 (2006).

    CAS  PubMed  Google Scholar 

  70. Jathoul, A. P. et al. Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter. Nat. Photonics 9, 239–246 (2015).

    CAS  Google Scholar 

  71. Krumholz, A., Shcherbakova, D. M., Xia, J., Wang, L. V. & Verkhusha, V. V. Multicontrast photoacoustic in vivo imaging using near-infrared fluorescent proteins. Sci. Rep. 4, 3939 (2014).

    PubMed  PubMed Central  Google Scholar 

  72. Stiel, A. C. et al. High-contrast imaging of reversibly switchable fluorescent proteins via temporally unmixed multispectral optoacoustic tomography. Opt. Lett. 40, 367–370 (2015).

    CAS  PubMed  Google Scholar 

  73. Shi, J. et al. High-resolution, high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic microscopy. Nat. Photonics 13, 609–615 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhao, Z., Shen, Y., Hu, F. & Min, W. Applications of vibrational tags in biological imaging by Raman microscopy. Analyst 142, 4018–4029 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Walsh, J. P. Managing thyroid disease in general practice. Med. J. Aust. 205, 179–184 (2016).

    PubMed  Google Scholar 

  76. Dima, A. & Ntziachristos, V. In-vivo handheld optoacoustic tomography of the human thyroid. Photoacoustics 4, 65–69 (2016).

    PubMed  PubMed Central  Google Scholar 

  77. Roll, W. et al. Multispectral optoacoustic tomography of benign and malignant thyroid disorders–a pilot study. J. Nucl. Med. 60, 1461–1466 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Yang, M. et al. Photoacoustic/ultrasound dual imaging of human thyroid cancers: an initial clinical study. Biomed. Opt. Express 8, 3449–3457 (2017).

    PubMed  PubMed Central  Google Scholar 

  79. Zhang, L. & Thurber, G. in Imaging and Metabolism (eds. Lewis J. S. & Keshari K. R.) 175–197 (Springer, 2018).

  80. Rastogi, R. & Jain, S. K. Imaging in diabetes mellitus. Arch. Clin. Nephrol. 2, 017–025 (2016).

    Google Scholar 

  81. Knieling, F. et al. Raster-scanning optoacoustic mesoscopy for gastrointestinal imaging at high resolution. Gastroenterology 154, 807–809 (2018).

    PubMed  Google Scholar 

  82. Gotfried, J., Priest, S. & Schey, R. Diabetes and the small intestine. Curr. Treat. Options Gastroenterol. 15, 490–507 (2017).

    PubMed  Google Scholar 

  83. Hernández-Ochoa, E. O. & Vanegas, C. Diabetic myopathy and mechanisms of disease. Biochem. Pharmacol. 4, 1000e179 (2015).

    Google Scholar 

  84. Sörensen, B. M. et al. Prediabetes and type 2 diabetes are associated with generalized microvascular dysfunction. Circulation 134, 1339–1352 (2016).

    PubMed  Google Scholar 

  85. McMillan, D. E. Deterioration of the microcirculation in diabetes. Diabetes 24, 944–957 (1975).

    CAS  PubMed  Google Scholar 

  86. Levy, B. I. et al. Impaired tissue perfusion: a pathology common to hypertension, obestiy, and diabetes mellitus. Circulation 118, 968–976 (2008).

    PubMed  Google Scholar 

  87. Fuchs, D., Dupon, P. P., Schaap, L. A. & Draijer, R. The association between diabetes and dermal microvascular dysfunction non-invasively assessed by laser Doppler with local thermal hyperemia: a systematic review with meta-analysis. Cardiovasc. Diabetol. 16, 11 (2017).

    PubMed  PubMed Central  Google Scholar 

  88. Fasoula, N.-A. et al. Multicompartmental non-invasive sensing of postprandial lipemia in humans with multispectral optoacoustic tomography. Mol. Metab. 47, 101184 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Diot, G., Dima, A. & Ntziachristos, V. Multispectral opto-acoustic tomography of exercised muscle oxygenation. Opt. Lett. 40, 1496–1499 (2015).

    CAS  PubMed  Google Scholar 

  90. Guerrero-Juarez, C. F. & Plikus, M. V. Emerging nonmetabolic functions of skin fat. Nat. Rev. Endocrinol. 14, 163–173 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Miranda, J. J., Taype-Rondan, A., Tapia, J. C., Gastanadui-Gonzalez, M. G. & Roman-Carpio, R. Hair follicle characteristics as early marker of type 2 diabetes. Med. Hypotheses 95, 39–44 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Baltzis, D., Eleftheriadou, I. & Veves, A. Pathogenesis and treatment of impaired wound healing in diabetes mellitus: new insights. Adv. Ther. 31, 817–836 (2014).

    CAS  PubMed  Google Scholar 

  93. Rindi, G. et al. A common classification framework for neuroendocrine neoplasms: an International Agency for Research on Cancer (IARC) and World Health Organization (WHO) expert consensus proposal. Mod. Pathol. 31, 1770–1786 (2018).

    PubMed  PubMed Central  Google Scholar 

  94. Tummers, W. S. et al. Intraoperative pancreatic cancer detection using tumor-specific multimodality molecular imaging. Ann. Surg. Oncol. 25, 1880–1888 (2018).

    PubMed  PubMed Central  Google Scholar 

  95. Lediju Bell, M. A., Ostrowski, A. K., Li, K., Kazanzides, P. & Boctor, E. M. Localization of transcranial targets for photoacoustic-guided endonasal surgeries. Photoacoustics 3, 78–87 (2015).

    PubMed  PubMed Central  Google Scholar 

  96. Padhye, V., Valentine, R. & Wormald, P. J. Management of carotid artery injury in endonasal surgery. Int. Arch. Otorhinolaryngol. 18, S173–S178 (2014).

    PubMed  PubMed Central  Google Scholar 

  97. Levi, J. et al. Molecular photoacoustic imaging of follicular thyroid carcinoma. Clin. Cancer Res. 19, 1494–1502 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Feng, T. et al. Characterization of bone microstructure using photoacoustic spectrum analysis. Opt. Express 23, 25217–25224 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Clemmensen, C. et al. Coordinated targeting of cold and nicotinic receptors synergistically improves obesity and type 2 diabetes. Nat. Commun. 9, 4304 (2018).

    PubMed  PubMed Central  Google Scholar 

  100. Lemes, L. C., Caetano Júnior, P. C., Strixino, J. F., Aguiar, J. & Raniero, L. Analysis of serum cortisol levels by Fourier transform infrared spectroscopy for diagnosis of stress in athletes. Res. Biomed. Eng. 32, 293–300 (2016).

    Google Scholar 

  101. Rao, B. et al. Optical resolution photoacoustic microscopy of ovary and fallopian tube. Sci. Rep. 9, 14306 (2019).

    PubMed  PubMed Central  Google Scholar 

  102. Buma, T., Conley, N. C. & Choi, S. W. Multispectral photoacoustic microscopy of lipids using a pulsed supercontinuum laser. Biomed. Opt. Express 9, 276–288 (2018).

    CAS  PubMed  Google Scholar 

  103. Yakovlev, V. V. et al. Stimulated Raman photoacoustic imaging. Proc. Natl Acad. Sci. USA 107, 20335–20339 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Seeger, M., Karlas, A., Soliman, D., Pelisek, J. & Ntziachristos, V. Multimodal optoacoustic and multiphoton microscopy of human carotid atheroma. Photoacoustics 4, 102–111 (2016).

    PubMed  PubMed Central  Google Scholar 

  105. Tserevelakis, G. J., Soliman, D., Omar, M. & Ntziachristos, V. Hybrid multiphoton and optoacoustic microscope. Opt. Lett. 39, 1819–1822 (2014).

    PubMed  Google Scholar 

  106. Kellnberger, S. et al. Optoacoustic microscopy at multiple discrete frequencies. Light. Sci. Appl. 7, 109 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhao, H. et al. Motion correction in optical resolution photoacoustic microscopy. IEEE Trans. Med. Imaging 38, 2139–2150 (2019).

    PubMed  Google Scholar 

  108. Schwarz, M., Garzorz-Stark, N., Eyerich, K., Aguirre, J. & Ntziachristos, V. Motion correction in optoacoustic mesoscopy. Sci. Rep. 7, 10386 (2017).

    PubMed  PubMed Central  Google Scholar 

  109. Ron, A., Davoudi, N., Deán-Ben, X. L. & Razansky, D. Self-gated respiratory motion rejection for optoacoustic tomography. Appl. Sci. 9, 2737 (2019).

    Google Scholar 

  110. Trimboli, P. et al. Ultrasound and ultrasound-related techniques in endocrine diseases. Minerva Endocrinol. 43, 333–340 (2018).

    PubMed  Google Scholar 

  111. Barsanti, C., Lenzarini, F. & Kusmic, C. Diagnostic and prognostic utility of non-invasive imaging in diabetes management. World J. Diabetes 6, 792–806 (2015).

    PubMed  PubMed Central  Google Scholar 

  112. De Sanctis, V. et al. Hand X-ray in pediatric endocrinology: skeletal age assessment and beyond. Indian. J. Endocrinol. Metab. 18, S63–S71 (2014).

    PubMed  PubMed Central  Google Scholar 

  113. Pisani, P. et al. Screening and early diagnosis of osteoporosis through X-ray and ultrasound based techniques. World J. Radiol. 5, 398–410 (2013).

    PubMed  PubMed Central  Google Scholar 

  114. Piciucchi, S., Poletti, V., Sverzellati, N., Gavelli, G. & Carloni, A. Primary and secondary hyperparathyroidism: findings on chest X-rays and high resolution CT. Eur. J. Radiol. Extra 70, e107–e110 (2009).

    Google Scholar 

  115. Marmin, C. et al. Computed tomography of the parathyroids: the value of density measurements to distinguish between parathyroid adenomas of the lymph nodes and the thyroid parenchyma. Diagn. Interv. Imaging 93, 597–603 (2012).

    CAS  PubMed  Google Scholar 

  116. Wang, F. et al. CT and MRI of adrenal gland pathologies. Quant. Imaging Med. Surg. 8, 853–875 (2018).

    PubMed  PubMed Central  Google Scholar 

  117. Stein, A. L., Levenick, M. N. & Kletzky, O. A. Computed tomography versus magnetic resonance imaging for the evaluation of suspected pituitary adenomas. Obstet. Gynecol. 73, 996–999 (1989).

    CAS  PubMed  Google Scholar 

  118. Huh, J. et al. Optimal phase of dynamic computed tomography for reliable size measurement of metastatic neuroendocrine tumors of the liver: comparison between pre- and post-contrast phases. Korean J. Radiol. 19, 1066–1076 (2018).

    PubMed  PubMed Central  Google Scholar 

  119. Gausden, E. B., Nwachukwu, B. U., Schreiber, J. J., Lorich, D. G. & Lane, J. M. Opportunistic use of CT imaging for osteoporosis screening and bone density assessment: a qualitative systematic review. J. Bone Jt. Surg. Am. 99, 1580–1590 (2017).

    Google Scholar 

  120. Nael, K. et al. Dynamic 4D MRI for characterization of parathyroid adenomas: multiparametric analysis. AJNR 36, 2147–2152 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Chang, G. et al. MRI assessment of bone structure and microarchitecture. JMRI 46, 323–337 (2017).

    PubMed  Google Scholar 

  122. Takatsu, Y., Okada, T., Miyati, T. & Koyama, T. Magnetic resonance imaging relaxation times of female reproductive organs. Acta Radiol. 56, 997–1001 (2015).

    PubMed  Google Scholar 

  123. Reznek, R. H. CT/MRI of neuroendocrine tumours. Cancer Imaging 6, S163–S177 (2006).

    PubMed  PubMed Central  Google Scholar 

  124. Davidson, C. Q., Phenix, C. P., Tai, T., Khaper, N. & Lees, S. J. Searching for novel PET radiotracers: imaging cardiac perfusion, metabolism and inflammation. Am. J. Nucl. Med. Mol. Imaging 8, 200–227 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Pacak, K., Eisenhofer, G. & Goldstein, D. S. Functional imaging of endocrine tumors: role of positron emission tomography. Endocr. Rev. 25, 568–580 (2004).

    PubMed  Google Scholar 

  126. Lu, F. M. & Yuan, Z. PET/SPECT molecular imaging in clinical neuroscience: recent advances in the investigation of CNS diseases. Quant. Imaging Med. Surg. 5, 433–447 (2015).

    PubMed  PubMed Central  Google Scholar 

  127. Ichise, M. & Harris, P. E. Imaging of β-cell mass and function. J. Nucl. Med. 51, 1001–1004 (2010).

    CAS  PubMed  Google Scholar 

  128. Bernardo-Filho, M., Santos-Filho, S. D., Fonseca, A. D. S. D., Carter, K. & Missailidis, S. Nuclear medicine procedures for the evaluation of male sexual organs: a brief review. Braz. Arch. Biol. Technol. 51, 13–21 (2008).

    Google Scholar 

  129. Hopkins, C. R. & Reading, C. C. Thyroid and parathyroid imaging. Semin. Ultrasound CT MR 16, 279–295 (1995).

    CAS  PubMed  Google Scholar 

  130. Brabander, T., Kwekkeboom, D. J., Feelders, R. A., Brouwers, A. H. & Teunissen, J. J. Nuclear medicine imaging of neuroendocrine tumors. Front. Horm. Res. 44, 73–87 (2015).

    CAS  PubMed  Google Scholar 

  131. Avram, A. M., Fig, L. M. & Gross, M. D. Adrenal gland scintigraphy. Semin. Nucl. Med. 36, 212–227 (2006).

    PubMed  Google Scholar 

  132. Yao, A., Balchandani, P. & Shrivastava, R. K. Metabolic in vivo visualization of pituitary adenomas: a systematic review of imaging modalities. World Neurosurg. 104, 489–498 (2017).

    PubMed  PubMed Central  Google Scholar 

  133. Karlas, A., Reber, J., Liapis, E., Paul-Yuan, K. & Ntziachristos, V. Multispectral optoacoustic tomography of brown adipose tissue. Handb. Exp. Pharmacol. 251, 325–336 (2019).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of funding from European Union’s Horizon 2020 research and innovation programme under grant agreement no. 871763 (WINTHER) and from the European Research Council (ERC) under grant agreement no. 694968 (PREMSOT) and from the Deutsche Forschungsgemeinschaft (DFG), Germany (Gottfried Wilhelm Leibniz Prize 2013; NT 3/10-1).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Vasilis Ntziachristos.

Ethics declarations

Competing interests

V.N. has stock and stock options in iThera Medical. All other authors declare no competing interests.

Additional information

Peer reviewer information

Nature Reviews Endocrinology thanks the anonymous reviewers for their contribution to the peer review of this work

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Multi-spectral optoacoustic tomography

(MSOT). Macroscopic imaging technology that generates real-time images of tissues in clinical and preclinical applications.

Raster-scan optoacoustic mesoscopy

(RSOM). Mesoscopic imaging technology that produces volumetric images of tissues and is mainly used for skin and microvascular applications.

Chromophores

The parts of a molecule that absorb light at a particular frequency to give a molecule a specific colour.

Tyrosinase

An enzyme that facilitates the production of the pigment eumelanin and can be permanently expressed in engineered cells to provide strong optoacoustic contrast.

Mid-infrared optoacoustic microscopy

(MiROM). Label-free microscopic technology that provides endogenous biomolecular contrast images of cellular metabolites and their dynamics.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karlas, A., Pleitez, M.A., Aguirre, J. et al. Optoacoustic imaging in endocrinology and metabolism. Nat Rev Endocrinol 17, 323–335 (2021). https://doi.org/10.1038/s41574-021-00482-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-021-00482-5

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing